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Abstract

In this paper we prove an existence result for some class of variational
boundary value problems for quasilinear elliptic equations in the Musielak-
Orlicz spaces. Some results concerning the Trace mapping have also been
provided, as well as existence results for some strongly nonlinear elliptic
equations in Musielak-Orlicz spaces.

1 Introduction

This paper is concerned with the existence of solutions for variational boundary
value problems for quasi-linear elliptic equations of the form

A(u) = f ,

where the operator A is in the form:

A(u) ≡ ∑
|α|≤m

(−1)|α|DαAα(x, u,∇u, ...,∇mu) (1)

on an open subset Ω of Rn. Existence theorems for problems of this type were first
obtained by Vis̆ik [21, 22] using compactness arguments and a priori estimates on
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(m + 1)st derivatives. Since 1963, these problems have been extensively studied
by Browder and others in the context of the theory of mappings of monotone
type from a reflexive Banach space to its dual and in the case where the coeffi-
cients Aα have polynomial growth in u and its derivatives [2] , [3] , [18]. From
1970 these results have been extended by Donaldson [8], Gossez [11] , [12] and
Gossez and Mustonen in [14] to the case where the coefficients Aα do not nec-
essarily have polynomial growth in u and its derivatives. The Banach spaces in
which the problems formulated (the Orlicz-Sobolev spaces) are not reflexive and
the corresponding mappings of monotone type are not bounded nor everywhere
defined and do not generally satisfy a global a priori bounded( and consequently
are not generally coercive).

In the last decade several works have been concerned to extend the classical
polynomial growth to the x-dependent polynomial growth case in the so-called
variable exponent Sobolev spaces ( see [16] and references within), and also [23] .

Recently Mihǎilescu and Rǎdulescu in [19] and Fan and Guan in [10] have
obtained new results which improved the already known existence results for the
p(x)-Laplacian operator in the Musielak-Orlicz-Sobolev spaces W1Lϕ(Ω) under
some assumptions such as the condition ∆2 on ϕ and also the uniform convexity
of ϕ which assure that the space Lϕ(Ω) is reflexive.

The topic considered in this paper includes and generalizes the above set-

tings. for example if we take ϕ(x, t) = tp(x), our results improve their coun-

terparts in the statement of the variable exponent sobolev spaces Wm,p(x) with
less restrictions on the function p(x), namely, we can drop the condition that
p+ = ess supx∈Ω p(x) is finite.

The authors in [4] and [6] have studied some very important properties of the
Musielak-Orlicz-Sobolev spaces WmLϕ(Ω), namely some approximation theo-
rems which assure the existence of complementary systems generate by WmLϕ(Ω)
and Wm

0 Lϕ(Ω). These results have been obtained under the assumption that ϕ
satisfies the following condition of Log-Hölder type of continuity :
There exists a constant A > 0 such that for all x, y ∈ Ω : |x − y| ≤ 1

2 we have :

ϕ(x, t)

ϕ(y, t)
≤ t

A

log( 1
|x−y|

)
(2)

for all t ≥ 1.

Note that this condition is out of the question in the classical setting because
ϕ is independent of the first variable. For examples of Musielak-Orlicz functions
satisfy the condition (2) see the Appendix.

The study of variational boundary value problems for quasi-linear elliptic
equations in the general case when the Musielak-Orlicz-Sobolev spaces WmLϕ(Ω)
are not reflexive was initiated by the authors in [7] with the assumption that the
conjugate function ψ of ϕ has the ∆2 property.

In this paper we investigate these problems without any assumption of type
∆2 on ϕ and its conjugate ψ we assume only that ϕ satisfies the condition (2). Ours
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results generalize those of Gossez in [11],[13], [12] and Gossez and Mustonen in
[14].

This is a new research topic which is worthy of attention and opens wide
doors before several works and applications. In this regard we can point out
that the x-dependence of the growth and coercitivity conditions allows to con-
sider influence of magnetic (or electric ) field which provides the possibility to
understand and study the problems related to non-Newtonian fluids of strongly
inhomogeneous behavior with a high ability of increasing their viscosity under a
different stimulus, like the shear rate, magnetic or electric field [15].

Also the result of this paper can be for example applied for finding a weak
solution for the ϕ-Laplacian equation

∆ϕu(= div(
a(x, |∇u|)

|∇u|
.∇u)) + f = 0

where a is the derivative of ϕ with respect to t.

Section 2 contains some preliminaries about the Musielak-Orlicz-Sobolev spa-
ces and some useful lemmas as well as some facts about the complementary
system. In Section 3 we introduce the main results of this paper, firstly we study
the trace mapping in subsection 3.1, subsection 3.2 is devoted to some imbedding
results, in subsection 3.3 and 3.4 we investigate the conditions imposed in the
theorem 1(below) on the mapping T and the convex K, finally in the subsection
3.5 we give an existence result for the strongly nonlinear elliptic problem. Section
4 is an appendix that contains examples of Musielak-Orlicz function satisfy the
condition (2).

2 Preliminaries

In this section we list briefly some definitions and facts about Musielak-Orlicz-
Sobolev spaces. Standard reference is [20]. We also include the definition of
complementary system, an abstract result and some preliminaries Lemmas to be
used later.

2.1 Musielak-Orlicz-Sobolev spaces

Let Ω be an open subset of Rn and let ϕ be a real-valued function defined in
Ω × R+ and satisfying the following conditions :
a) ϕ(x, .) is an N-function i.e. convex, nondecreasing, continuous, ϕ(x, 0) = 0,
ϕ(x, t) > 0 for all t > 0, and

lim
t→0

ϕ(x, t)

t
= 0 for almost everywhere x ∈ Ω,

lim
t→∞

ϕ(x, t)

t
= ∞ for almost everywhere x ∈ Ω,
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b) ϕ(., t) is a measurable function.
A function ϕ(x, t), which satisfies the conditions a) and b) is called a Musielak-
Orlicz function. For a Musielak-Orlicz function ϕ(x, t) we put ϕx(t) = ϕ(x, t)
and we associate its nonnegative reciprocal function with respect to t, ϕ−1

x i.e.

ϕ−1
x (ϕ(x, t)) = ϕ(x, ϕ−1

x (t)) = t

For any two Musielak-Orlicz functions ϕ and γ we introduce the following
ordering :
c)if there exists two positives constants c and T such that for almost everywhere
x ∈ Ω :

ϕ(x, t) ≤ γ(x, ct) for t ≥ T

we write ϕ ≺ γ and we say that γ dominate ϕ globally if T = 0 and near infinity
if T > 0.

d) if for every positive constant c and almost everywhere x ∈ Ω we have

lim
t→0

(sup
x∈Ω

ϕ(x, ct)

γ(x, t)
) = 0 or lim

t→∞
(sup

x∈Ω

ϕ(x, ct)

γ(x, t)
) = 0

we write ϕ ≺≺ γ at 0 or near ∞ respectively, and we say that ϕ increases essen-
tially more slowly than γ at 0 or near infinity respectively.

In the following the measurability of a function u : Ω 7→ R means the Lebesgue
measurability.

We define the functional

̺ϕ,Ω(u) =
∫

Ω
ϕ(x, |u(x)|)dx

where u : Ω 7→ R is a measurable function.
The set

Kϕ(Ω) =
{

u : Ω → R mesurable /̺ϕ,Ω(u) < +∞
}

.

is called the Musielak-Orlicz class (the generalized Orlicz class).

The Musielak-Orlicz space (the generalized Orlicz spaces) Lϕ(Ω) is the vector
space generated by Kϕ(Ω), that is, Lϕ(Ω) is the smallest linear space containing
the set Kϕ(Ω).
Equivalently:

Lϕ(Ω) =

{

u : Ω → R mesurable /̺ϕ,Ω(
|u(x)|

λ
) < +∞, for some λ > 0

}

Let
ψ(x, s) = sup

t≥0

{st − ϕ(x, t)},

that is, ψ is the Musielak-Orlicz function complementary to (or conjugate of)
ϕ(x, t) in the sense of Young with respect to the variable s.
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In the space Lϕ(Ω) we define the following two norms:

||u||ϕ,Ω = inf{λ > 0/
∫

Ω
ϕ(x,

|u(x)|

λ
)dx,≤ 1}.

which is called the Luxemburg norm and the so-called Orlicz norm by :

|||u|||ϕ,Ω = sup
||v||ψ≤1

∫

Ω
|u(x)v(x)|dx.

where ψ is the Musielak-Orlicz function complementary ( or conjugate) to ϕ.
These two norms are equivalent [20].

The closure in Lϕ(Ω) of the bounded measurable functions with compact sup-

port in Ω is denoted by Eϕ(Ω). It is a separable space and Eψ(Ω)∗ = Lϕ(Ω) [20].

We have Eϕ(Ω) = Kϕ(Ω) if and only if Kϕ(Ω) = Lϕ(Ω) if and only if ϕ has
the ∆2 property for large values of t, or for all values of t, according to whether
Ω has finite measure or not, i.e., there exists k > 0 independent of x ∈ Ω and a
nonnegative function h , integrable in Ω such that ϕ(x, 2t) ≤ kϕ(x, t) + h(x) for
large values of t, or for all values of t.

We say that a sequence of functions un ∈ Lϕ(Ω) is modular convergent to
u ∈ Lϕ(Ω) if there exists a constant k > 0 such that

lim
n→∞

̺ϕ,Ω(
un − u

k
) = 0.

For any fixed nonnegative integer m we define

WmLϕ(Ω) = {u ∈ Lϕ(Ω) : ∀|α| ≤ m Dαu ∈ Lϕ(Ω)}

where α = (α1, α2, ..., αn) with nonnegative integers αi |α| = |α1|+ |α2|+ ...+ |αn|
and Dαu denote the distributional derivatives. The space WmLϕ(Ω) is called the
Musielak-Orlicz-Sobolev space.

Let

̺ϕ,Ω(u) = ∑
|α|≤m

̺ϕ,Ω(D
αu) and ||u||mϕ,Ω = inf{λ > 0 : ̺ϕ,Ω(

u

λ
) ≤ 1}

for u ∈ WmLϕ(Ω). These functionals are a convex modular and a norm on
WmLϕ(Ω), respectively, and the pair 〈WmLϕ(Ω), ||u||mϕ,Ω〉 is a Banach space if

ϕ satisfies the following condition [20]:

there exist a constant c > 0 such that inf
x∈Ω

ϕ(x, 1) ≥ c. (3)

WmLϕ(Ω) will always be identified to a subspace of the product

∏|α|≤m Lϕ(Ω) = ∏ Lϕ; this subspace is σ(ΠLϕ, ΠEψ) closed. Let Wm
0 Lϕ(Ω) be

the σ(ΠLϕ, ΠEψ) closure of D(Ω) in WmLϕ(Ω).
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Let WmEϕ(Ω) be the space of functions u such that u and its distribution
derivatives up to order m lie in Eϕ(Ω), and Wm

0 Eϕ(Ω) is the (norm) closure of
D(Ω) in WmLϕ(Ω).

The following spaces of distributions will also be used:

W−mLψ(Ω) = { f ∈ D′(Ω); f = ∑
|α|≤m

(−1)|α|Dα fα with fα ∈ Lψ(Ω)}

W−mEψ(Ω) = { f ∈ D′(Ω); f = ∑
|α|≤m

(−1)|α|Dα fα with fα ∈ Eψ(Ω)}

We say that a sequence of functions un ∈ WmLϕ(Ω) is modular convergent to
u ∈ WmLϕ(Ω) if there exists a constant k > 0 such that

lim
n→∞

̺ϕ,Ω(
un − u

k
) = 0.

For two complementary Musielak-Orlicz functions ϕ and ψ the following
inequality is called the young inequality [20]:

t.s ≤ ϕ(x, t) + ψ(x, s) for t, s ≥ 0, x ∈ Ω

This inequality implies that

|||u|||ϕ,Ω ≤ ̺ϕ,Ω(u) + 1.

We have also for two complementary Musielak-Orlicz functions ϕ and ψ if
u ∈ Lϕ(Ω) and v ∈ Lψ(Ω) the Hölder inequality [20]:

|
∫

Ω
u(x)v(x) dx| ≤ ||u||ϕ,Ω|||v|||ψ,Ω.

We recall that a family R of functions u(x) has equi-absolutely continuous
integrals if for arbitrary ε > 0 an h > 0 can be found such that for all functions in
the family R we have

∫

E
u(x)dx < ε

provided |E| < h, where |E| is the measure of the set E.
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2.2 Preliminary lemmas

Lemma 1. if a sequence gn ∈ Lϕ(Ω) converges in measure to g and if gn remains
bounded in Lϕ(Ω), then g ∈ Lϕ(Ω) and gn → g for σ(Lϕ(Ω), Eψ(Ω)).

Proof. Since every sequence of functions in Lϕ(Ω) which are bounded in norm
contains a σ(Lϕ(Ω), Eψ(Ω)) convergent subsequence, It is enough to show that
for any subsequence gnk

(x) which converges in σ(Lϕ(Ω), Eψ(Ω)) to g0(x) , we
have g0(x) = g(x).

We denote by Km(x) the characteristic function of some fixed set of points on
which |g(x)− g0(x)| ≤ m, and the function sgn [g(x)− g0(x)] by f0(x).

Suppose ε > 0 is prescribed. Since the functions g0(x), gnk
(x) have equi-

absolutely continuous integrals [20], a δ > 0 can be found such that
∫

D
|g0(x)|dx <

ε

5
,

∫

D
|gnk

(x)|dx <
ε

5

provided |D| < δ(D ⊂ Ω). We shall assume that δ <
ε

5m . It follows from the
convergence in measure of the subsequence gnk

(x) to the function g(x) and the
convergence of this sequence to the function g0(x) in σ(Lϕ(Ω), Eψ(Ω)) that there
exists a k0 such that , fork > k0,

∫

Ω
[gnk

(x)− g0(x)] f0(x)Km(x)dx <
ε

5

and mes Ωk < δ, where

Ωk = {|gnk
(x)− g(x)| ≥

ε

5mes Ω
}.

Then, for k > k0, we have that
∫

Ω
|g(x)− g0(x)|Km(x)dx ≤|

∫

Ω
[gnk

(x)− g0(x)] f0(x)Km(x)dx | (4)

+
∫

Ω\Ωk

|g(x)− gnk
(x)|dx +

∫

Ωk

|gnk
(x)|dx (5)

+
∫

Ωk

|g0(x)|dx +
∫

Ωk

|g(x)− g0(x)|Km(x)dx (6)

<
ε

5
+

ε

5mes Ω
mes (Ω\Ωk) +

ε

5
+

ε

5
+ m mes Ωk < ε (7)

Since ε is arbitrary, we have that
∫

Ω
|g(x)− g0(x)|Km(x)dx = 0,

i.e.g0(x) = g(x) almost everywhere.

Lemma 2. [17] Let the functions Aα satisfy the conditions (A1) and (A3) below. if for
the sequences ηk ⊂ Rn1 , ζk ⊂ Rn2 , and ξk ⊂ Rn2 we have ηk → η, ζk → ζ, and

Σ|α|=m(Aα(x, ηk, ζk)− Aα(x, ηk, ξk))(ζαk − ξαk) → 0

as k → ∞, then ξk is bounded in Rn2 and ξk → ζ as k → ∞.
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Lemma 3. [1] Let u ∈ W1,1
loc (Ω) and let f satisfy a Lipschitz condition in R. If g(x) =

f (|u(x)|), then g ∈ W1,1
loc (Ω) and

Dαg(x) = f ′(|u(x)|) sgn u(x).Dαu(x).

The following lemmas are respectively a generalization of Lemma 2, Lemma
3 and Lemma 4 of [13].

Lemma 4. Let F : R → R be uniformly Lipschitzian, with F(0) = 0. Let u ∈
W1

0 Lϕ(Ω). Then f (u) ∈ W1
0 Lϕ(Ω). Moreover if the set D of discontinuity points

of F′ is finite, then

∂

∂xi
F(u) =

{

F′(u) ∂u
∂xi

a.e. in {x ∈ Ω; u(x) ∈ Dc}

0 a.e. in {x ∈ Ω; u(x) ∈ D}
(8)

Proof We suppose for the moment that F is also C1. By Theorem 2.5 of [6],
there exists a sequence un ∈ D(Ω) such that for |α| ≤ 1 and some λ > 0,
∫

Ω
ϕ(x, (Dαun−Dαu

λ )) → 0 as n → ∞. Passing to subsequence, we can assume
that un → u a.e. in Ω. From the relations |F(s)| ≤ k|s|, where k denote the

Lipschitz constant for F, and ∂
∂xi

F(un) = F′(un)
∂un
∂xi

, we deduce that F(un) re-

mains bounded in W1
0 Lϕ(Ω). Thus, going to a further subsequence, we obtain

F(un) → w ∈ W1
0 Lϕ(Ω) for σ(ΠLϕ, ΠEψ) and also, by a local application of the

compact imbedding theorem, F(un) → w a.e. in Ω. Consequently w = F(u), and
F(u) ∈ W1

0 Lϕ(Ω). Finally, by the usual chain rule for weak derivatives,

∂

∂xi
F(u) = F′(u)

∂u

∂xi
(9)

a.e. in Ω. For the general case. Taking convolution with the mollifiers, we get a
sequence Fn ∈ C∞(R) such that Fn → F uniformly on each compact, Fn(0) = 0
and |F′

n| ≤ k. For each n, Fn(u) ∈ W1
0 Lϕ(Ω), and we have (9) with F replaced

by Fn. similarly to the preceding arguments we conclude that F(u) ∈ W1
0 Lϕ(Ω).

Finally (8) follows from the generalized chain rule for weak derivatives.

Lemma 5. Let u, v ∈ W1
0 Lϕ(Ω) and let w = min{u, v}. then w ∈ W1

0 Lϕ(Ω) and

∂w

∂xi
=

{

∂u
∂xi

a.e. in {x ∈ Ω; u(x) ≤ v(x)}
∂v
∂xi

a.e. in {x ∈ Ω; u(x) > v(x)}

Proof. We apply Lemma 4 with F(s) = s+ using the fact that min{u, v} =
u − (v − u)+.

Lemma 6. Let u ∈ W1
0 Lϕ(Ω). Then there exists a sequence un such that

(i) un ∈ W1
0 Lϕ(Ω) ∩ L∞, (ii) Supp un is compact in Ω, (iii) |un(x)| ≤ |u(x)| a.e.

in Ω, (iv) un(x)u(x) ≥ 0 a.e. in Ω, (v) Dαun → Dαu a.e. in Ω, for |α| ≤ 1, (vi) for
some λ > 0 and for |α| ≤ 1,

∫

Ω
ϕ(x,

Dαun − Dαu

λ
) → 0
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Proof. By Theorem 2.5 of [6], there exists a sequence vn ∈ D(Ω) such that

for |α| ≤ 1 and some λ > 0,
∫

Ω
ϕ(x, (Dαvn−Dαu

λ )) → 0 as n → ∞. Passing to
subsequence if necessary , we can assume that for |α| ≤ 1, Dαvn → Dαu a.e. in
Ω. Without loss of generality u and vn can be taken ≥ 0 in Ω. We put

un = min{u, vn}.

Then (i)-(iv) clearly hold. By Lemma 6 we obtain

∂un

∂xi
=

{

∂u
∂xi

a.e. in Ω′ = {x ∈ Ω; u(x) ≤ vn(x)}
∂vn
∂xi

a.e. in Ω” = {x ∈ Ω; u(x) > vn(x)}

It follows that (v) holds. We write

∫

Ω
ϕ(x,

∂u
∂xi

− ∂un
∂xi

λ
) =

∫

Ω”
ϕ(x,

∂u
∂xi

− ∂vn
∂xi

λ
)

≤
∫

Ω
ϕ(x,

∂u
∂xi

− ∂vn
∂xi

λ
).

The right hand side goes to zero, so (vi) is true.

Lemma 7. Let un, u ∈ Lϕ(Ω). if un → u with respect to the modular convergence, then
un ⇀ u for σ(Lϕ(Ω), Lψ(Ω)).

Proof. Let λ > 0 be such that
∫

Ω
ϕ(x, un−u

λ )dx → 0. Thus, for a subsequence,
un → u a.e. in Ω. Let v ∈ Lψ(Ω). We can assume that λv ∈ Kψ (by multiplying v
by a suitable constant). Young’s inequality gives

|(un − u)v| ≤ ϕ(x,
un − u

λ
) + ψ(x, λv),

so, it is enough to apply the Vitali’s theorem.

2.3 Complementary system

Definition 1. Let Y and Z be two real Banach spaces in duality with respect to a con-
tinuous pairing <,> and let Y0 and Z0 be subspaces of Y and Z respectively. Then
(Y, Y0; Z, Z0) is called a complementary system if, by means of <,>, Y∗

0 can be identi-
fied (i.e.,is linearly homeomorphic) to Z and Z∗

0 to Y.

Let ϕ and ψ be two complementary Musielak-Orlicz functions then
(Lϕ(Ω), Eϕ(Ω); Lψ(Ω), Eψ(Ω)) is a complementary system. Other examples are
(X∗∗, X; X∗, X∗) and (X∗, X∗; X∗∗, X) where X is Banach space. Note that in a
complementary system, Y0 is σ(Y, Z) dense in Y. Note also that if cl Y0 [cl Z0]
denotes the (norm) closure of Y0 [Z0] in Y [Z], then (Y, clY0; Z, clZ0) is a comple-
mentary system.
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The following lemma gives an important method by which from a comple-
mentary system (Y, Y0; Z, Z0) and a closed subspace E of Y, one can construct a
new complementary system (E, E0; F, F0). Some restriction must be imposed on
E. Define E0 = E ∩ Y0, F = Z/E⊥

0 and F0 = {z + E⊥
0 ; z ∈ Z0} ⊂ F, where

⊥ denotes the orthogonal in the duality (Y, Z), i.e. E⊥
0 = {z ∈ Z;< y, z >=

0 for all y ∈ E0}.

Lemma 8. [11] The pairing <,> between Y and Z induces a pairing between E and F
if and only if E0 is σ(Y, Z) dense in E. In this case, (E, E0; F, F0) is a complementary
system if E is σ(Y, Z0) closed, and conversely, when Z0 is complete, E is σ(Y, Z0) closed
if (E, E0; F, F0) is a complementary system.

Remark 1. By the statement of [6] and the above lemma, both Wm
0 Lϕ(Ω) and WmLϕ(Ω)

generate a complementary system in (ΠLϕ(Ω), ΠEϕ(Ω); ΠLψ(Ω), ΠLψ(Ω))

2.4 An Abstract Result

Let (Y, Y0; Z, Z0) be a complementary system and T be a mappings from the do-
main D(T) in Y to Z which satisfy the following conditions, with respect to some
element ȳ ∈ Y0 and f ∈ Z0 :

(i) (finite continuity) D(T) ⊃ Y0 and T is continuous from each finite dimen-
sional subspaces of Y0 to the σ(Z, Y0) topology of Z,

(ii) (sequential pseudo-monotonicity) for any sequence {yi} with yi → y ∈ Y
for σ(Y, Z0),
T(yi) → z ∈ Z for σ(Z, Y0) and lim sup < T(yi), yi > ≤ < z, y >, it follows that
T(y) = z and < T(yi), yi >→< z, y >,

(iii) T(y) remains bounded in Z whenever y ∈ D(T) remains bounded in Y
and < y − ȳ, Tu > remains bounded from above,

(iv) < y− ȳ, t(y)− f > is > 0 when y ∈ D(T) has sufficiently large norm in Y.

It is of importance to note that the condition (iii) is weaker than the condi-
tion that T transforms each bounded set of Y into a bounded set of Z. And that
the condition (iv) is weaker than the assumption of coercitivity. Because in our
applications, the mapping T will generally not transform a bounded set into a
bounded set nor be coercive.

Given a convex set K ⊂ Y and an element f ∈ Z0, we are interested in finding
a solution y of the variational inequality.

{

y ∈ K ∩ D(T),
< y − z, Ty > ≤ < y − z, f > for all z ∈ K.

(10)
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Theorem 1. [14] Let (Y, Y0; Z, Z0) be a complementary system with Y0 and Z0 separa-
ble. Let K ⊂ Y be convex, σ(Y, Z0) sequentially closed and such that K ∩ Y0 is σ(Y, Z)
dense in K. Let f ∈ Z0 and let T : D(T) ⊂ Y → Z satisfy (i)...(iv) with respect to
some y ∈ K ∩ Y0 and the given f . Then the variational inequality (10) has at least one
solution y.

3 Main results

3.1 Trace

We assume that the boundary Γ of our open bounded set Ω is sufficiently good
so that questions in Ω, near Γ, can be transformed, by using a partition of unity
and local charts, into similar questions in Rn

+, near Rn−1. This will be certainly so,

for our purposes below, if Γ is assumed to be C1.

We summarize in the following theorem some properties of the trace map-
ping.

Theorem 2. (a) The ”restriction to Γ ” mapping:

γ̃ = C∞(Ω) → C(Γ) : u 7→ u|Γ

is continuous for the following topologies on C∞(Ω) and C(Γ) respectively:

||.||1ϕ,Ω → ||.||ϕ,Γ (11)

σ(ΠLϕ(Ω), ΠEψ(Ω)) → σ(Lϕ(Γ), Eψ(Γ)) (12)

σ(ΠLϕ(Ω), ΠLψ(Ω)) → σ(Lϕ(Γ), Lψ(Γ)) (13)

(b) Green’s formula holds:if u ∈ W1Lϕ(Ω) and v ∈ W1Lψ(Ω) then

∫

Ω
u

∂v

∂x
dx +

∫

Ω
v

∂u

∂x
dx =

∫

Γ
uvνidΓ. (14)

Remark 2. Since C∞(Ω) is σ(ΠLϕ, ΠLψ) dense in W1Lϕ(Ω), the condition (13) im-

plies that γ̃ can be extended into a continuous mapping γ from W1Lϕ(Ω), σ(ΠLϕ, ΠLψ)
to Lϕ(Γ), σ(Lϕ, Lψ). Condition (12) implies that γ is continuous from

W1Lϕ(Ω), σ(ΠLϕ, ΠEψ) to Lϕ(Γ), σ(Lϕ, Eψ). From (11) and the fact that C∞(Ω)

is norm dense in W1Eϕ(Ω), it follows that γ is continuous from W1Eϕ(Ω), ||.|| to

Eϕ(Γ), ||.||. For u in W1Lϕ(Ω), γu is called the trace of u on Γ.

Proof of Theorem. The proof is similar to that in [[13] . §3] , so we sketch it here.
The conditions (11),(12)and (13) follow from a standard method of the partition
of unity and the local charts. To show that (14) holds, we first use the fact that (14)
is true for u and v in C∞(Ω), secondly we use the fact that C∞(Ω) is σ(ΠLϕ, ΠEψ)
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dense in W1Lϕ(Ω) and that γ is continuous for(12) to conclude that (14) holds for

u ∈ W1Lϕ(Ω) and v ∈ C∞(Ω), finally, since C∞(Ω) is σ(ΠLψ(Ω), ΠLϕ(Ω)) dense

in W1Lψ(Ω) and since γ is continuous for (13) (with ϕ and ψ interchanged), we

derive (14) for u ∈ W1Lϕ(Ω) and v ∈ W1Lψ(Ω).

Theorem 3. (a) The kernel of the trace mapping γ : W1Lϕ(Ω) → Lϕ(Γ) is W1
0 Lϕ(Ω).

(b) The kernel of the trace mapping γ : W1Eϕ(Ω) → Eϕ(Γ) is W1
0 Eϕ(Ω)

Proof. We first note that the part (a) implies the part (b) because
W1

0 Eϕ(Ω) = W1
0 Lϕ(Ω) ∩ W1Eϕ(Ω). and that to prove the first assertion (a), it

suffices to show that ker γ ⊂ W1
0 Lϕ(Ω) since the other inclusion follows from the

continuity properties of γ. So we take u ∈ W1
0 Lϕ(Ω) with γu = 0 and we put

ũ =

{

u in Ω

0 outsideΩ

It is clear that ũ ∈ W1Lϕ(Rn). Then the conclusion follows by using the argu-
ments similar to those used in [6].

3.2 An imbedding results

The following three Theorems have been firstly introduced by the authors in [7].
For convincing the reader we rewrite the proof.

Theorem 4. Let Ω have finite measure and let ϕ and φ two Msuielak-Orlicz functions
such that φ(., t) is integrable on Ω and increasing essentially more slowly than ϕ near
infinity. If the sequence {uj} is bounded in Lϕ(Ω) and convergent in measure on Ω,
then it is convergent in norm in Lφ(Ω).

Proof. Fix ε and let vj,k =
uj(x)−uk(x)

ε . Clearly {vj,k} is bounded in Lϕ(Ω); say
||vj,k||ϕ,Ω < K. Now there exists a positive number t0 such that if t > t0, then

φ(x, t) ≤
1

4
ϕ(x,

t

K
).

Let δ > 0 such that
∫

D
φ(x, t0)dx ≤

1

4

provided |D| < δ.
Set

Ωj,k = {x ∈ Ω : |vj,k(x)| ≥ φ−1
x (

1

2|Ω|
)}.

Since {uj} converges in measure, there exists an integer N such that if j, k > N,
then |Ωj,k| ≤ δ. Set

Ω′
j,k = {x ∈ Ωj,k : |vj,k(x)| ≥ t0}, Ω′′

j,k = Ωj,k \ Ω′
j,k
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For j, k ≥ N we have

∫

Ω
φ(x, |vj,k(x)|)dx =

∫

Ω\Ωj,k

φ(x, |vj,k(x)|)dx +
∫

Ω′
j,k

φ(x, |vj,k(x)|)dx

+
∫

Ω′′
j,k

φ(x, |vj,k(x)|)dx

≤
|Ω|

2|Ω|
+

1

4

∫

Ω′
j,k

ϕ(x,
|vj,k(x)|

K
)dx +

∫

Ωj,k

φ(x, t0)dx ≤ 1.

Hence ||uj − uk||φ,Ω ≤ ε and so {uj} converges in Lφ(Ω).

Theorem 5. Let Ω have finite measure and let ϕ and φ as in the Theorem 2. Then any
bounded subset S of Lϕ(Ω) which is precompact in L1(Ω) is also precompact in Lφ(Ω).

Proof. Evidently Lϕ(Ω) →֒ L1(Ω) since Ω has finite volume. If {u∗
j } is a

sequence in S , then it has a subsequence {uj} that converges in L1(Ω); say uj → u

in L1(Ω). Thus {uj} converges to u in measure on Ω and hence by Theorem 4 it
converges also in Lφ(Ω).

Theorem 6. Let Ω be an open subset of Rn. Let ϕ a Msuielak-Orlicz function satisfies
the following conditions

∫ ∞

1

ϕ−1
x (t)

t
n+1

n

dt = ∞,
∫ 1

0

ϕ−1
x (t)

t
n+1

n

dt < ∞. (15)

Let f (x, t) =
∫ t

0
ϕ−1

x (τ)

τ
n+1

n
dτ, t ≥ 0. The Sobolev conjugate ϕ∗ of ϕ is the reciprocal func-

tion of f with respect to t. Then W1
0 Lϕ(Ω) →֒ Lϕ∗(Ω). Moreover, if D is bounded

subdomain of Ω, then the following imbeddings W1
0 Lϕ(Ω) →֒ Lφ(D) exist and are com-

pact for any Orlicz-Msuielak function φ increasing essentially more slowly than ϕ∗ near
infinity such that φ(., t) is integrable on Ω.

Proof. Evidently the function s = ϕ∗(x, t) as defined above is an Orlicz-
Msuielak function and satisfies the differential equation

ϕ−1
x (s)

ds

dt
= s

n+1
n , (16)

and hence, since s < ϕ−1
x (s)ψ−1

x (s),

ds

dt
≤ s

1
n ψ−1

x (s).

Therefore ν(t) = [ϕ∗(x, t)]
n−1

n satisfies the differential inequality

dν

dt
≤

n − 1

n
ψ−1

x ((ν(t))
n−1

n ). (17)
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Let u ∈ W1
0 Lϕ(Ω) and suppose, for the moment, that u is bounded on Ω and

is not zero in Lϕ(Ω). Then
∫

Ω
ϕ∗(x, |u(x)|λ )dx decreases continuously from infinity

to zero as λ increases from zero to infinity, and accordingly assumes the value
unity for some positive value of λ. Thus

∫

Ω
ϕ∗(x,

|u(x)|

K
)dx = 1, K = ||u||ϕ∗ . (18)

Let f (x) = ν( |u(x)|K ). Evidently u ∈ W1,1
0 (Ω) and ν is Lipschitz on the range of

|u(x)|
K so that, by Lemma 3, f ∈ W1,1

0 (Ω). By Sobolev inequality we have

|| f ||0, n
n−1

≤ K1

n

∑
1

||D j f ||0,1 = K1

n

∑
1

1

K

∫

Ω
ν′(

|u(x)|

K
)|D ju(x)|dx. (19)

By (18) and Hölder’s inequality, we obtain

1 = {
∫

Ω
ϕ∗(x,

|u(x)|

K
)dx}

n−1
n = || f ||0, n

n−1
≤

cK1

K

n

∑
1

||ν′(
|u|

K
)||ψ||D

ju||ϕ. (20)

Making use of (17), we have

||ν′(
|u|

K
)||ψ ≤

n − 1

n
||ψ−1

x ((ν(
|u|

K
))

n−1
n )||ψ

=
n − 1

n
inf{λ > 0 :

∫

Ω
ψ(x,

ψ−1
x (ϕ∗(x, |u(x)|K ))

λ
)dx ≤ 1}.

Suppose λ > 1. Then

∫

Ω
ψ(x,

ψ−1
x (ϕ∗(x,

|u(x)|
K ))

λ
)dx ≤

1

λ

∫

Ω
ϕ∗(x,

|u(x)|

K
)dx =

1

λ
< 1.

Thus

||ν′(
|u|

K
)||ψ ≤

n − 1

n
. (21)

Hence,

1 ≤
K3

K
||u||1ϕ

so that

||u||ϕ∗ = K ≤ K3||u||
1
ϕ (22)

To extend (22) to arbitrary u ∈ W1
0 Lϕ(Ω) let

uk(x) =

{

|u(x)| if |u(x)| ≤ k
k sgn u(x) if |u(x)| > k
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Clearly uk is bounded and it belongs to W1
0 Lϕ(Ω) by Lemma 3. Moreover,

||uk||ϕ∗ increases with k but is bounded by K4||u||ϕ. Therefore, limk→∞ ||uk||ϕ∗ =

K exists and K ≤ K4||u||
1
ϕ. By Fatou’s Lemma

∫

Ω
ϕ∗(x,

|u(x)|

K
)dx ≤ lim

k→∞

∫

Ω
ϕ∗(x,

|uk(x)|

K
)dx ≤ 1

whence u ∈ Lϕ∗(Ω) and (22) holds.

If D is a bounded subdomain of Ω, we have

W1
0 Lϕ(Ω) →֒ W1,1

0 (Ω) →֒ L1(Ω),

the latter imbedding being compact a bounded subset of W1
0 Lϕ(D) is bounded in

Lϕ∗(D) and precompact in L1(D), and hence precompact in Lφ(D) by Theorem 5
whenever φ increases essentially more slowly than ϕ∗ near infinity.

In the following two sections we study the condition introduced in the Theo-
rem 1.

3.3 Conditions on the mapping T

Let ϕ and ψ be two complementary Musielak-Orlicz functions. We assume that
ϕ(.; t) is locally integrable. We are interested here in the Dirichlet problem for the
operator

A(u) ≡ ∑
|α|≤m

(−1)|α|DαAα(x, u,∇u, ...,∇mu) (23)

on Ω.

The following notations will be used. If ξ = {ξα; |α| ≤ m} ∈ Rn is an m-
jet, with α = (α1, ..., αn) a multi-index of integers and |α| = αl + ... + αn, then
ζ = {ξα; |α| = m} ∈ Rn2 denotes its top order part and η = {ξα; |α| < m} ∈ Rn1

its lower order part. For u a derivable function, ξ(u) denotes {Dαu; |α| ≤ m} ∈
Rn.

The basic conditions imposed on the coefficients Aα of (23) are the followings:

(A1) Each Aα(x, ξ) is a real valued function defined on Ω × Rn0 is measurable
in x for fixed ξ and continuous inξ for fixed x.

(A2) There exist two Musielak-Orlicz functions ϕ and γ with γ ≺≺ ϕ,
functions aα in Eψ(Ω), constants c1 and c2 such that for all x in Ω and ξ in Rn0 ,if

|α| = m : |Aα(x, ξ)| ≤ aα(x) + c1 ∑
|β|=m

ψ−1
x (ϕ(x, c2ξβ)) + c1 ∑

|β|<m

φ−1
x (ϕ(x, c2ξβ)),

if
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|α| < m : |Aα(x, ξ)| ≤ aα(x) + c1 ∑
|β|=m

ψ−1
x (γ(x, c2ξβ)) + c1 ∑

|β|<m

ψ−1
x (ϕ(x, c2ξβ)).

Where ψ and φ are the complementary functions of ϕ and γ respectively.

(A3) For each x ∈ Ω, η ∈ Rn1 , ξ, and ξ′ in Rn2 with ξ 6= ξ′,

∑
|α|=m

(Aα(x, ξ, η)− Aα(x, ξ′ , η))(ξα − ξ′α) > 0.

(A4) There exist functions bα(x) in Eψ(Ω), b(x) in L1(Ω), positive constants
d1 and d2 such that, for some fixed element v in Wm

0 Eϕ(Ω),

∑
|α|≤m

Aα(x, ξ)(ξα − Dαv) ≥ d1 ∑
|α|≤m

ϕ(x, d2ξα)− ∑
|α|≤m

bα(x)ξα − b(x)

for all x in Ω and ξ in Rn0 .

Associated to the differential operator (23) we define a mapping T from

D(T) = {u ∈ Wm
0 Lϕ(Ω); Aα(ξ(u)) ∈ Lψ(Ω) for all |α| ≤ m} ⊂ Wm

0 Lϕ(Ω)

into W−mLψ(Ω) by the formula

< v, Tu >=
∫

Ω
∑

|α|≤m

Aα(ξ(u))D
α vdx

for v ∈ Wm
0 Lϕ(Ω).

Theorem 7. Let Ω be an open subset of Rn. Assume that the coefficients of (23) satisfy
(A1), ..., (A4). Then the corresponding mapping T in (Wm

0 Lϕ(Ω), Wm
0 Eϕ(Ω),

W−mLψ(Ω), W−mEψ(Ω)) satisfies the conditions (i), . . . , (iv) of Theorem 1 with
respect to u = v and any f ∈ W−mEψ(Ω).

Proof. The proof is generally similar to that of Theorem 5 of [7], so, we sketch
it here.

For the complementary system (Wm
0 Lϕ(Ω), Wm

0 Eϕ(Ω), W−mLψ(Ω),
W−mEψ(Ω)) we use the notation (Y, Y0, Z, Z0).

The property (i) follows immediately from the following Lemma :

Lemma 9. [7, Lemma 5]. Suppose that A1 and A2 hold (with a(x) ∈ Lψ(Ω)). Then
the mapping ω = (ωβ)|β|≤m 7→ (Aα(ω))|α|≤m sends ΠEϕ(Ω) into ΠLψ(Ω) and is

finitely continuous from ΠEϕ(Ω) to the σ(ΠLψ(Ω), ΠEϕ(Ω)) topology of ΠLψ(Ω).

Now, we show that (ii) holds true :
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It follows by the fact that Aα(, ξ(yi)) remains bounded in Lψ(Ω) for all |α| ≤ m
that there exists hα ∈ Lψ(Ω) such that Aα(, ξ(yi)) → hα for σ(Lψ(Ω), Eϕ(Ω))
for each |α| ≤ m. Hence the linear form z ∈ Z = Y∗

0 can be identified to
(hα) ∈ ΠLψ(Ω), i.e.,

(z, v) =
∫

Ω
∑

|α|≤m

hαDαvdx (24)

holds for all v in Y.

Therefor, by Theorem 6, we may assume that Dαyi(x) → Dαy a.e. in Ω for all
|α| ≤ m − 1. We show that

Σ|α|=m(Aα(x, η(yi), ξ(yi))− Aα(x, η(yi), ζ(y)))(Dα(yi)− Dα(y)) → 0.

Then, using lemma 2 with the specialization ηk = η(yi), ξk = ξ(yi) and
ζk = ζ(y) for each x ∈ Ω, it follows that Dαyi(x) → Dαy a.e. in Ω for all |α| = 1.

We have shown that Dα(yi)(x) → Dα(y)(x) a.e. in Ω for all |α| ≤ m, at least
for a subsequence. By (A1) we can conclude that Aα(x, ζ(yi)) → Aα(x, ζ(y)) a.e.
in Ω for all |α| ≤ m. On the other hand, Aα(x, ζ(yi)) → hα for σ(Lψ(Ω), Eϕ(Ω)),
so that by Lemma 1 Aα(x, ζ(y)) = hα for each |α| ≤ m. Hence y ∈ D(T) and
T(y) = z.

Using (A3) and (A4) we can conclude that

lim inf
∫

Ω
∑

|α|≤m

Aα(x, ζ(yi))D
α(yi) ≥

∫

Ω
∑

|α|≤m

Aα(x, ζ(y))Dα(y). (25)

Thus, bearing in mind the assumption that lim sup < T(yi), yi > ≤ < z, y >,
we obtain

(T(yi), yi) → (z, y) = (T(y), y). (26)

Concerning the condition (iii) we sue the fact that Aα(x, ξ(y)) remains bounded
in Lψ(Ω) for all |α| ≤ m, which clearly implies that T(y) remains bounded in
W−mLψ(Ω).

Finally, we show, using (A4), that the set

{y ∈ D(T);< y − v, T(y)− f >≤ 0} (27)

is bounded in Wm
0 Lϕ(Ω), which clearly yields the condition (iv).
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3.4 Conditions on the convex set K

We turn now to the study of the conditions imposed in Theorem 1 on the convex
set K. The main key is the verification of the σ(Y, Z) density of K ∩ Y0 in K. This
is a question of approximation within a convex set. Here we limit ourselves to
second order operators, i.e m = 1, and the obstacle problem.

Given an obstacle function Λ : Ω → R, we consider

K = {y ∈ W1
0 Lϕ(Ω); y ≥ Λ a.e. ∈ Ω}. (28)

This convex set is sequentially σ(ΠLϕ, ΠEψ) closed in W1
0 Lϕ(Ω). Indeed, let

yn ∈ K converge to y ∈ Wm
0 Lϕ(Ω) for σ(ΠLϕ, ΠEψ); it follows that, for a subse-

quence, yn → y a.e. in Ω, which gives u ∈ K.

Theorem 8. Let Ω ⊂ Rn be a bounded Lipschitz domain. Assume that there exists
Λ ∈ K ∩ W1

0 Eϕ(Ω) such that Λ − Λ is continuous on Ω. Then, for each y ∈ K, there

exists a sequence yn ∈ K ∩ W1
0 Eϕ(Ω) such that, for some λ > 0 and all |α| ≤ 1,

∫

Ω
ϕ(x,

Dαy − Dαyn

λ
)dx → 0

as n → ∞.

Proof As in [14], we first observe that it suffices to prove the theorem in the
case of an obstacle function which is continuous and ≤ 0 on Ω. Indeed, as-
suming the theorem in that case and denoting the set (28) by KΛ, we see that
if y ∈ KΛ, then y − Λ ∈ KΛ−Λ, and so there exists Θn ∈ KΛ−Λ ∩ W1

0 Eϕ(Ω) and

Θn + Λ → y for the modular convergence. So, from now on, we suppose that Λ

itself is continuous and ≤ 0 on Ω. Let y ∈ K. By Lemma 6 there exists λ1 > 0
and a sequence sn, such that (i) sn ∈ W1

0 Lϕ(Ω) ∩ L∞(Ω), (ii) the support of sn is
compact in Ω. (iii) |sn(x)| ≤ |y(x)| a.e in Ω, (iv) sn(x)y(x) > 0 a.e. in Ω, (v) for
all |α| ≤ 1,

∫

Ω
ϕ(x,

Dαy − Dαsn

λ1
)dx → 0 as n → ∞.

By the convexity of ϕ we have

∫

Ω
ϕ(x,

Dαsn

λ1
) ≤

1

2

∫

Ω
ϕ(x,

2(Dαsn − Dαy)

λ1
) +

1

2

∫

Ω
ϕ(x,

2Dαy

λ1
)

Then, taking λ1 large if necessary, we can also assume
∫

Ω
ϕ(x,

Dαsn

λ1
) < ∞ (29)

for all |α| ≤ 1 and all n. Since Λ ≤ 0 on Ω, it follows from (iii) and (iv) that
sn ∈ K. For each n, take Ω′

n, Ωn” open with supp sn ⊂⊂ Ωn” ⊂⊂ Ω′
n ⊂⊂ Ω and

hn ∈ D(Ω) with 0 ≤ hn(x) ≤ 1 on Ω and hn(x) = 1 on Ω′
n. Define

yn = (sn + νnhn) ∗ ρδn
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where νn > 0 and ρδn
is a mollification kernel. Clearly yn ∈ D(Ω) if δn is taken

sufficiently small. Moreover, for a given νn > 0, yn ∈ K if δn is sufficiently small.
Indeed

sn + νnhn

{

≥ Λ + νn on Ω′
n

= νnhn on Ω \ supp sn

and so, for δn sufficiently small and by the continuity of Λ we have

(sn + νnhn) ∗ ρδn
≥ (Λ + νn) ∗ ρδn

≥ Λ on Ωn”,

on Ω \ Ωn” we have, for δn sufficiently small,

(sn + νnhn) ∗ ρδn
= νnhn ∗ ρδn

≥ 0 ≥ Λ;

consequently yn ≥ Λ on all Ω, i.e. yn ∈ K.

Let ε > 0 be given. We will show that n, νn and δn can be chosen such that
yn ∈ K ∩ D(Ω) and

∫

Ω
ϕ(x,

(Dαy − Dαyn)

6λ1
≤ ε. (30)

for |α| ≤ 1, which will complete the proof. By the preceding discussion, only
(30) remains to be verified. For that purpose we write

∫

Ω
ϕ(x,

Dαy − Dαyn

6λ1
)dx ≤

1

3

∫

Ω
ϕ(x,

Dαy − Dαsn

2λ1
)dx

+
1

3

∫

Ω
ϕ(x,

Dαsn − Dαsn ∗ ρδn

2λ1
)dx +

1

3

∫

Ω
ϕ(x,

νnDαhn ∗ ρδn

2λ1
)dx

First we choose n such that the first term is ≤ ε
3 for |α| ≤ 1, which is possible

by (v) above. Then we choose νn such that for all δn > 0, the third term is ≤ ε
3 for

|α| ≤ 1, which is possible since this third term is

≤
1

3
||ϕ(x,

νnDαhn

2λ1
||L1(Ω).

Finally we use (29) together with Theorem 2.3 of [6], to choose δn, such that
the second term is ≤ ε

3 for |α| ≤ 1.

In the following theorem we construct an approximation within K, by assum-
ing other condition on the obstacle function.

Theorem 9. Let Ω ⊂ Rn be a bounded Lipschitz domain. Assume that the obstacle
function Λ belongs to W1Eϕ(Ω). Then the conclusion of Theorem 8 holds.

Proof. Let y ∈ K, by [6, Theorem 2.5], there exists a sequence zn ∈ D(Ω) and
λ > 0 such that, for |α| ≤ 1,
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∫

Ω
ϕ(x,

Dαy − Dαzn

λ
)dx → 0 (31)

as n → ∞. Put

yn = sup{zn, Λ}.

Clearly yn ≥ Λ a.e. in Ω. We also have yn ∈ Eϕ(Ω) since it is the supremum
of two functions in that space; moreover, by the chain rule for weak derivatives,
we have

∂yn

∂xi
=

{

∂zn
∂xi

a.e. in Ω′
n = {x ∈ Ω; zn(x) ≥ p(x)}

∂p
∂xi

a.e. in Ω”n = {x ∈ Ω; zn(x) < p(x)}

which shows that yn ∈ W1Eϕ(Ω). To show that yn belongs to W1
0 Eϕ(Ω), take

p ∈ K and write

zn ≤ yn ≤ sup{zn, p} (32)

By Lemma 5 we know that sup{zn, Λ} ∈ W1
0 Lϕ(Ω); taking the trace on ∂Ω of

the functions in (32) and using the fact that this is an order preserving operation,
we obtain

γzn ≤ γyn ≤ γ sup{zn, p} = 0,

so that γyn = 0, which implies, by Theorem 3 that yn ∈ W1
0 Eϕ(Ω). It remains to

prove that yn → y for the modular convergence in W1
0 Lϕ(Ω)(for a subsequence if

necessary). Since y ≥ Λ, we have |yn − y| ≤ |zn − y|, and consequently, by (31)

∫

Ω
ϕ(x,

yn − y

λ
)dx → 0 (33)

To deal with the derivatives, we first take a subsequence such that zn → y a.e. in

Ω and replace λ by a larger number, if necessary, so that ( ∂p
∂xi

− ∂y
∂xi

)/λ ∈ Kϕ(Ω);

we then have

∫

Ω
ϕ(x,

∂yn

∂xi
− ∂y

∂xi

λ
)dx =

∫

Ω′
n

ϕ(x,

∂zn
∂xi

− ∂y
∂xi

λ
)dx +

∫

Ω
ϕ(x,

∂p
∂xi

− ∂y
∂xi

λ
)χΩ′′

n
dx

The first integral in the right hand side goes to zero by (31) and the second integral
goes to zero since χΩ”

n
→ 0 a.e. in Ω.
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Remark 3. The arguments of the previews theorem can easily be adapted to deal
with the double obstacle problem. Here one considers the convex set

K = {y ∈ W1
0 Lϕ(Ω); Λ(x) ≤ y(x) ≤ Θ(x) a.e. in Ω}

where Λ, Θ : Ω → R. If Λ and Θ belong to W1Eϕ(Ω) and if K is nonempty, then

for each y ∈ K there exists a sequence yn ∈ K ∩ W1
0 Eϕ(Ω) which converges to y

for the modular convergence in W1
0 Lϕ(Ω). Starting with a sequence zn as in the

proof of Theorem 9, it suffices to take

yn = inf{sup{zn, Λ}, Θ}.

Remark 4. The arguments of Theorem 9 can be adapted to deal with the obstacle
problem without Dirichlet boundary conditions. Here one considers the convex
set

K = {y ∈ W1Lϕ(Ω); y ≥ Λ a.e. in Ω}

If Ω is a bounded Lipschitz domain, and if Λ ∈ W1Eϕ(Ω), then, for each

y ∈ K, there exists a sequence un ∈ K ∩ W1Eϕ(Ω) which converges to y for

the modular convergence in W1Lϕ(Ω). It suffices in the above proof to apply
Theorem 2.6 of [6] instead of Theorem 2.5.

Combining Theorem 1, Theorem 7 and Theorem 8 or Theorem 9 we obtain the
following existence result for the obstacle problem associated to a second order
differential operator of the form (23).

Theorem 10. Let Ω ⊂ Rn be a bounded Lipschitz domain. Assume that the coeffi-
cients of (23) satisfy (A1), ..., (A4) with m = 1 and let T the corresponding mapping
in the complementary system (W1

0 Lϕ(Ω), W1
0 Eϕ(Ω), W−1Lψ(Ω), W−1Eψ(Ω)). Let K

as in Theorem 8 or Theorem 9. Then for any f ∈ W−1Eψ(Ω), the following variational
inequality

{

y ∈ K ∩ D(T),
< y − z, Ty > ≤ < y − z, f > for all z ∈ K.

has at least one solution.

Remark 5. By the bipolar Theorem in any complementary system, Y0 is σ(Y, Z) dense
in Y. Then the above result can be applied in particular if K = Y, i.e. for the equation
Tu = f with f given in Z0.
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3.5 Strongly nonlinear elliptic problems

Now we are interested in the study of the so-called ”strongly nonlinear” inequal-
ities, i.e. problem of the forme

A(u) + g(x, u) ≤ f (34)

where A is given by (23) with m = 1.

Consider the complementary system (W1
0 Lϕ(Ω), W1

0 Eϕ(Ω), W−1Lψ(Ω),

W−1Eψ(Ω)), where Ω ⊂ R
n is a bounded Lipschitz domain. It will be denoted

below by (Y, Y0, Z, Z0).

For the mapping T : D(T) ⊂ Y → Z, we assume the properties (i), (ii), (iii)
and the following slightly stronger form of (iv):

(iv) ∗ 〈u − u, tu − f 〉 → +∞ as ||u||Y → +∞ in D(T).

For the perturbing function g : Ω × R → R, we assume the usual conditions.

(G1) g(x, u) is a Caratheodory function and satisfies the sign condition

g(x, u)u ≥ 0

for a.e. x in Ω and all u in R.

(G2) For each r ≥ 0, there exists hr ∈ L1(Ω) such that

|g(x, u)| ≤ hr(x)

for a.e. x in Ω and all u in R with |u| ≤ r.

For the convex set K ⊂ Y we need the following two approximation properties
(which, together, imply that K ∩ Y0 is σ(Y, Z) dense in K).

(K1) For each u ∈ K ∩ L∞(Ω) there exists a sequence un ∈ K ∩ L∞(Ω) ∩ Y0

such that un → u for σ(Y, Z) with ||un||∞ bounded.

(K2) For each u ∈ K there exists a sequence un ∈ K ∩ L∞(Ω) and a constant c
such that un → u for σ(Y, Z) and |un(x)| ≤ c|u(x)| for a.e. x in Ω and all u in R.

The following abstract result for the strongly nonlinear problems is due to
J.P. Gossez in [14]

Theorem 11. [14, Proposition 13] Let K ⊂ Y be convex, σ(Y, Z0) sequentially closed,
and satisfy (K1) and (K2), Let f ∈ Z0. Let T : D(T) ⊂ Y → Z satisfy (i), (ii), (iii) and
(iv)* with respect to some u ∈ K ∩ Y0 ∩ L∞(Ω) and the given f. Let g(x, u) satisfy (G1)
and (G2). Then there exists u ∈ K ∩ D(T) such that g(x, u) ∈ L1(Ω), g(x, u)u ∈
L1(Ω) and

〈u − v, Tu〉+
∫

Ω
g(x, u)(u − v)dx ≤ 〈u − v, f 〉 (35)

for all v ∈ K ∩ L∞(Ω).
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Remark 6. Let K be given by(28). It follows from the Proof of Theorem 8 that if there
exists Λ in K ∩ Y0 ∩ L∞Ω such that Λ − Λ is continuous on Ω, then condition (K1)
holds. If Λ ∈ W1Eϕ(Ω), the proof of Theorem 9 shows that (K1) holds. For (K2) it
suffices to assume the obstacle function Λ bounded from above. Indeed, for any u ∈ K,
the truncated function

un(x) =

{

|u(x)| if |u(x)| ≤ n
n sgn u(x) if |u(x)| > n

lies above Λ as soon as n > ess sup Λ, and the other requirements in (K2) are obvious.

Theorem 12. Let Ω be a bounded Lipschitz domain in R
n. Assume that the coeffi-

cients of (23) satisfy the conditions (A1), ..., (A4). Then the corresponding mapping T
in the complementary system (W1

0 Lϕ(Ω), W1
0 Eϕ(Ω), W−1Lψ(Ω), W−1Eψ(Ω)) satis-

fies the conditions (i), (ii), (iii), (iv)* with respect to u = v and any f ∈ W−1Eψ(Ω).

Proof. Similar argument as in the proof of property (vi) of Theorem 7 shows
that for any c, the set

{u ∈ D(T); 〈u − ω, Tu − f 〉 ≤ c}

is bounded in Y, which yields (iv)*.

In the particular case when K = WmLϕ(Ω) we conclude the following theo-
rem :

Theorem 13. Let Ω be a bounded Lipschitz domain in R
n. Assume that the coefficients of

(23) satisfy the conditions (A1), ..., (A4) with m = 1. Let T the corresponding mapping
in the complementary system (W1

0 Lϕ(Ω), W1
0 Eϕ(Ω), W−1Lψ(Ω), W−1Eψ(Ω)) and let

g(x, u) satisfy (G1) and (G2). Then there exists u ∈ D(T) such that
g(x, u) ∈ L1(Ω), g(x, u)u ∈ L1(Ω) and

〈u − v, Tu〉+
∫

Ω
g(x, u)(u − v)dx = 〈u − v, f 〉 (36)

for all v ∈ W1
0 Lϕ(Ω) ∩ L∞(Ω).

4 Appendix

In this section we give examples of Musielak-Orlicz function that satisfy the con-
dition (2).

Let p : Ω 7→ [1, ∞) be a measurable function such that there exist a constant
c > 0 such that for all points x, y ∈ Ω with |x − y| < 1

2 , we have the inequality

|p(x)− p(y)| ≤
c

log( 1
|x−y|

)
.

Then the following Musielak-Orlicz functions satisfy the condition (2)
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1. ϕ(x, t) = tp(x),

2. ϕ(x, t) = tp(x) log(1 + t),

3. ϕ(x, t) = t(log(t + 1))p(x),

4. ϕ(x, t) = (et)p(x) − 1.

The function (4) do not satisfy the ∆2 condition and the conjugate functions of
(2) and (3) also do not satisfy the ∆2 condition.
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