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Abstract

We discuss the curvature ellipse of minimal surfaces in the product space
N3(c) × R, where N3(c) is the 3-dimensional simply connected space form
of constant curvature c.

1 Introduction

Let Nn(c) denote the n-dimensional simply connected space form of constant
curvature c. When c > 0, Nn(c) is the n-dimensional sphere Sn(c) of constant
curvature c. When c < 0, Nn(c) is the n-dimensional hyperbolic space Hn(c) of
constant curvature c. When c = 0, Nn(c) is the n-dimensional Euclidean space
Rn.

For a surface M in a Riemannian manifold, the curvature ellipse at p ∈ M is
defined as

E(p) = {h(X, X)|X ∈ TpM, |X| = 1},

where h is the second fundamental form of M. The notion of the curvature el-
lipse plays an important role in the geometry of surfaces in Nn(c) (cf. [9], [14]). In
particular, when the curvature ellipse is a circle at any point, the surface is called
isotropic or superconformal (cf. [2], [5]). On the other hand, surfaces and sub-
manifolds in the product space Nn(c)× R have been studied actively (cf. [1], [3],
[4], [6], [7], [8], [12], [13]).
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In this paper we discuss the curvature ellipse of minimal surfaces in
N3(c)× R. The results are stated as follows:

Theorem 1.1. Let M be a minimal surface in N3(c)× R where c 6= 0. If the curva-
ture ellipse is a circle at any point, then M is totally geodesic.

Remark. When c = 0, for a minimal surface in R4, the curvature ellipse is a
circle at any point if and only if the surface is a complex curve in R4 with respect
to some orthogonal complex structure. It can be seen, for example, by combining
[11, Th.A] and [10, Th.5.3 or 5.4].

Theorem 1.2. There exists no minimal surface in N3(c) × R with c 6= 0 such that
the semi-major axis and the semi-minor axis of the curvature ellipse are both positive con-
stant.

Remark. There are minimal surfaces in S3(c) × R such that the semi-major
axis of the curvature ellipse is positive constant and the semi-minor axis of the
curvature ellipse is zero, which are minimal constant angle surfaces (cf. [3]).

2 Preliminaries

Let N3(c) be the 3-dimensional simply connected space form of constant curva-
ture c. The curvature tensor R̄ of N3(c)× R satisfies

〈R̄(X, Y)Z, W〉 =

c{〈dπ(Y), dπ(Z)〉〈dπ(X), dπ(W)〉 − 〈dπ(X), dπ(Z)〉〈dπ(Y), dπ(W)〉},

where π : N3(c)× R → N3(c) is the projection map. Let ξ denote the unit vector
along R. Then we can see that

R̄(X, Y)Z = c{〈Y, Z〉X − 〈X, Z〉Y − 〈Y, ξ〉〈Z, ξ〉X + 〈X, ξ〉〈Z, ξ〉Y

+ 〈X, Z〉〈Y, ξ〉ξ − 〈Y, Z〉〈X, ξ〉ξ}. (2.1)

We recall the method of moving frames for surfaces in N3(c)× R. Unless other-
wise stated, we use the following convention on the ranges of indices:

1 ≤ A, B, · · · ≤ 4, 1 ≤ i, j, · · · ≤ 2, 3 ≤ α, β, · · · ≤ 4.

Let {eA} be a local orthonormal frame field in N3(c)× R, and {ωA} the dual
coframe field. The connection forms satisfy

deB = ∑
A

ωA
B eA. (2.2)

Then ωA
B + ωB

A = 0. The structure equations are given by

dωA = −∑
B

ωA
B ∧ ωB, (2.3)
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dωA
B = −∑

C

ωA
C ∧ ωC

B +
1

2 ∑
C,D

R̄ABCDωC ∧ ωD, (2.4)

where
R̄ABCD = 〈R̄(eC, eD)eB, eA〉. (2.5)

Let M be a surface in N3(c) × R. We choose the frame {eA} so that {ei} are
tangent to M. Then ωα = 0 along M. In the following our argument will be
restricted to M. By (2.3),

0 = −∑
i

ωα
i ∧ ωi.

So there is a symmetric tensor {hα
ij} such that

ωα
i = ∑

j

hα
ijω

j, (2.6)

where hα
ij are the components of the second fundamental form of M.

We decompose the unit vector ξ along R as

ξ = T + η,

where T is tangent to M and η is normal to M. We say that M is a constant angle
surface (or a helix surface), if the tangent planes of M make a constant angle with
ξ, which is equivalent to that the length |T| of T is constant (cf. [3], [7], [12]).
If T = 0, then M is a surface in a slice N3(c)× {∗}. If η = 0, then M is a part of a
cylinder, that is, a product of a regular curve in N3(c) and the factor R.

The Gaussian curvature K and the normal curvature Kν are given by

dω1
2 = Kω1 ∧ ω2, dω3

4 = Kνω1 ∧ ω2. (2.7)

By (2.1), (2.4), (2.5), (2.6) and (2.7), we get

K = c(1 − |T|2) + h3
11h3

22 − (h3
12)

2 + h4
11h4

22 − (h4
12)

2, (2.8)

and
Kν = h3

11h4
12 − h3

12h4
11 + h3

12h4
22 − h3

22h4
12. (2.9)

The mean curvature vector of M is defined by

H =
1

2 ∑
α

(hα
11 + hα

22)eα.

We say that M is minimal if H = 0 on M.
We assume that M is minimal. Then by (2.8) and (2.9),

K = c(1 − |T|2)− (h3
11)

2 − (h3
12)

2 − (h4
11)

2 − (h4
12)

2, (2.10)

and

Kν = 2(h3
11h4

12 − h3
12h4

11). (2.11)
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3 On the structure equations

Let M be a minimal surface in N3(c) × R. We use the notations in Section 2.
Suppose that either the curvature ellipse is not a circle at any point, or the cur-
vature ellipse is a circle of positive radius at any point. Then we can choose the
frame field {eA} so that

(h3
ij) =

(

a 0
0 −a

)

, (h4
ij) =

(

0 b
b 0

)

,

for some functions a and b with |a| ≥ |b|. The semi-major axis of the curvature
ellipse is |a|, and the semi-minor axis of the curvature ellipse is |b|. So, we have
|a| > |b| when the curvature ellipse is not a circle, and |a| = |b| > 0 when the
curvature ellipse is a circle of positive radius. Then by (2.6), (2.10) and (2.11),

ω3
1 = aω1, ω3

2 = −aω2, ω4
1 = bω2, ω4

2 = bω1, (3.1)

K = c(1 − |T|2)− a2 − b2, Kν = 2ab. (3.2)

Using (2.3), (2.4) and (3.1), we have

dω3
1 = da ∧ ω1 − aω1

2 ∧ ω2

= −ω3
2 ∧ ω2

1 − ω3
4 ∧ ω4

1 + R̄3112ω1 ∧ ω2

= aω2 ∧ ω2
1 − bω3

4 ∧ ω2 + R̄3112ω1 ∧ ω2.

We can write
T = T1e1 + T2e2, η = η3e3 + η4e4.

Then by (2.5) and (2.1), R̄3112 = cT2η3. So, using the notation like

da = a1ω1 + a2ω2, db = b1ω1 + b2ω2,

ω1
2 = (ω1

2)1ω1 + (ω1
2)2ω2, ω3

4 = (ω3
4)1ω1 + (ω3

4)2ω2,

we get

−a2 − 2a(ω1
2)1 + b(ω3

4)1 = cT2η3. (3.3)

Similarly, from the exterior derivatives of ω3
2 , ω4

1 and ω4
2,

a1 − 2a(ω1
2)2 + b(ω3

4)2 = cT1η3, (3.4)

b1 − 2b(ω1
2)2 + a(ω3

4)2 = cT2η4, (3.5)

−b2 − 2b(ω1
2)1 + a(ω3

4)1 = −cT1η4. (3.6)

Let ∇̄ denote the Levi-Civita connection on N3(c)× R. Then, using (2.2), we
have

0 = ∇̄ξ = ∇̄

(

∑
i

Tiei + ∑
α

ηαeα

)

= ∑
i

(

dTi + ∑
j

T jωi
j − ∑

α

ηαωα
i

)

ei



On the curvature ellipse of minimal surfaces in N3(c)× R 169

+∑
α

(

dηα + ∑
i

Tiωα
i + ∑

β

ηβωα
β

)

eα.

So, using the notation like

dTi = ∑
j

Ti
j ω

j, dηα = ∑
j

ηα
j ω j,

and (3.1), we have

T1
1 = −T2(ω1

2)1 + aη3, T1
2 = −T2(ω1

2)2 + bη4, (3.7)

T2
1 = T1(ω1

2)1 + bη4, T2
2 = T1(ω1

2)2 − aη3, (3.8)

η3
1 = −η4(ω3

4)1 − aT1, η3
2 = −η4(ω3

4)2 + aT2, (3.9)

η4
1 = η3(ω3

4)1 − bT2, η4
2 = η3(ω3

4)2 − bT1. (3.10)

4 Proof of Theorems

In this section, using the notations in Sections 2 and 3, we prove Theorems 1.1
and 1.2.

Proof of Theorem 1.1. Let M be a minimal surface in N3(c) × R where c 6= 0,
and assume that the curvature ellipse at any point is a circle.

Suppose that M is not totally geodesic. Then there exists a point p ∈ M such
that the curvature ellipse at p is a circle of positive radius. So the curvature ellipse
is a circle of positive radius on a neighborhood U of p. We can use the argument
in Section 3 on U, and |a| = |b| > 0 on U. By the continuity, either b = a 6= 0 on
U, or b = −a 6= 0 on U. In the case where b = a 6= 0 on U, by (3.3)-(3.6) and that
c 6= 0, we have

T1η3 − T2η4 = 0, T2η3 + T1η4 = 0

on U. Hence, noting also that |T|2 + |η|2 = 1, we have either T = 0 on U or
η = 0 on U. In either case, since |T|2 + |η|2 = 1 and a 6= 0 on U, we have a
contradiction from (3.7)-(3.10). In the case where b = −a 6= 0 on U, similarly, we
have a contradiction.

Therefore, M has to be totally geodesic.

Proof of Theorem 1.2. Let M be a minimal surface in N3(c) × R where c 6= 0.
Suppose that the semi-major axis and the semi-minor axis of the curvature ellipse
are both positive constant. By Theorem 1.1, the curvature ellipse cannot be a
circle of positive constant radius. So the curvature ellipse is not a circle at any
point, and we can use the argument in Section 3, so that a and b are constant with
|a| > |b| > 0. Then (3.3)-(3.6) become

−2a(ω1
2)1 + b(ω3

4)1 = cT2η3, (4.1)

−2a(ω1
2)2 + b(ω3

4)2 = cT1η3, (4.2)
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−2b(ω1
2)2 + a(ω3

4)2 = cT2η4, (4.3)

−2b(ω1
2)1 + a(ω3

4)1 = −cT1η4. (4.4)

By (4.1)-(4.4) we obtain

−2aω1
2 + bω3

4 = cη3(T2ω1 + T1ω2), (4.5)

−2bω1
2 + aω3

4 = cη4(−T1ω1 + T2ω2), (4.6)

and
2(ω1

2)1 = −
c

a2 − b2
(aT2η3 + bT1η4), (4.7)

2(ω1
2)2 =

c

a2 − b2
(bT2η4 − aT1η3), (4.8)

(ω3
4)1 = −

c

a2 − b2
(bT2η3 + aT1η4), (4.9)

(ω3
4)2 =

c

a2 − b2
(aT2η4 − bT1η3). (4.10)

Taking the exterior derivative of (4.5), and using (2.3), (2.7), (3.7)-(3.10),
(4.7)-(4.10), we can get

−2aK + bKν = ca

(

c

a2 − b2
|T|2|η|2 + 2(η3)2 − |T|2

)

. (4.11)

By (4.11), (3.2) and that a 6= 0,

−2c(1 − |T|2) + 2a2 + 4b2 =
c2

a2 − b2
|T|2|η|2 + c{2(η3)2 − |T|2}. (4.12)

Similarly, by the exterior derivative of (4.6), we get

−2bK + aKν = cb

(

2(η4)2 − |T|2 −
c

a2 − b2
|T|2|η|2

)

. (4.13)

By (4.13), (3.2) and noting that b 6= 0, we have

−2c(1 − |T|2) + 4a2 + 2b2 = c{2(η4)2 − |T|2} −
c2

a2 − b2
|T|2|η|2. (4.14)

By (4.12)+(4.14),
8c|T|2 = 6c − 6(a2 + b2).

So |T| is constant, and M is a constant angle surface. Since |a| > |b| > 0,
0 < |T| < 1.

When c < 0, by [12, Th. 3.2], M is totally geodesic, which is a contradiction
to |a| > |b| > 0. When c > 0, by [3, Lemma 2], we have b = 0, which is also a
contradiction to |a| > |b| > 0. Thus we have proved Theorem 1.2.

Remark. By [3, Sect.4], for any minimal constant angle surface in S3(c) × R
with 0 < |T| < 1, |a| is positive constant and b is zero. It is not certain if the
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converse is true. So we can consider the following:

Question. Except for minimal constant angle surfaces, does there exist a min-
imal surface in N3(c)× R with c 6= 0 such that the semi-major axis of the curva-
ture ellipse is positive constant and the semi-minor axis of the curvature ellipse
is zero?

Acknowledgements. The author wishes to thank the referee for useful com-
ments.
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