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Abstract

We discuss the curvature ellipse of minimal surfaces in the product space
N3(c) x R, where N3(c) is the 3-dimensional simply connected space form
of constant curvature c.

1 Introduction

Let N"(c) denote the n-dimensional simply connected space form of constant
curvature c. When ¢ > 0, N"*(c) is the n-dimensional sphere S"(c) of constant
curvature c. When ¢ < 0, N"(c) is the n-dimensional hyperbolic space H"(c) of
constant curvature c. When ¢ = 0, N"(c) is the n-dimensional Euclidean space
R™.

For a surface M in a Riemannian manifold, the curvature ellipse at p € M is
defined as

E(p) = {h(X,X)|X € T,M,|X| =1},

where h is the second fundamental form of M. The notion of the curvature el-
lipse plays an important role in the geometry of surfaces in N”(c) (cf. [9], [14]). In
particular, when the curvature ellipse is a circle at any point, the surface is called
isotropic or superconformal (cf. [2], [5]). On the other hand, surfaces and sub-
manifolds in the product space N"(c) x R have been studied actively (cf. [1], [3],

[4], [6], [7], [8], [12], [13]).
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In this paper we discuss the curvature ellipse of minimal surfaces in
N3(c) x R. The results are stated as follows:

Theorem 1.1. Let M be a minimal surface in N3(c) x R where ¢ # 0. If the curva-
ture ellipse is a circle at any point, then M is totally geodesic.

Remark. When ¢ = 0, for a minimal surface in R?*, the curvature ellipse is a
circle at any point if and only if the surface is a complex curve in R* with respect

to some orthogonal complex structure. It can be seen, for example, by combining
[11, Th.A] and [10, Th.5.3 or 5.4].

Theorem 1.2. There exists no minimal surface in N>(c) x R with ¢ # 0 such that
the semi-major axis and the semi-minor axis of the curvature ellipse are both positive con-
stant.

Remark. There are minimal surfaces in S3(c) x R such that the semi-major
axis of the curvature ellipse is positive constant and the semi-minor axis of the
curvature ellipse is zero, which are minimal constant angle surfaces (cf. [3]).

2 Preliminaries

Let N3(c) be the 3-dimensional simply connected space form of constant curva-
ture c. The curvature tensor R of N3(c) x R satisfies

(R(X,Y)Z,W) =
c{{dn(Y),dn(Z))(dr(X),drn(W)) — (dr(X),dr(Z)){dr(Y),drn(W))},

where 77 : N3(c) x R — N3(c) is the projection map. Let & denote the unit vector
along R. Then we can see that

R(X,Y)Z = c{{Y,Z2)X = (X, Z)Y = (Y,ENZ,5)X + (X, 8)(Z,8)Y
+ (X, 2)(Y, )¢ = (Y, Z)(X,{)¢}. (21)

We recall the method of moving frames for surfaces in N°(c) x R. Unless other-
wise stated, we use the following convention on the ranges of indices:

1§A/B/§4/ lgll_]lgzl 3§0€,‘B,§4

Let {e4} be a local orthonormal frame field in N3(c) x R, and {w”} the dual
coframe field. The connection forms satisfy

deg = ng‘eA. (2.2)
A

Then w4 + wh = 0. The structure equations are given by

dw? = — ng A Wb, (2.3)
B
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1 _
dwA — _ A c, ! C D '
w3 EC we N wg —|—2C§DRABCDw ANw”, (2.4)
where

Ragep = (R(ec,ep)es, ea). (2.5)

Let M be a surface in N3(c) x R. We choose the frame {e} so that {e;} are
tangent to M. Then w”* = 0 along M. In the following our argument will be
restricted to M. By (2.3),

0=—) wiA W'
i
So there is a symmetric tensor {hf;} such that

wi = Z hf;-wj, (2.6)
j

where hf; are the components of the second fundamental form of M.
We decompose the unit vector ¢ along R as

E=T+,

where T is tangent to M and 7 is normal to M. We say that M is a constant angle
surface (or a helix surface), if the tangent planes of M make a constant angle with
¢, which is equivalent to that the length |T| of T is constant (cf. [3], [7], [12]).
If T = 0, then M is a surface in a slice N3(c) x {*}. If 5 = 0, then M is a part of a
cylinder, that is, a product of a regular curve in N*(c) and the factor R.

The Gaussian curvature K and the normal curvature K, are given by

dw% = Kw! A w?, dwi = Kyw! A W2 (2.7)
By (2.1), (2.4), (2.5), (2.6) and (2.7), we get
K= c(1—|T?) +hy 3, — (15,)* + hyyhiy — (h1)?, (2.8)
and
Ky = Ifyhyy — iyl + hizhy — Bl (2.9)
The mean curvature vector of M is defined by

1
H=5 ) (K + h3)eq.

o

We say that M is minimal if H = 0 on M.
We assume that M is minimal. Then by (2.8) and (2.9),

K=c(1—|T]?) = (h{;)* = (h},)* = (h11)* — ()% (2.10)

and
K, = 2(k3 hi, — B hE,). (2.11)
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3 On the structure equations

Let M be a minimal surface in N3(c) x R. We use the notations in Section 2.
Suppose that either the curvature ellipse is not a circle at any point, or the cur-
vature ellipse is a circle of positive radius at any point. Then we can choose the
frame field {e4 } so that

=5 %) w=(50)

for some functions a and b with |a] > |b|. The semi-major axis of the curvature
ellipse is |a|, and the semi-minor axis of the curvature ellipse is |b|. So, we have
|a| > |b| when the curvature ellipse is not a circle, and |a| = |b| > 0 when the
curvature ellipse is a circle of positive radius. Then by (2.6), (2.10) and (2.11),

w:f = aw?, wg = —aw?, w‘f = bw?, w% = bw?, (3.1)

K=c(1—|T|*) —a®*—-b*, K, = 2ab. (3.2)
Using (2.3), (2.4) and (3.1), we have
dwi = da A W' — awd A W?
= —wi A w?i — wi A wi + Rypw! Aw?
= aw* A\ wi — bwi A w? + Rappwt A w?.

We can write
T =Tle 4+ T?), 1 =13+ ey

Then by (2.5) and (2.1), R3112 = cT?%3. So, using the notation like
da = ;' + apw?, db = byw' + br?,

wy = (wy)1w' + (w3)w?, Wi = (wi)1w' + (wf)ow?,

we get
—ay —2a(w})1 +b(w3)1 = cT?7°. (3.3)
Similarly, from the exterior derivatives of wg’, w‘l" and w%,
a1 — 2a(w3d) + b(w3)2 = T, (3.4)
by — 2b(w%)2 + a(wi)z = cT?y*, (3.5)
—by — 2b(w%)1 + a(wi)l = —CT1174. (3.6)

Let V denote the Levi-Civita connection on N3(c) x R. Then, using (2.2), we

have
0=Ve=V (ZTiei + Ziy“e,x>
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+) (diy“ +Y T'wt + Znﬁw}’;) eq-
114 i B
So, using the notation like
AT = ZT;@J', dn® = Zn;‘wf,
] ]

and (3.1), we have

T = —T*(wy)1 +an’, Ty = =T*(w)2+brf?, (3.7)
T? = THwy)1 + by, T3 = TYwh), —an?, (3.8)
7= —ntwih —aT', 53 = =yt (wi)a +aT?, (3.9)
i =1’ (wih —bT?, 15 = i’ (w))2 — BT, (3.10)

4 Proof of Theorems

In this section, using the notations in Sections 2 and 3, we prove Theorems 1.1
and 1.2.

Proof of Theorem 1.1. Let M be a minimal surface in N3(c) x R where ¢ # 0,
and assume that the curvature ellipse at any point is a circle.

Suppose that M is not totally geodesic. Then there exists a point p € M such
that the curvature ellipse at p is a circle of positive radius. So the curvature ellipse
is a circle of positive radius on a neighborhood U of p. We can use the argument
in Section 3 on U, and |a| = |b| > 0 on U. By the continuity, either b = a # 0 on
U,or b = —a # 0 on U. In the case where b = a # 0 on U, by (3.3)-(3.6) and that
c # 0, we have

TP —T2* =0, T*7+Tl* =0

on U. Hence, noting also that |T|?> + || = 1, we have either T = 0 on U or
7 = 0 on U. In either case, since |T|> + |7|> = 1 and a # 0 on U, we have a
contradiction from (3.7)-(3.10). In the case where b = —a # 0 on U, similarly, we
have a contradiction.

Therefore, M has to be totally geodesic.

Proof of Theorem 1.2. Let M be a minimal surface in N3(c) x R where ¢ # 0.
Suppose that the semi-major axis and the semi-minor axis of the curvature ellipse
are both positive constant. By Theorem 1.1, the curvature ellipse cannot be a
circle of positive constant radius. So the curvature ellipse is not a circle at any

point, and we can use the argument in Section 3, so that a and b are constant with
la] > |b| > 0. Then (3.3)-(3.6) become

—2a(wd)1 +b(w3) = T3, 4.1)

—2a(wi)y + b(w3)y = Ty, (4.2)
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—2b(wy)2 + a(wy)2 = cT?y?, 4.3)
—2b(w})1 +a(wy); = —cT'yt. (4.4)
By (4.1)-(4.4) we obtain
—2aw) + bwi = e (T?w' + T'w?), (4.5)
—2bwh +awi = ent(—Tlw! + T?w?), (4.6)
and
2wp)1 = =55 (T + BT, (4.7)
c
2(w))2 = 5 (bT?" —aT'y?), 4.8)
c
(w3 = T (bT?n3 4+ aT'yt), (4.9)
c
(w3)2 = P (aT?y* — bT'?). (4.10)

Taking the exterior derivative of (4.5), and using (2.3), (2.7), (3.7)-(3.10),
(4.7)-(4.10), we can get

C
—2aK + bK, = ca (az 0 T 17)* +2(7°)* — mz) : (4.11)
By (4.11), (3.2) and that a # 0,
2
Cc
—2c(1 — |T|?) + 2a° + 4b* = p—— IT12n 2 4 c{2(*)* — |T)?}. (4.12)

Similarly, by the exterior derivative of (4.6), we get

_ 4\2 2 ¢ 20,12
—2bK +aK, = cb (2(17 )-—|T|* — o b2|T| 9] ) . (4.13)
By (4.13), (3.2) and noting that b # 0, we have

c? 20,12
TP @14

201~ TP + 40 + 207 = c{2(*Y ~ |TP} ~
By (4.12)+(4.14),
8¢c|T|* = 6c — 6(a® + b?).

So |T| is constant, and M is a constant angle surface. Since |a| > [b| > 0,
0<|T| <1.

When ¢ < 0, by [12, Th. 3.2], M is totally geodesic, which is a contradiction
to |a| > |b| > 0. When ¢ > 0, by [3, Lemma 2], we have b = 0, which is also a
contradiction to |a| > |b| > 0. Thus we have proved Theorem 1.2.

Remark. By [3, Sect.4], for any minimal constant angle surface in 53(0) X R
with 0 < |T| < 1, |a| is positive constant and b is zero. It is not certain if the
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converse is true. So we can consider the following;:

Question. Except for minimal constant angle surfaces, does there exist a min-
imal surface in N3(c) x R with ¢ # 0 such that the semi-major axis of the curva-
ture ellipse is positive constant and the semi-minor axis of the curvature ellipse
is zero?

Acknowledgements. The author wishes to thank the referee for useful com-
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