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Abstract

Some sufficient conditions under which the tuple of the adjoint of weigh-
ted composition operators (C∗

ω1,ϕ1
, C∗

ω2,ϕ2
) on the Hilbert space H of analytic

functions is disk-cyclic (or codisk-cyclic) were investigated.

1 Introduction

Let H be an infinite dimensional separable Hilbert space of analytic functions
defined in D = {z ∈ C, |z| < 1} such that, for each λ ∈ D, the linear func-
tional of point evaluation eλ( f ) = f (λ) is bounded. The Riesz representation
theorem states that eλ( f ) = 〈 f , kλ〉 for some kλ ∈ H, the reproducing kernel of
H. The collection of all holomorphic functions (or self-maps) in D is denoted as
H(D) (or S(D)). Recently, hypercyclic and supercyclic operators have received
considerable attention, especially since they arise in familiar classes of operators,
such as weighted shifts [5, 6, 12, 13, 14, 20], composition operators [15], weighted
composition operators [4, 11, 16, 19, 21, 22, 23]. For motivation, examples and
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background about linear dynamics, we refer the readers to the excellent books [2]
by Bayart and Matheron, [7] by Grosse-Erdmann and Peris Manguillot.

For a backward shift B on ℓp(N), Rolewicz [18] showed that λB is hyper-
cyclic if and only if |λ| > 1. Hence λB is not hypercyclic whenever |λ| ≤ 1,

one may wonder if there is an operator T̃ satisfying its disk-orbit is dense in
a Hilbert space. Along with this question, a new dynamical property—disk-

cyclicity emerged in [1, 8, 9, 10, 17]. To be specific, an operator T̃ ∈ B(H) is

disk-cyclic (or codisk-cyclic), if there exists a vector x ∈ H such that DOrb(T̃, x) =

{αT̃nx : α ∈ C, 0 < |α| ≤ 1, n ≥ 0} (or {βT̃nx : β ∈ C, |β| ≥ 1, n ≥ 0})
is norm-dense in H and x is called a disk-cyclic (or codisk-cyclic) vector for T̃,

where T̃n is obtained by composing T̃ with itself n times.
An n-tuple of operators acting on H is a finite sequence of length n of com-

muting continuous linear operators T1, T2, · · · , Tn on H, and is written as T =

(T1, T2, · · · , Tn). For T = (T1, T2, · · · , Tn), we denote F = FT = {Tk1
1 Tk2

2 · · · Tkn
n :

ki ∈ N, i = 1, 2, · · · , n}, which is the semigroup generated by T. Given x ∈ H,
the orbit of x under the tuple T is Orb(T, x) = {Sx : S ∈ F}. Naturally, T =
(T1, T2, · · · , Tn) is disk-cyclic (or codisk-cyclic) if there is a vector x ∈ H such that
DOrb(T, x) = {αSx : α ∈ C, 0 < |α| ≤ 1, S ∈ F} (or D

cOrb(T, x) = {βSx : β ∈
C, |β| ≥ 1, S ∈ F}) is dense in H and x is called a disk-cyclic (or codisk-cyclic)
vector for the tuple T.

A complex-valued function ω in D such that ω f ∈ H for every f ∈ H is
called a multiplier of H and the collection of all multipliers is denoted by M(H).
In [11, p552] Kamali etc. proved M(H) ⊆ H∞ . A multiplication operator
Mω on H is Mω f = ω f , f ∈ H. For ω ∈ M(H) and ϕ ∈ S(D) such that
f ◦ ϕ ∈ H for every f ∈ H, then the weighted composition operator
Cω,ϕ : H → H, Cω,ϕ( f )(z) = MωCϕ( f )(z) = ω(z) f (ϕ(z)) is bounded. Due

to the fact C∗
ω,ϕ(kλ) = w(λ)kϕ(λ) for every λ ∈ D, it yields that C∗n

ω,ϕ(kλ) =(
Π

n−1
j=0 ω(ϕj(λ))

)
kϕn(λ). Given ω1, ω2 ∈ M(H) and ϕ1, ϕ2 ∈ S(D), we obtain

Cω1,ϕ1
and Cω2,ϕ2 . In the current paper, we assume that the constants and the iden-

tity function f (z) = z are in H, and denote T = (T1, T2) = (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

). Firstly,
fix A, B, C, D the four subsets of D as below,

A =
{

z ∈ D : the sequence
{

Π
n−1
j=0

(
ω1 ◦ (ϕ1)j(z) ·ω2 ◦ (ϕ2)j(z)

)}
n

is bounded
}

,

B =
{

z ∈ D : lim
n→∞

Π
n
j=1

(
ω1 ◦ (ϕ1)−j(z) · ω2 ◦ (ϕ2)−j(z)

)−1
= 0

}
,

C =
{

z ∈ D : lim
n→∞

Π
n−1
j=0

(
ω1 ◦ (ϕ1)j(z) · ω2 ◦ (ϕ2)j(z)

)
= 0

}
,

D =
{

z ∈ D : the sequence
{

Π
n
j=1

(
ω1 ◦ (ϕ1)−j(z) · ω2 ◦ (ϕ2)−j(z)

)−1}
n

is bounded
}

.

In [16, Theorem 3.1], under the assumptions in (2.2)(in section 2) and
M = sup

z∈D

sup
n∈Z

‖k(ϕ1)n◦(ϕ2)n(z)‖ < ∞. Either the sets A and B or the sets C and
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D have limit points in D, then the tuple T = (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is supercyclic on
H. Inspired by the above work and the ideas in [16], we will find some suf-
ficient conditions to guarantee the disk-cyclicity and codisk-cyclicity of the tuple
T = (C∗

ω1,ϕ1
, C∗

ω2,ϕ2
) on H, which are new and interesting question for the investi-

gation of weighted composition operators. Indeed the similar conclusions could be
obtained for the n-tuple T = (C∗

ω1,ϕ1
, C∗

ω2,ϕ2
, · · · , C∗

ωn,ϕn
), we leave the proof for the read-

ers. The organization of the paper is as follows. In Section 2, we prepared some
preliminary results, and then we showed several sufficient conditions ensuring
the disk-cyclicity and codisk-cyclicity of the tuple (C∗

ω1,ϕ1
, C∗

ω2,ϕ2
) in Section 3 and

Section 4, respectively.

2 Preliminary results

In this section, we cited and proved some lemmas which were needed in the
proofs of our main results. Firstly, we cited a necessary and sufficient condition
ensuring Cω1,ϕ1

and Cω2,ϕ2 to commute.

Lemma 2.1. [19, Lemma 1] If ω1(z) and ω2(z) are nonzero for all z ∈ D, then Cω1,ϕ1

and Cω2,ϕ2 can commute if and only if

ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1 and ω1 · (ω2 ◦ ϕ1) = ω2 · (ω1 ◦ ϕ2). (2.1)

Remark 2.2. Furthermore, we will assume that ω1(z) and ω2(z) are nonzero for all
z ∈ D and ϕ1, ϕ2 satisfy

ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1, ω1 = ω1 ◦ ϕ2 and ω2 = ω2 ◦ ϕ1. (2.2)

It’s easy to verify that Cω1,ϕ1
and Cω2,ϕ2 can commute under (2.2) and [19,

p456] shows there are many maps satisfying (2.2).
Let Ti = C∗

ωi,ϕi
for i = 1, 2. A straightforward calculation gives that

Tn
i kz =

(
Π

n−1
j=0 (ωi ◦ (ϕi)j)(z)

)
k(ϕi)n(z), i = 1, 2, n ≥ 1.

Employing (2.2), it turns out that

Tn
2 Tn

1 kz (2.3)

=
(

Π
n−1
k=0 (ω2 ◦ (ϕ2)k)(z)

)(
Π

n−1
j=0 (ω1 ◦ (ϕ1)j ◦ (ϕ2)n)(z)

)
k(ϕ1)n◦(ϕ2)n(z)

=
(

Π
n−1
k=0 (ω2 ◦ (ϕ2)k)(z)

)(
Π

n−1
j=0 (ω1 ◦ (ϕ2)n ◦ (ϕ1)j)(z)

)
k(ϕ1)n◦(ϕ2)n(z)

=
(

Π
n−1
k=0 (ω2 ◦ (ϕ2)k)(z)

)(
Π

n−1
j=0 (ω1 ◦ (ϕ1)j)(z)

)
k(ϕ1)n◦(ϕ2)n(z)

=
[

Π
n−1
j=0

(
(ω2 ◦ (ϕ2)j)(z) · (ω1 ◦ (ϕ1)j)(z)

)]
k(ϕ1)n◦(ϕ2)n(z)

=
[

Π
n−1
j=0

(
(ω1 ◦ (ϕ1)j)(z) · (ω2 ◦ (ϕ2)j)(z)

)]
k(ϕ1)n◦(ϕ2)n(z).

As regards to the disk-cyclicity and codisk-cycliclity, the Disk-Cyclicity Criterion
([10, Proposition 2.5]) and the Codisk-Cyclicity Criterion([8, Proposition 5.2.9])
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are dispensable tools in finding disk-cyclic and codisk-cyclic operators, which
relate with the Supercyclicity Criterion [3]. In order to derive the correspond-
ing criteria for tuples, we firstly presented the equivalent characterization for the
disk-cyclic or codisk-cyclic tuple T = (T1, T2) on H paralleling to [8, Theorem
4.24 and Theorem 5.2.4], respectively.

Theorem 2.3. Let T = (T1, T2) be a 2-tuple of continuous linear operators on H.

(1) For the disk-cyclicity, the following statements are equivalent:

(i) The tuple T = (T1, T2) is disk-cyclic.
(ii) For each x, y ∈ H and each neighborhood W for zero in H, there are z ∈ H,

k1, k2 ∈ N, α ∈ C with 0 < |α| ≤ 1 such that x − z ∈ W and Tk1
1 Tk2

2 αz − y ∈ W.

(2) For the codisk-cyclicity, the following statements are equivalent:

(i’) The tuple T = (T1, T2) is codisk-cyclic.
(ii’) For each x, y ∈ H and each neighborhood W for zero in H, there are z ∈ H,

k1, k2 ∈ N, β ∈ C with |β| ≥ 1 such that x − z ∈ W and Tk1
1 Tk2

2 βz − y ∈ W.

In the following, we verified the Disk-Cyclicity Criterion and the Codisk-
cyclicity Criterion for the tuple T = (T1, T2) by Theorem 2.3(1) and (2), respec-
tively.

Proposition 2.4. (Disk-Cyclicity Criterion for tuples) Let H be a separable infinite di-
mensional Hilbert space and T = (T1, T2) be a pair of commuting continuous linear
mappings on H. If there exist two dense subsets X ,Y in H, a pair of strictly increasing
positive integer sequences (mk)k∈N and (nk)k∈N and a sequence of mappings Sk (not
necessary bounded) such that Sk(Y) ⊂ Y and

(1) T
mk
1 T

nk
2 Sky → y, k → ∞, and lim

k→∞

‖Sky‖ = 0 for all y ∈ Y ;

(2) lim
k→∞

‖T
mk
1 T

nk
2 x‖‖Sky‖ = 0 for all x ∈ X , y ∈ Y .

Then we say that T = (T1, T2) satisfies the Disk-Cyclicity Criterion. In particular,
T = (T1, T2) is disk-cyclic.

Proof. Choose z, w ∈ H and let W be a neighborhood for zero in H. Without loss
of generality, we suppose the diameter of W is 1, that is, W = {x ∈ H, ‖x‖ < 1}.
By the density of X and Y in H, there are x ∈ X , y ∈ Y such that

‖z − x‖ <
1

4
and ‖w − y‖ <

1

4
.

Denote u = x + 1/αSky ∈ H for some k ∈ N and 0 < α ≤ 1, which are deter-
mined later. Using the assumptions in (1) and (2), there exists a positive integer
N such that

‖T
mk
1 T

nk
2 Sky − y‖ <

1

4
, ‖Sky‖ ≤ 1

4
and ‖T

mk
1 T

nk
2 x‖‖Sky‖ <

1

8
,

for all k > N and x ∈ X , y ∈ Y .
On the one hand, if ‖Sky‖ 6= 0, fix α = 4‖Sky‖ ≤ 1 and then

α‖T
mk
1 T

nk
2 x‖ = 4‖T

mk
1 T

nk
2 x‖‖Sky‖ <

1

2
.
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Based on the above inequalities, we obtain that

‖z − u‖ = ‖z − x − 1/αSky‖ ≤ ‖z − x‖+ 1/α‖Sky‖ < 1,

and

‖αT
mk
1 T

nk
2 u − w‖ = ‖αT

mk
1 T

nk
2 (x + 1/αSky)− w‖

≤ ‖αT
mk
1 T

nk
2 x‖+ ‖T

mk
1 T

nk
2 Sky − y‖+ ‖y − w‖

<
1

2
+

1

4
+

1

4
= 1.

The above inequalities verify that z − u ∈ W and αT
mk
1 T

nk
2 u − w ∈ W for u ∈ H,

0 < α ≤ 1 and mk, nk ∈ N for k > N.
On the other hand, if ‖Sky‖ = 0 and since T

mk
1 T

nk
2 Sky → y, k → ∞, then

‖y‖ ≤ ‖T
mk
1 T

nk
2 Sky − y‖+ ‖T

mk
1 T

nk
2 Sky‖

≤ ‖T
mk
1 T

nk
2 Sky − y‖+ ‖T

mk
1 T

nk
2 ‖‖Sky‖ → 0, k → ∞.

That is, y = 0. Hence u = x + 1/αSky = x and ‖w − y‖ = ‖w‖ < 1/4. It’s clear
that z − u = z − x ∈ W. After that, we choose 0 < α0 ≤ 1 small enough, such
that α0‖T

mk
1 T

nk
2 x‖ < 1/4. We deduce that

‖α0T
mk
1 T

nk
2 u − w‖ = ‖α0T

mk
1 T

nk
2 x − w‖

≤ ‖α0T
mk
1 T

nk
2 x‖+ ‖w‖ < 1/4 + 1/4 < 1.

That means α0T
mk
1 T

nk
2 u − w ∈ W for 0 < α0 ≤ 1.

In sum, under both cases, employing Theorem 2.3 (1) the tuple T = (T1, T2)
is disk-cyclic.

Proposition 2.5. (Codisk-Cyclicity Criterion for tuples) Let H be a separable infinite
dimensional Hilbert space and T = (T1, T2) be a pair of commuting continuous linear
mappings on H. If there exist two dense subsets X ,Y in H, a pair of strictly increasing
positive integer sequences (mk)k∈N and (nk)k∈N and a sequence of mappings Sk (not
necessary bounded) such that Sk(Y) ⊂ Y and

(1) T
mk
1 T

nk
2 Sky → y, k → ∞ for all y ∈ Y and lim

k→∞

‖T
mk
1 T

nk
2 x‖ = 0 for all x ∈ X .

(2) lim
k→∞

‖T
mk
1 T

nk
2 x‖‖Sky‖ = 0 for all x ∈ X , y ∈ Y .

Then we say that T = (T1, T2) satisfies the Codisk-Cyclicity Criterion. In particular,
T = (T1, T2) is codisk-cyclic.

Proof. Let z, w ∈ H and W be a neighborhood for zero in H. Without loss of
generality, we also assume the diameter of W is 1, that is, W = {x ∈ H, ‖x‖ ≤ 1}.
By the density of X and Y in H, there are x ∈ X , y ∈ Y such that

‖z − x‖ <
1

4
and ‖w − y‖ <

1

4
.

Denote u = x + 1/βSky for some k ∈ N and β ≥ 1, which are determined later.
Using the assumptions in (1) and (2), there is a positive integer N such that

‖T
mk
1 T

nk
2 Sky − y‖ <

1

4
, ‖T

mk
1 T

nk
2 x‖ ≤ 1

4
and ‖T

mk
1 T

nk
2 x‖‖Sky‖ <

1

8
,
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for all k > N and x ∈ X , y ∈ Y .

On the one hand, if ‖T
mk
1 T

nk
2 x‖ 6= 0, fix β = (4‖T

mk
1 T

nk
2 x‖)−1 ≥ 1 and then

1

β
‖Sky‖ = 4‖T

mk
1 T

nk
2 x‖‖Sky‖ <

1

2
.

Based on the above inequalities, we obtain that

‖z − u‖ = ‖z − x − 1/βSky‖ ≤ ‖z − x‖+ 1/β‖Sky‖ < 1,

and

‖βT
mk
1 T

nk
2 u − w‖ = ‖βT

mk
1 T

nk
2 (x + 1/βSky)− w‖

≤ ‖βT
mk
1 T

nk
2 x‖+ ‖T

mk
1 T

nk
2 Sky − y‖+ ‖y − w‖

<
1

4
+

1

4
+

1

4
< 1.

The above inequalities verify that z − u ∈ W and βT
mk
1 T

nk
2 u − w ∈ W for β ≥ 1.

On the other hand, if ‖T
mk
1 T

nk
2 x‖ = 0. Then choose β > 1 large enough such

that 1/β‖Sky‖ < 1/4. Hence

‖z − u‖ ≤ ‖z − x‖+ 1

β
‖Sky‖ <

1

4
+

1

4
< 1.

That is, z − u ∈ W. Moreover,

‖βT
mk
1 T

nk
2 u − w‖ = ‖βT

mk
1 T

nk
2 (x + 1/βSky)− w‖

= ‖T
mk
1 T

nk
2 Sky − w‖

≤ ‖T
mk
1 T

nk
2 Sky − y‖+ ‖y − w‖

<
1

4
+

1

4
< 1.

That means βT
mk
1 T

nk
2 u − w ∈ W. From Theorem 2.3 (2), we deduce the tuple

T = (T1, T2) is codisk-cyclic. This ends the proof.

For further use, we cite the definition for conjugacy from [7].

Definition 2.6. [7, Definition 1.5] Let S̃ : Y → Y and T̃ : X → X be two dynamical

systems on Banach spaces X and Y. Then T̃ is called conjugate to S̃ if there exists a

homeomorphism φ : Y → X such that T̃ ◦ φ = φ ◦ S̃.

Concerning the disk-cyclicity and codisk-cyclicity, the following proposition
holds.

Proposition 2.7. Disk-cyclicity (Codisk-cyclicity) for an operator T̃ ∈ B(H) is pre-
served under conjugacy.
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3 Disk-cyclicity of the tuple (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

)

In this section, we mainly discover some sufficient conditions for the disk-cyclicity
of the tuple T = (C∗

ω1,ϕ1
, C∗

ω2,ϕ2
) on the Hilbert space H. Firstly, we use the sets

A, B to state our main theorem.

Theorem 3.1. Let ω1(z), ω2(z) be two nonzero complex-valued functions for all z ∈ D

and ϕ1(z), ϕ2(z) be two automorphisms in D satisfying (2.2). Suppose

M = sup
z∈D

sup
n∈Z

‖k(ϕ1)n◦(ϕ2)n(z)‖ < ∞. (3.1)

If the sets A and B have limit points in D, then the tuple T = (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is disk-
cyclic on H.

Proof. We will use Proposition 2.4 to prove the tuple T = (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is disk-

cyclic. Let SA = span{kz : z ∈ A} and SB = span{kz : z ∈ B}. Then SA =
SB = H, that is, the sets SA and SB are dense in H. For the readers’ convenience,
we now get down to the details. If f ∈ H is orthogonal to kz for every z ∈ SA,
then f (z) = 〈 f , kz〉. Since the set A has limit point in D, hence the identity theo-
rem for holomorphic functions implies that f vanishes identically on H. That is,
(SA)

⊥ = {0}. Hence SA = H. Similarly, SB = H.
Let X = SA and Y = SB, which are dense subsets of the Hilbert space H. Since

ϕ1 and ϕ2 are two automorphisms on D, thus ϕ−1
1 and ϕ−1

2 exist on D. Further,
(2.2) implies that

ϕ−1
1 ◦ ϕ−1

2 = ϕ−1
2 ◦ ϕ−1

1 , ω1 = ω1 ◦ ϕ−1
2 and ω2 = ω2 ◦ ϕ−1

1 . (3.2)

Note Ti = C∗
ωi,ϕi

for i = 1, 2. We observe from (2.3) that

Tn
2 Tn

1 kz =
[
Π

n−1
j=0

(
(ω1 ◦ (ϕ1)j)(z) · (ω2 ◦ (ϕ2)j)(z)

)]
(3.3)

· k(ϕ1)n◦(ϕ2)n(z), n ≥ 1.

To find the right inverse of T2T1, the proof falls into two cases according to the
set GB = {kz : z ∈ B} is linearly independent or not.

Case (i) Assume that GB is a linearly independent set. Define the operator
S : GB → H by

Skz = [(ω1 ◦ ϕ−1
1 (z)) · (ω2 ◦ ϕ−1

2 (z))]−1kϕ−1
2 ◦ϕ−1

1 (z), z ∈ D.

Employing (3.2), we derive Sn on GB for all n ≥ 1,

Snkz = Π
n
j=1[ω1 ◦ (ϕ1)−j(z) · ω2 ◦ (ϕ2)−j(z)]−1k(ϕ2)−n◦(ϕ1)−n(z). (3.4)

Since GB is linearly independent, we extend S by linearity on the set Y = SB =
span{kz : z ∈ B}. Hence Sn is well-defined on Y and satisfies Sn(Y) ⊂ Y for all
n ≥ 1. The assumption verifies that

lim
n→∞

‖Sny‖ = 0 for all y ∈ Y . (3.5)
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By (2.2), we arrive at ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1, ω2 = ω2 ◦ ϕ1 and it yields that

T2T1Skz = T2T1

(
[(ω1 ◦ ϕ−1

1 (z)) · (ω2 ◦ ϕ−1
2 (z))]−1kϕ−1

2 ◦ϕ−1
1 (z)

)

= T2

(
[ω2 ◦ ϕ−1

2 ◦ ϕ1(z)]−1kϕ−1
2 (z)

)

= ω2(z)[ω2 ◦ ϕ−1
2 ◦ (ϕ1 ◦ ϕ2)(z)]−1kz

= ω2(z)[ω2 ◦ ϕ−1
2 ◦ (ϕ2 ◦ ϕ1)(z)]−1kz

= ω2(z)[ω2(ϕ1(z))]−1kz

= ω2(z)[ω2(z)]−1kz

= kz.

That is, T2T1S = IdY and Tn
2 Tn

1 Sn is the identity on Y for each n ≥ 1. Hence

Tn
2 Tn

1 Sny → y, n → ∞, for every y ∈ Y = SB. (3.6)

In addition, by the conditions and (3.1), we conclude that

lim
n→∞

‖Tn
2 Tn

1 ky‖‖Snkz‖

= lim
n→∞

‖
[

Π
n−1
j=0

(
(ω1 ◦ (ϕ1)j)(y) · (ω2 ◦ (ϕ2)j)(y)

)]
k(ϕ1)n◦(ϕ2)n(y)‖

·‖Π
n
j=1[ω1 ◦ (ϕ1)−j(z) · ω2 ◦ (ϕ2)−j(z)]−1k(ϕ2)−n◦(ϕ1)−n(z)‖

≤ M2 sup
n∈N

|Πn−1
j=0

(
(ω1 ◦ (ϕ1)j)(y) · (ω2 ◦ (ϕ2)j)(y)

)
|

· lim
n→∞

|Πn
j=1[ω1 ◦ (ϕ1)−j(z) · ω2 ◦ (ϕ2)−j(z)]−1|

= 0, for y ∈ A, z ∈ B.

The above inequalities lead that

lim
n→∞

‖Tn
2 Tn

1 x‖‖Sny‖ = 0, for every x ∈ X and y ∈ Y . (3.7)

Depending on (3.5)-(3.7) and Proposition 2.4, the tuple T = (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) fulfils

the Disk-Cyclicity Criterion for tuples, hence T = (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is disk-cyclic on
H.

Case (ii). Assume that GB = {kz : z ∈ B} is not necessarily linearly inde-
pendent. In this case, we adapt the method used by Godefroy and Shapiro in
[5, Theorem 4.5]. Consider a countable dense subset

B1 = {wn ∈ D : n ≥ 1}

of B and find a sequence {zn} by mathematical induction. Let z1 = w1 and denote

B2 = B1 \ {w ∈ B1 : kw ∈ span{kz1
}}.

Denote the first element of B2 by z2 and let

B3 = B2 \ {w ∈ B2 : kw ∈ span{kz1
, kz2} }.
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The infinite dimensionality of H insures the process never terminates and thus
an infinite subset L = {zn ∈ D : n ≥ 1} of B is obtained. The corresponding set
of kernel functions HL = {kz : z ∈ L} is linearly independent and is dense in
H. Then the operator S can be defined exactly as above, just replacing GB by HL.
Consequently, the Disk-Cyclicity Criterion for tuples is also true in this case.

So, in both cases, the tuple T = (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is disk-cyclic. This finishes the
proof.

Employing Theorem 3.1, we can obtain the disk-cyclicity of the tuple
(M∗

ω1
, M∗

ω2
) immediately.

Corollary 3.2. Let ω1(z), ω2(z) be two nonzero complex-valued functions for all z ∈ D.
Denote the sets

Ã =
{

z ∈ D : the sequence {(ω1(z)ω2(z))
n}n is bounded

}
,

B̃ =
{

z ∈ D : lim
n→∞

1

(ω1(z)ω2(z))n
= 0

}
.

If the sets Ã and B̃ have limit points in D, then the tuple (M∗
ω1

, M∗
ω2
) is disk-cyclic on

H.

Proof. Let ϕ1(z) = ϕ2(z) = z in Theorem 3.1. It is evident that sup
z∈D

‖kz‖ < ∞

emerged in (3.1) holds. Then the desired result follows from Theorem 3.1.

We show an example to account for Corollary 3.2.

Example 3.3. Let w1(z) = z and w2(z) = z + 8. Then

{x : 0 ≤ x <
√

17 − 4} ⊆ {z ∈ D : the sequence {(z(z + 8))n}n is bounded},

{x : −1 < x < −4 +
√

14} ⊆ {z ∈ D : lim
n→∞

1

(z(z + 8))n
= 0}.

The sets Ã and B̃, apparently, have limit points in D. The tuple (M∗
ω1

, M∗
ω2
) is disk-cyclic

due to Corollary 3.2.

For a ∈ D, an automorphism φa(z) of D is defined by

φa(z) =
a − z

1 − az
, z ∈ D. (3.8)

There are so many spaces that contain φa, such as the Hardy space, Bergman space
and Dirichlet space. These spaces are called automorphism invariant spaces. As
we all know, all holomorphic self-maps of the unit disk D are dived into classes
of elliptic and nonelliptic. The elliptic map is conjugate to a rotation z → λz for
some λ ∈ C with |λ| = 1.

If ϕ1 and ϕ2 are two elliptic disk automorphisms satisfying ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1,
then their interior fixed points are identical. Indeed, if ϕ1(z1) = z1 ∈ D and
ϕ2(z2) = z2 ∈ D, then

ϕ1 ◦ ϕ2(z2) = ϕ2 ◦ ϕ1(z2) ⇒ ϕ1(z2) = ϕ2(ϕ1(z2)) ⇒ ϕ1(z2) = z2 ⇒ z1 = z2.
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Remark 3.4. For general case, if ϕ1 and ϕ2 have interior fixed points in D and satisfy
ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1, then they have the same interior fixed points.

Theorem 3.5. Suppose that H is automorphism invariant. Let ω1(z), ω2(z) be two
nonzero complex-valued functions for all z ∈ D and ϕ1, ϕ2 be two elliptic disk automor-
phisms with an interior fixed point a ∈ D satisfying (2.2). If the sets A and B have limit
points in D, then the tuple T = (C∗

ω1,ϕ1
, C∗

ω2,ϕ2
) is disk-cyclic on H.

Proof. We divide the proof into two cases.
Case (i) Suppose the interior fixed point a = 0. Then there are θ1, θ2 ∈ [0, 2π]
such that

ϕ1(z) = eiθ1z, ϕ2(z) = eiθ2z.

It yields that

(ϕ2)n ◦ (ϕ1)n(z) = einθ1einθ2z.

Hence the iterate {(ϕ2)n ◦ (ϕ1)n : n ∈ Z} ⊆ z∂D. Since z∂D is compact subset
of D, thus (

f ((ϕ2)n ◦ (ϕ1)n)
)

n∈Z

is a bounded sequence for f ∈ H⋂
H(D). By the uniform boundedness princi-

ple, we get that

M = sup
z∈D

sup
n∈Z

‖k(ϕ2)n◦(ϕ1)n
‖ < ∞. (3.9)

Employing (3.9) and Theorem 3.1, the tuple T = (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) satisfies the Disk-
Cyclicity Criterion for tuples.
Case (ii) If a 6= 0 is the interior fixed point of ϕi (i = 1, 2). We notice that H is
automorphism invariant. Let

ϕ̃1 = φa ◦ ϕ1 ◦ φ−1
a , ϕ̃2 = φa ◦ ϕ2 ◦ φ−1

a

be two automorphisms with the interior fixed point zero, and let

ω̃1 = ω1 ◦ φ−1
a , ω̃2 = ω2 ◦ φ−1

a

be two multipliers of H, where φa is the automorphism provided in (3.8). The
disk-cyclicity of the tuple (C∗

ω̃1,ϕ̃1
, C∗

ω̃2,ϕ̃2
) on H follows from Case (i), where

Cω̃i,ϕ̃i
= C−1

φa
◦ Cω1,ϕ1

◦ Cφa for i = 1, 2. Finally, since Cωi,ϕi
is conjugate Cω̃i,ϕ̃i

for i = 1, 2, and by Proposition 2.7, we obtain the desired result. This completes
the proof.

Example 3.6. Take two elliptic disk automorphisms ϕ1(z) = iz, ϕ2(z) = −iz with an
interior fixed point a = 0 ∈ D and w1(z) = z4, w2(z) = z4 + 4. The sets A and B are

A =
{

z ∈ D : the sequence
{

z4n(z4 + 4)n
}

n
is bounded

}
,

B =
{

z ∈ D : lim
n→∞

1

z4n(z4 + 4)n
= 0

}
.

Since [0, 1
2) ⊆ A and ( 1

4√2
, 1) ⊆ B, hence (C∗

ω1,ϕ1
, C∗

ω2,ϕ2
) is disk-cyclic on H from

Theorem 3.5.
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4 Codisk-cyclicity of the tuple (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

)

In this section, we turn our attention to study the codisk-cyclic tuple
T = (C∗

ω1,ϕ1
, C∗

ω2,ϕ2
) on H. Since the proofs of the codisk-cyclicity are exactly the

same as those in Section 2, thus we omit the details. The main results are based
on the sets C and D and Proposition 2.5.

Theorem 4.1. Let ω1(z), ω2(z) be two nonzero complex-valued functions for all z ∈ D

and ϕ1(z), ϕ2(z) be two automorphisms in D satisfying (2.2). Suppose

M = sup
z∈D

sup
n∈Z

‖k(ϕ1)n◦(ϕ2)n(z)‖ < ∞.

If the sets C and D have limit points in D, then the tuple (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is codisk-cyclic
on H.

In view of Theorem 4.1, the following description for the codisk-cyclic tuple
(M∗

ω1
, M∗

ω2
) holds.

Corollary 4.2. Let ω1(z), ω2(z) be two nonzero complex-valued functions for all z ∈ D.
Denote the sets

C̃ =
{

z ∈ D : lim
n→∞

(ω1(z)ω2(z))
n = 0

}
,

D̃ =
{

z ∈ D : the sequence
{ 1

(ω1(z)ω2(z))n

}
n

is bounded
}

.

If the sets C̃ and D̃ have limit points in D, then the tuple (M∗
ω1

, M∗
ω2
) is codisk-cyclic on

H.

Theorem 4.3. Suppose that H is automorphism invariant. Let ω1(z), ω2(z) be two
nonzero complex-valued functions for all z ∈ D and ϕ1, ϕ2 be two elliptic disk automor-
phisms with an interior fixed point a ∈ D satisfying (2.2). If the sets C and D have limit
points in D, then the tuple (C∗

ω1,ϕ1
, C∗

ω2,ϕ2
) is codisk-cyclic on H.

Theorem 4.4. Suppose that H is automorphism invariant. Let ω1(z), ω2(z) be two
nonzero complex-valued functions for all z ∈ D and ϕ1, ϕ2 be two elliptic automorphism
with an interior fixed point a ∈ D satisfying (2.2). Further assume that ω1, ω2 :
D → C satisfy the inequality |ω1(a)ω2(a)| < 1 and there is 0 < δ < 1 satisfying
|ω1(z)ω2(z)| ≥ 1 for all |z| > 1 − δ, then the tuple (C∗

ω1,ϕ1
, C∗

ω2,ϕ2
) is codisk-cyclic on

H.

Proof. As the similar argument used in Theorem 3.5. Since H is automorphism
invariant, we can only prove for the case a = 0. Then

ϕ1(z) = eiθ1z, ϕ2(z) = eiθ2 z

for some θ1, θ2 ∈ [0, 2π]. Following the ideas in the proof of Theorem 3.5(Case
(i)), (3.9) holds.

On the one hand, since |ω1(0)ω2(0)| < 1, there is a constant 0 < r < 1 and a

positive number δ̃ ∈ (0, 1) such that

|ω1(z)ω2(z)| < r < 1, whenever |z| < δ̃.
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Since |ϕi(z)| = |z| for i = 1, 2. Thus if |z| < δ̃, we have that
∣∣∣Πn−1

j=0 ω1 ◦ (ϕ1)j(z) · ω2 ◦ (ϕ2)j(z)
∣∣∣ < rn → 0, n → ∞.

Thus the set {z ∈ D : |z| < δ̃} is a subset of C in Theorem 4.1.
On the other hand, since there is 0 < δ < 1 satisfying |ω1(z)ω2(z)| ≥ 1 for all

|z| > 1 − δ, and |ϕ−1
i (z)| = |z| for i = 1, 2, hence if |z| > 1 − δ, we conclude that

∣∣∣Πn
j=1ω1 ◦ (ϕ1)−j(z) · ω2 ◦ (ϕ2)−j(z)

∣∣∣
−1

≤ 1, for all n ≥ 1.

Therefore, the set {z ∈ D : |z| > 1 − δ} is a subset of D in Theorem 4.1. Since

both {z ∈ D : |z| < δ̃} and {z ∈ D : |z| > 1 − δ} have limit points in D, then
both C and D have limit points in D. Employing (3.9) and Theorem 4.1, the tuple
(C∗

ω1,ϕ1
, C∗

ω2,ϕ2
) is codisk-cyclic. This completes the proof.

Remark 4.5. Example 3.6 indeed holds for Theorem 4.4. Since |w1(0)w2(0)| = 0 < 1
and there is 0 < δ = 1 − 1

4√3
< 1 satisfying |w1(z)w2(z)| = |z|4|z4 + 4| ≥

|z|4(4 − 1) = 3|z|4 ≥ 1 for all |z| > 1 − δ. Hence the tuple (C∗
ω1,ϕ1

, C∗
ω2,ϕ2

) is codisk-
cyclic on H from Theorem 4.4.
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