Disk-cyclic and Codisk-cyclic tuples of the
adjoint weighted composition operators on
Hilbert spaces*

Yu-Xia Liang Ze-Hua, Zhou!

Abstract

Some sufficient conditions under which the tuple of the adjoint of weigh-
ted composition operators (Cy, ,,, Cs;, »,) on the Hilbert space H of analytic
functions is disk-cyclic (or codisk-cyclic) were investigated.

1 Introduction

Let H be an infinite dimensional separable Hilbert space of analytic functions
defined in D = {z € C, |z| < 1} such that, for each A € D, the linear func-
tional of point evaluation e, (f) = f(A) is bounded. The Riesz representation
theorem states that e, (f) = (f, k)) for some k), € H, the reproducing kernel of
H. The collection of all holomorphic functions (or self-maps) in ID is denoted as
H(DD) (or S(ID)). Recently, hypercyclic and supercyclic operators have received
considerable attention, especially since they arise in familiar classes of operators,
such as weighted shifts [5, 6, 12, 13, 14, 20], composition operators [15], weighted
composition operators [4, 11, 16, 19, 21, 22, 23]. For motivation, examples and
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background about linear dynamics, we refer the readers to the excellent books [2]
by Bayart and Matheron, [7] by Grosse-Erdmann and Peris Manguillot.

For a backward shift B on ¢7(IN), Rolewicz [18] showed that AB is hyper-
cyclic if and only if |A| > 1. Hence AB is not hypercyclic whenever |A| < 1,
one may wonder if there is an operator T satisfying its disk-orbit is dense in
a Hilbert space. Along with this question, a new dynamical property—disk-
cyclicity emerged in [1, 8, 9, 10, 17]. To be specific, an operator T € B (H) is
disk-cyclic (or codisk-cyclic), if there exists a vector x € H such that DOrb(T, x) =
{aT"x : a € C,0 < |a| <1, n>0}(or {T"x : B € CB| > 1, n > 0})
is norm-dense in H and x is called a disk-cyclic (or codisk-cyclic) vector for T,
where T" is obtained by composing T with itself 7 times.

An n-tuple of operators acting on H is a finite sequence of length n of com-
muting continuous linear operators 17, T, -+, T, on H, and is written as T =
(Ty, Ta, -+, Ty). For T = (T4, Ty, - - -, Tyy), we denote F = Fr = {T}' T2 Thr .
ki€ N, i =1,2,---,n}, which is the semigroup generated by T. Given x € H,
the orbit of x under the tuple T is Orb(T,x) = {Sx : S € F}. Naturally, T =
(T1, To, - - -, Ty) is disk-cyclic (or codisk-cyclic) if there is a vector x € H such that
DOrb(T,x) = {aSx: a € C,0< |a| <1, S € F} (or D°Orb(T,x) = {BSx: B €
C,|Bl > 1, S € F})is dense in H and x is called a disk-cyclic (or codisk-cyclic)
vector for the tuple T.

A complex-valued function w in D such that wf € H for every f € H is
called a multiplier of H and the collection of all multipliers is denoted by M (H).
In [11, p552] Kamali etc. proved M(H) C H® . A multiplication operator
My, on H is Myf = wf, f € H. Forw € M(H) and ¢ € S(ID) such that
foe € H for every f € H, then the weighted composition operator
Cuwgp : H = H, Cup(f)(z) = MwCy(f)(z) = w(z)f(¢(z)) is bounded. Due
to the fact C, ,(ky) = w(A)ky(y) forevery A € D, it yields that Cijl,(ky) =

(Hﬂ Ow(q)]( ))>k(pn(A)' Given wy, wp € M(H) and ¢1, ¢» € S(ID), we obtain

Cuwy,¢; and Ce,, g, In the current paper, we assume that the constants and the iden-
tity function f(z) = z are in H, and denote T = (Tq, T2) = (C{,, ¢,/ Cé,,p,)- Firstly,
fix A, B, C, D the four subsets of ID as below,

A= {z € D : the sequence {H]’.’:_Ol (wl o (¢1)j(z)-wro (goz)]-(z)> }n is bounded},

B = {z eD: hm H] 1(w1 o(¢1)-j(z) -wao (902)_]'(2))_1 _ 0},

C= {z eD: lim IT", 1(a)1 o (¢1)(z) - wa o (q)z)j(z)) - o},

n—oo

D = {z € D : the sequence {H};l (w1 o (¢1)-j(z) -wao (@2)—]’(Z)> _1}n
is bounded}.

In [16, Theorem 3.1], under the assumptions in (2.2)(in section 2) and

M = sup sup 1K (g1 )wo(@a)n(z) I < oo. Either the sets A and B or the sets C and
zelD ne
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D have limit points in D, then the tuple T = (C;, 4,,Cs,,q,) is supercyclic on
H. Inspired by the above work and the ideas in [16], we will find some suf-
ficient conditions to guarantee the disk-cyclicity and codisk-cyclicity of the tuple
T = (C,,¢1- Ciy,p,) O H, which are new and interesting question for the investi-
gation of weighted composition operators. Indeed the similar conclusions could be
obtained for the T"t”f’le T = (C&, 01 (?jj,z,q,z, o Cln)s we leave the proof for the read-
ers. The organization of the paper is as follows. In Section 2, we prepared some
preliminary results, and then we showed several sufficient conditions ensuring
the disk-cyclicity and codisk-cyclicity of the tuple (Cf,, ,,,Cs, ¢,) in Section 3 and
Section 4, respectively.

2 Preliminary results

In this section, we cited and proved some lemmas which were needed in the
proofs of our main results. Firstly, we cited a necessary and sufficient condition
ensuring Cy, ¢, and Cg, ¢, to commute.

Lemma 2.1. [19, Lemma 1] If w1 (z) and w>(z) are nonzero for all z € D, then Cp, ¢,
and Ce,,p, can commute if and only if

P10 @2 = @20 ¢1 and wy - (w0 @1) = wa - (w10 ¢3). (2.1)

Remark 2.2. Furthermore, we will assume that w1(z) and wy(z) are nonzero for all
z € Dand @1, ¢, satisfy

P10 P2 = @20 @, W1 =wi0 @y and wy = w3 o ¢1. (2.2)

It's easy to verify that Cy, 4, and Cy, 4, can commute under (2.2) and [19,
p456] shows there are many maps satisfying (2.2).
Let T; = C, o, fori = 1,2. A straightforward calculation gives that

Tlk, = (H;’:_Ol(wi ° (goi)j)(z))k(q)i)n(z), i=12 n>1
Employing (2.2), it turns out that

TS TIk, (2.3)

As regards to the disk-cyclicity and codisk-cycliclity, the Disk-Cyclicity Criterion
([10, Proposition 2.5]) and the Codisk-Cyclicity Criterion([8, Proposition 5.2.9])
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are dispensable tools in finding disk-cyclic and codisk-cyclic operators, which
relate with the Supercyclicity Criterion [3]. In order to derive the correspond-
ing criteria for tuples, we firstly presented the equivalent characterization for the
disk-cyclic or codisk-cyclic tuple T = (T1,T,) on H paralleling to [8, Theorem
4.24 and Theorem 5.2.4], respectively.

Theorem 2.3. Let T = (Ty, T,) be a 2-tuple of continuous linear operators on H.

(1) For the disk-cyclicity, the following statements are equivalent:

(i) The tuple T = (Ty, Ty) is disk-cyclic.

(ii) For each x, y € H and each neighborhood W for zero in H, there are z € H,
ki,kp € N, o € Cwith 0 < |a| < 1such that x —z € W and TflTé‘zaz —yeW.

(2) For the codisk-cyclicity, the following statements are equivalent:

(i’) The tuple T = (Ty, To) is codisk-cyclic.

(ii’) For each x, y € H and each neighborhood W for zero in H, there are z € H,
ki, ky € N, B € C with |B| > 1 such that x —z € W and TN TS Bz —y € W.

In the following, we verified the Disk-Cyclicity Criterion and the Codisk-
cyclicity Criterion for the tuple T = (T, T) by Theorem 2.3(1) and (2), respec-
tively.

Proposition 2.4. (Disk-Cyclicity Criterion for tuples) Let H be a separable infinite di-
mensional Hilbert space and T = (Ty,T») be a pair of commuting continuous linear
mappings on H. If there exist two dense subsets X,Y in ‘H, a pair of strictly increasing
positive integer sequences (my)reN and (My)rew and a sequence of mappings Sy (not
necessary bounded) such that Si(Y) C Y and

(1) T)*T,*Sy — y, k — oo, and klim |Sky|| =0 forally € Y;
—00
(2) klim | T T %x||||Sy|| = Oforall x € X,y € V.
—00
Then we say that T = (Ty,Ty) satisfies the Disk-Cyclicity Criterion. In particular,
T = (Ty, Ty) is disk-cyclic.

Proof. Choose z, w € H and let W be a neighborhood for zero in H. Without loss
of generality, we suppose the diameter of W is 1, thatis, W = {x € H, ||x| < 1}.
By the density of X and ) in H, there are x € X',y € Y such that

1 1
|z — x| < 1 and |lw—y| < 1
Denote u = x +1/aSxy € H for some k € IN and 0 < a < 1, which are deter-
mined later. Using the assumptions in (1) and (2), there exists a positive integer
N such that
My 1k 1 1 My 1k 1
1T TSy —yll < 3, ISl < 5 and [T Sl < g,
forallk > Nandx € X, y € ).
On the one hand, if ||Sxy|| # 0, fix « = 4||Sxy|| < 1 and then

1
| T x| = 4 Ty T x| Sey || < 5
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Based on the above inequalities, we obtain that
Iz —ull = llz =x = 1/aSy| < |z = x| +1/a][Seyll <1,
and

laT{"*T)*u — w|| = ||«T*T)*(x + 1/aSxy) — w||
< JaTy* T x| + | T{* T Sy — yl| + Iy — wl|
1 1 1

L
<72t1T1

The above inequalities verify that z — u € W and aT;"*T,)*u —w € W foru € H,
0 <a <1andmy,n, € N fork > N.
On the other hand, if ||Syy|| = 0 and since T;"*T,)*Syy — y, k — oo, then

Iyl < I T*Swy — yll + 11" T Sy |
< T Sy =yl + 1T T ISkyll — 0, k — co.

Thatis, y = 0. Hence u = x +1/aSxy = x and ||w — y|| = ||w|| < 1/4. It’s clear
that z —u = z — x € W. After that, we choose 0 < ap < 1 small enough, such
that | T;* T, *x|| < 1/4. We deduce that

o Ty * Ty *u — w|| = [JagT; *Ty*x — wl|
< apT{* kx| + |w| < 1/4+1/4 < 1.

That means txoT{nkT;"u —we Wfor0 < ay <1
In sum, under both cases, employing Theorem 2.3 (1) the tuple T = (Ty, T»)
is disk-cyclic. n

Proposition 2.5. (Codisk-Cyclicity Criterion for tuples) Let H be a separable infinite
dimensional Hilbert space and T = (Ty, T) be a pair of commuting continuous linear
mappings on H. If there exist two dense subsets X, in ‘H, a pair of strictly increasing
positive integer sequences (my)xeN and (ny)ren and a sequence of mappings Sy (not
necessary bounded) such that Si(Y) C Y and

(1) T{"*T,*Sxy — y, k — oo forally € Y and klim | T"*T)*x|| = 0 forall x € X.
—00

(2) kh_]f:élo I T * T x||||Sky|| = Oforall x € X,y € V.

Then we say that T = (11, T) satisfies the Codisk-Cyclicity Criterion. In particular,
T = (Ty, T) is codisk-cyclic.

Proof. Let z, w € H and W be a neighborhood for zero in H. Without loss of
generality, we also assume the diameter of Wis 1, thatis, W = {x € H, ||x|| < 1}.
By the density of X and ) in H, there are x € X',y € ) such that

1 1
|z — x|| < 1 and ||[w—yl| < 1
Denote u = x 4+ 1/BSky for some k € IN and B > 1, which are determined later.
Using the assumptions in (1) and (2), there is a positive integer N such that
1

1 1
T Ty Sey —yll < 30 1T x| < 7 and [T T x|[[ISeyl] < g,
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forallk > Nandx € X, y € ).
On the one hand, if || T;"*T,*x|| # 0, fix B = (4||T;"*T,*x||)~! > 1 and then

1
B

Based on the above inequalities, we obtain that

1
ISyl = 41T T x| Skl < 5

|z —ull = llz—x—=1/BSyll < |lz—x|| +1/BSkyll <1,
and
IBT* Ty u — w|| = || BTy * Ty* (x + 1/BSky) — w|
< BT Ty x| + 1T T Sy — yl + [y — wll

<itptg<l
4 4 4 '
The above inequalities verify that z — u € W and BT,"*T)*u —w € W for g > 1.

On the other hand, if ||T;"*T,*x|| = 0. Then choose B > 1 large enough such
that 1/||Sxy|| < 1/4. Hence

1 1 1
— <l|z— - -+ - < 1.
2=l < Iz =l + ISl < 3+ <
Thatis, z — u € W. Moreover,
BT * Ty u —w| = [[BT*T)*(x +1/BSy) — w||

1T Ty Sy — |

< TS =yl + ly — wl
< gHg<l
4 4 '

That means BT, *T,*u — w € W. From Theorem 2.3 (2), we deduce the tuple
T = (Ty, Tz) is codisk-cyclic. This ends the proof. u

For further use, we cite the definition for conjugacy from [7].

Definition 2.6. [7, Definition 1.5] Let S : Y — Y and T : X — X be two dynamical
systems on Banach spaces X and Y. Then T is called conjugate to S if there exists a
homeomorphism ¢ : Y — X such that To¢ = ¢ o S.

Concerning the disk-cyclicity and codisk-cyclicity, the following proposition
holds.

Proposition 2.7. Disk-cyclicity (Codisk-cyclicity) for an operator T € B(H) is pre-
served under conjugacy.
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3 Disk-cyclicity of the tuple (C w1, golrczkuz,(pz)

In this section, we mainly discover some sufficient conditions for the disk-cyclicity
of the tuple T = (C¢, o, C, ,) on the Hilbert space H. Firstly, we use the sets
A, B to state our main theorem.

Theorem 3.1. Let w1 (z), wy(z) be two nonzero complex-valued functions for all z € ID
and ¢1(z), p2(z) be two automorphisms in D satisfying (2.2). Suppose

M = sup sup Hk (@1)n0(@2)n( || < oo0. (3.1)
zelD neZ
If the sets A and B have limit points in D, then the tuple T = (Cg, o,, C, ¢,) s disk-
cyclic on H.
Proof. We will use Proposition 2.4 to prove the tuple T = (Cg,, ,,, Cs,, 5,) is disk-

cyclic. Let S4 = span{k, : z € A} and Sg = span{k; : z € B}. Then S4 =
Sp = H, that is, the sets S 4 and Sg are dense in . For the readers’ convenience,
we now get down to the details. If f € H is orthogonal to k; for every z € Sy,
then f(z) = (f, kz). Since the set A has limit point in ID, hence the identity theo-
rem for holomorphic functions implies that f vanishes identically on H. That is,
(Sa)* = {0}. Hence Sy = H. Similarly, Sg = H.

Let ¥ = S4 and Y = Sp, which are dense subsets of the Hilbert space H. Since
@1 and ¢, are two automorphisms on ID, thus ¢; Land ¢y ! exist on ID. Further,
(2.2) implies that

gol_lo(pz_1 :goz_loq)l_l, w1 =wlo(p2_1 andwzzwzogol_l. (3.2)
Note T; = CZJi,qvi fori = 1,2. We observe from (2.3) that

BTk = [ (@ie (o)) w2o(e))@)] 63

' k((Pl)nO((Pz)n(z)/ n 2 1.

To find the right inverse of T, Tj, the proof falls into two cases according to the
set Gg = {k; : z € B} is linearly independent or not.

Case (i) Assume that Gp is a linearly independent set. Define the operator
S:Gp — Hby

Sk: = [(wio9;"(2) - (@209; ()] k1, 1) 2 € D.

Employing (3.2), we derive " on Gg foralln > 1,

§"kz = 117w 0 (91)—j(2) - w2 0 (92) - (2)] T K(4y) _0(p1)u(z)- (B4

Since Gg is linearly independent, we extend S by linearity on the set ) = Sg =
span{k; : z € B}. Hence S" is well-defined on ) and satisfies $"())) C ) for all
n > 1. The assumption verifies that

: non
nh_r}rc}o IIS"y|| =0 forally € V. (3.5)
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By (2.2), we arrive at @1 0 2 = @2 0 @1, Wy = wy o @1 and it yields that

T,T1Sk, = T,T; ([(wl o gol_l(z)) . ((,Uz o qoz_l(z))]_lk¢2_1o(p1_1(z)>

=1 ([Wz o 902_1 ° @1 (Z)]_lk(,)z—l(z))

I
g
N
N
g
N
—~
N
=
I
—_
»
N

That is, T,T1S = Idy and T, T}'S" is the identity on ) for each n > 1. Hence
T;T1S"y — y, n — oo, forevery y € ) = Sp. (3.6)
In addition, by the conditions and (3.1), we conclude that
. nmon n
Yim [T Tk ||| S" k]

= lim || [H;’:_ol((wl o (¢1)j)(y) - (w20 (‘P2)j)(3/))}k((m)no(qu)n(y)”

n—oo

T [ewr © (1) —j(2) - w2 0 (92)—j(2)] " K(g) _yo(g1)_u(z)

< M?sup |11 ((wr o (1)) ) - (w20 (92)) ) )
nelN

lim [TTEy[wr o (91)—;(2) - w20 (92)—;(2)] 1|
=0, forye A, z € B.

The above inequalities lead that

nlgxgo | T Ty x||||S"y|| = 0, for every x € X and y € ). (3.7)
Depending on (3.5)-(3.7) and Proposition 2.4, the tuple T = (C(, ., C¢,, ,) fulfils

C*

gy 18 disk-cyclic on

the Disk-Cyclicity Criterion for tuples, hence T = (Cg,, 4,,
H

Case (ii). Assume that Gg = {k; : z € B} is not necessarily linearly inde-
pendent. In this case, we adapt the method used by Godefroy and Shapiro in
[5, Theorem 4.5]. Consider a countable dense subset

Bi={w,eD: n>1}
of B and find a sequence {z, } by mathematical induction. Letz; = w; and denote
B, =By \{w € By : ky € span{k, }}.
Denote the first element of B, by z and let

B3 =By \ {w € By : ky € span{k;, k;,} }.
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The infinite dimensionality of H insures the process never terminates and thus
an infinite subset L = {z, € ID : n > 1} of B is obtained. The corresponding set
of kernel functions H;, = {k; : z € L} is linearly independent and is dense in
H. Then the operator S can be defined exactly as above, just replacing Gg by Hj.
Consequently, the Disk-Cyclicity Criterion for tuples is also true in this case.

So, in both cases, the tuple T = (C; Céy,g,) 18 disk-cyclic. This finishes the

Wl/(Pl 4
proof. n

Employing Theorem 3.1, we can obtain the disk-cyclicity of the tuple
(Mg, , M, ) immediately.

Corollary 3.2. Let w1(z), wa(z) be two nonzero complex-valued functions forall z € D.
Denote the sets

A= {z € ID: the sequence {(w1(z)w2(z))" }n is bounded},

~ . 1
- e e

If the sets A and B have limit points in D, then the tuple (Mg, M, ) is disk-cyclic on
H.

Proof. Let ¢1(z) = ¢2(z) = z in Theorem 3.1. It is evident that sup ||k;|| < oo
zeD
emerged in (3.1) holds. Then the desired result follows from Theorem 3.1. [ |

We show an example to account for Corollary 3.2.

Example 3.3. Let wi(z) = z and wy(z) = z+ 8. Then
{x:0<x< V17 -4} C {z € D : the sequence {(z(z + 8))"}, is bounded},

) 1
{x:—1<x<—4—1—\/@}@{261]3:711520@:0}.

The sets A and B, apparently, have limit points in ID. The tuple (M, Mg,,) is disk-cyclic
due to Corollary 3.2.

For a € D, an automorphism ¢,(z) of ID is defined by

a—z
$a(z) = 1T %€ D. (3.8)

There are so many spaces that contain ¢,, such as the Hardy space, Bergman space
and Dirichlet space. These spaces are called automorphism invariant spaces. As
we all know, all holomorphic self-maps of the unit disk ID are dived into classes
of elliptic and nonelliptic. The elliptic map is conjugate to a rotation z — Az for
some A € C with |A| = 1.

If ¢1 and ¢; are two elliptic disk automorphisms satisfying @1 o 2 = @2 0 ¢1,
then their interior fixed points are identical. Indeed, if ¢1(z1) = z; € D and
¢2(z2) = zp € D, then

@10 ¢2(22) = @20 91(22) = ¢1(22) = P2(91(22)) = @1(22) = 220 = z1 = 2.
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Remark 3.4. For general case, if ¢1 and ¢, have interior fixed points in ID and satisfy
@10 @2 = @2 o @1, then they have the same interior fixed points.

Theorem 3.5. Suppose that H is automorphism invariant. Let w1(z),wz(z) be two
nonzero complex-valued functions for all z € ID and ¢4, 3 be two elliptic disk automor-
phisms with an interior fixed point a € D satisfying (2.2). If the sets A and B have limit
points in D, then the tuple T = (C{ Ce is disk-cyclic on ‘H.

w1,917 TwWa, (Pz)
Proof. We divide the proof into two cases.
Case (i) Suppose the interior fixed point a = 0. Then there are 6;, 6, € [0,27]
such that . ’

91(2) = €%z, ¢y(z) = ez,
It yields that -

(92)n 0 (91)n(z) = "1e%2z.
Hence the iterate {(¢2)n 0 (¢1)n : n € Z} C zdD. Since z0DD is compact subset
of D, thus

(F(@2)uo (o))

is a bounded sequence for f € H () H(ID). By the uniform boundedness princi-
ple, we get that

M = supsup ||k )l < o0 (3.9)

(@2)no(@1)n
zelD neZ "

Employing (3.9) and Theorem 3.1, the tuple T = (C¢, 4,, C:
Cyclicity Criterion for tuples.

Case (i) If a # 0 is the interior fixed point of ¢; (i = 1,2). We notice that H is
automorphism invariant. Let

tn,g,) Satisties the Disk-

PL=daopiod,, g2 =aoprod, "

be two automorphisms with the interior fixed point zero, and let
@ =wiod, !, Wy =wyod,’

be two multipliers of H, where ¢, is the automorphism provided in (3.8). The

disk-cyclicity of the tuple (C. a1 Co, E’7) on H follows from Case (i), where
C

T = C(P 0 Cuy,9, © Cyp, for i = 1,2. Finally, since Cy, ¢, is conjugate Ca, i
for i = 1,2, and by Proposition 2.7, we obtain the desired result. This completes
the proof. n

Example 3.6. Take two elliptic disk automorphisms ¢1(z) = iz, ¢2(z) = —iz with an
interior fixed point a = 0 € ID and w1 (z) = z*, wo(z) = z* + 4. The sets A and B are

A= {z € D : the sequence {24” (z* + 4)”} is bounded},
n
1
Since [0,3) C A and (%ﬁ,l) C B, hence (Cf,, ¢, Ci, p,) s disk-cyclic on H from

Theorem 3.5.
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H 1~ * *
4 Codisk-cyclicity of the tuple (Cg, ,,, Cs, 0,)
In this section, we turn our attention to study the -codisk-cyclic tuple
T = (C&,, 9,7 Césy,g,) 0N H. Since the proofs of the codisk-cyclicity are exactly the
same as those in Section 2, thus we omit the details. The main results are based

on the sets C and D and Proposition 2.5.

Theorem 4.1. Let w1 (z), wy(z) be two nonzero complex-valued functions for all z € ID
and ¢1(z), ¢2(z) be two automorphisms in ID satisfying (2.2). Suppose

M = supsup [[k(g,),o( | < o0.

92)n()]
zelD neZ

If the sets C and D have limit points in D, then the tuple (C,, o, CZ,, o,) is codisk-cyclic
on H.

In view of Theorem 4.1, the following description for the codisk-cyclic tuple
(Mg, M, ) holds.

Corollary 4.2. Let w1 (z), wa(z) be two nonzero complex-valued functions forall z € D.
Denote the sets

C= {z €D lim (w)(2)wn(2))" = o},
1
(w1(z)wa(z))"

If the sets C and D have limit points in D, then the tuple (M, L M(,,) is codisk-cyclic on
H.

Theorem 4.3. Suppose that ‘H is automorphism invariant. Let w1(z), w»(z) be two
nonzero complex-valued functions for all z € 1D and @1, ¢ be two elliptic disk automor-
phisms with an interior fixed point a € 1D satisfying (2.2). If the sets C and D have limit

points in ID, then the tuple (Cg, ., Cf, 9,) is codisk-cyclic on H.

D= {z € ID: the sequence { }n is bounded}.

Theorem 4.4. Suppose that H is automorphism invariant. Let w1(z), wa(z) be two
nonzero complex-valued functions for all z € 1D and @1, @3 be two elliptic automorphism
with an interior fixed point a € D satisfying (2.2). Further assume that wi, wy :
D — C satisfy the inequality |wi(a)wy(a)| < 1 and there is 0 < § < 1 satisfying
(w1 (z)wa(z)| > 1 forall |z| > 1— 6, then the tuple (Cg, o,, CG,,,0,) is codisk-cyclic on
H.

Proof. As the similar argument used in Theorem 3.5. Since H is automorphism
invariant, we can only prove for the case 2 = 0. Then

p1(z) = etz ¢2(z) = %2

for some 61,6, € [0,27]. Following the ideas in the proof of Theorem 3.5(Case
(), (3.9) holds.

On the one hand, since |w1(0)w;(0)| < 1, there is a constant 0 < r < 1 and a
positive number § € (0,1) such that

w1 (z)ws(z)| < ¥ <1, whenever |z| < 0.
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Since | ¢;(z)| = |z| fori = 1,2. Thus if |z| < J, we have that

H;’:_Olwl o (gol)]-(z) “wy 0 ((pz)]-(z) <r'"—0, n— oco.
Thus the set {z € D : |z| < ¢} is a subset of C in Theorem 4.1.

On the other hand, since there is 0 < ¢ < 1 satisfying |w;(z)w2(z)| > 1 for all
|z| >1—9,and |qol-_1(z)| = |z| for i = 1,2, hence if |z| > 1 — J, we conclude that

1
H7:1w1 o (@1)-j(z) -wao (¢2)-j(z) <1, foralln >1.

Therefore, the set {z € ID : [z| > 1—J} is a subset of D in Theorem 4.1. Since
both {z € D: |z] < d}and {z € D : |z| > 1 — ¢} have limit points in D, then
both C and D have limit points in ID. Employing (3.9) and Theorem 4.1, the tuple

(Cly, 017 Cion,g,) 18 codisk-cyclic. This completes the proof. ]
Remark 4.5. Example 3.6 indeed holds for Theorem 4.4. Since |w1(0)w,(0)] =0 < 1
and there is 0 < § = 1 — % < 1 satisfying |wy1(2)wa(z)| = |z|*|z* + 4] >

|z]4(4 —1) = 3|z|* > 1 forall |z| > 1 — 8. Hence the tuple (Céor,prr Civn ) 15 cOdisk-
cyclic on 'H from Theorem 4.4.
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