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Abstract

The Hilbert-Schmidtness of composition operators acting between the
classical Hilbert Hardy space and the Dirichlet space is known. We here
consider boundedness and compactness of composition operators acting be-
tween their spaces.

1 Introduction

Throughout this paper, let ID be the open unit disk in the complex plane C. We
denote by S(ID) the set of analytic self-maps of ID. Each ¢ € S(ID) induces
the composition operator C, defined by C,f = f o ¢ for analytic function f on
ID. Properties of composition operators have been actively investigated during
these decades. In [9], Shapiro and Taylor considered the Hilbert-Schmidtness of
composition operators on the Hilbert Hardy space and moreover characterized
results related to the Dirichlet space. The classical Hilbert Hardy space H? is the
space of analytic functions f on D such that
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where f*(e'?) = lin} f(re'®) a.e. on the boundary oD of D. Let D denote the
r—

Dirichlet space of analytic functions f on ID for which

| 1F@PRdAG) < o,

where dA is the normalized area measure on ID. The norm is defined by

If15 = 1£(0) +/D f'(2)|*dA(2).

A linear operator T from a Hilbert space X to another Hilbert space Y is called a
Hilbert-Schmidt operator if there exists an orthonormal basis {e, } in X such that

Y I Tenlly < oo

n

The following results are presented in [9].

Theorem A. (i) C, is a Hilbert-Schmidt operator from D to H?if and only if

27 .
/0 log(1 — |¢*(¢)])d8 > —co.

(i) Cy is a Hilbert-Schmidt operator from H 2 to D if and only if

/()2
Jo T A <

It is known by de Leeuw and Rudin [3] that ¢ is not an extreme point of the
unit ball of the space of bounded analytic functions on D if and only if ¢ satisfies
the condition in (i) above.

During the past decades, composition operators on D have been investigated
in [4, 5, 7, 10]. But there is no information on boundedness or compactness of
composition operators acting between H? and D in literature. So we will con-
sider them. In the next section we will see that C, : D — H? is always compact.
In section 3, we characterize the boundedness and compactness of composition
operators C, acting from H? to D. Furthermore we will present examples con-
cerning boundedness and compactness.

Throughout the paper, C will stand for positive constants whose values may
change from one occurrence to another.

2 C¢:D—>H2

As D C H? and C, is bounded on H?, it is trivial that C, is bounded from D to
H?.

In the proof of characterization of compactness we usually need the so-called
“weak convergence theorem” by adapting the proof of [2, Proposition 3.11].
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Lemma 2.1. Let X, Y be H? or D. For ¢ € S(D), suppose that Cy : X — Y is bounded.
Then C, is a compact operator from X to Y if and only if ||Cy fu||y — O for any bounded
sequence { f, } in X such that f, converges to 0 uniformly on every compact subset of D.

Theorem 2.2. For ¢ € S(ID), C,, is always a compact operator from D to H?.
Proof. 1f ¢(0) # 0, put A = ¢(0) and wy(z) = (A —z)/(1 — Az). Let ¢ = ) o @.

Then ¢ € S(ID) and ¢(0) = 0. We will show that Cy is compact.
By the change-of-variable formula, for f € D we have

ICuf Iz = 1f(9(0))[? +2/D |/ (w) "Ny (w)dA(w)

where Ny is the Nevanlinna counting function of ¢ (see [2, Theorem 2.31] and
[8, p- 179], for instance). As ¢(0) = 0, it holds that

Ny(w) < 1og|%| for weD

([8, p. 188, Corollary]).
So, for any € > 0, there is a constant R,0 < R < 1, such that

1
0< logw < e whenever R < |w| < 1.

Let {f,} in D such that || fu||p < 1 and f, converges to 0 uniformly on every
compact subset of ID. Then

ICofalle = 12O +2 [ 1f3(@)2Ny(w)dA(w)

—Uf@P+2( [ |fa@)PNy(w)dA(w)

{lw|<R}

" /{|w|>R} fo (w)’2N¢(w)dA(w))

<O +2( sup @) [ Nytwiaw

e [ Ifa(w)PdA(w)).
Thus
lim [[Cyfal20 < e

As ¢ is arbitrary, lim |Cyfull32 = 0. By Lemma 2.1, Cy is compact from D to
H2, n

Here we recall that C,, is a Hilbert-Schmidt operator from D to H? if and only
if . |

/0 log(1 — |¢*(¢))d8 > —co.

So each inner function induces a bounded and compact composition operator
acting from D to H?, but does not satisfy the Hilbert-Schmidt condition. Let
¢(z) = (z+1)/2. This ¢ satisfies the Hilbert-Schmidt condition.
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3 C¢:H2—>D

Let 11y (w) be the cardinality of ¢! (w). Then, for f € H? we have

ICofI = £ + [ |(fo ) (2)PAG)
O+ [ 1f (p)Ple/ () PdAG)
|2+/D|f )21y (w)dA(w).

Let du = nydA. Then C, is bounded from H? to D if and only if it holds that

[ 1 (@) Pap(w) < Clfl2

for some constant C > 0. Such inequalities were characterized by Luecking [6].
Forany { = ¢ € 9D and h > 0, let

S@O,h) ={z=réteD:1-h<r<1,|t—6 <h}.
Then S(6,h) is called a Carleson square at { € dD. It is clear that the area of
S(6, h) is comparable to h* (uniformly in ) as h — 0.
Forany A € D, letw)(z) = (A —z)/(1 — Az). Then we have the following.

Theorem 3.1. Let dy = nydA. Then the following are equivalent.

(i) Cg is bounded from H? to D.

(ii) There exists a constant C > 0 such that

u(S(0,h)) < CI®
forO0<h<land0 <6 <2m.

(i11) There exists a constant C > 0 such that

| lai@)Pan(z) <

forall A € D.
(iv) @)
¢'(z 3
U Jo T Tp(a s (L~ 1 (PF) AR <o

Proof. The equivalence between conditions (i) and (ii) is due to [6, Theorem 3.1]
and the equivalence between conditions (ii) and (iii) is due to [1, Theorem 1.3]
(Also see [10]).
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Moreover, we have

| 184(2) Pen(z) 61
1_|M2 3 /
= o (o) P @PAG
_ [ P@R (=P lp)P)N?
_/]D(l—|(p(z)|2)3< 11— Ag(z)]? ) da()

'(2)]2
- /]D (1 lq)|g(o()z|)12)3 (1 - |“A(§0(Z))|2)3 dA(z).

So we obtain the equivalence between (iii) and (iv). ]

Example 3.2. (1) Let Q2 be a simply connected region in ID touching dID only at 1
and suppose that near 1 the boundary of Q) is a piece of the curve (x — 1)* —y? =
0 (z=x+1iy).

Let ¢ be a univalent map of ID onto (). Then

/5(1,,,) ny(z)dA(z) = [(D)) N S(L,h)]

1 12z =
~ X — X=—,
G 3
where |E| is the area of a subset E. So C,, is bounded from H? to D.
(2) Note that if C, is bounded from H?to D, Cy is bounded from D to D. Let
p(z) = (z+1)/2

cos 6
/ 2)dA(z) =~ 2 / / r drdd
S(1h) 1

sin 2h

_n N2
=3 n = (=)

= g + % — (1—h)*h  (whenever h is so small)
= h?(2 — h).

So CfP is bounded on D but C(P is not bounded from H? to D.

Next we consider the compactness.
Theorem 3.3. Let du = nydA. Then the following are equivalent.
(i) Cg is compact from H? to D.

psOm) _

(ii) lim sup 3

h=0ge(0,27)
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. / 3 o
i) im, [ 106 (2) Ptu(z) =

! 2
() lim | l"’w()z(i'wp (1— ]ocA(qp(Z))|2>3dA(z) = 0.

Proof. First we show the implication (i)=(iv). Suppose that C, is compact from
H?to D. For A € D, let k) (z) = /1 —[A]2/(1 — Az). Then k) € H?, ||kx||z = 1
and k) converges to 0 weakly in H? as [A| — 1. So ||Cyk,[lp — O as [A] — 1.

ICoka I
1 PR @)

e PSS

10 B S o T T
b - o P 1= TP T AP
Y@ (1= AR @R a (1 A2
1—|¢<>|2>( Trear ) MTprtAe

|2 (- AP — [g(2))\?
4/ T (R ) PG

So we obtain condition (1V), that is,

. ¢’ (2)]” 2)° _
lim | o (1 laleE)P) dA@) =0

The implication (iv)=-(iii) could be checked by the equalities (3.1) and the
equivalence between (iii) and (ii) is due to [10, Theorem 3.4].

Finally we see the implication (ii)=>(i). Let {f,} be a bounded sequence in H?
that converges to 0 uniformly on compact sets. To show the compactness of C,,
it is sufficient to see that ||Cy fu|[p — 0 as n — co by Lemma 2.1.

Forw e Dand0 < r < 1,letA(w,r) = {z € D: |z —w| < r}. As the absolute
values of analytic functions are subharmonic,

/ C /
0 < i ey A EPAAG)

< Tl o e, A DPAA)

So
| 1fa(0@)Ple )PAG)

= / JACHRICY

< [ i (L @ PaA@ ) dn(w)
—c [ imer( [ 1|;| () )2A(2)
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1-— 1-—
|w|, then 2|w| < 1—|z| and so

Here, if |w — z| <

lw — €| < ]w—z]—k’z——’

< 1—|ZU| —|—|Z’ |Z|
2 2]
<2(1—|z|),
where z = |z]e®. Thus w € S(0,s(1 — |z|)) for some s > 0 and also if
— 1 3 1
lw—z| < %, then ol <57C 2 Therefore

ICofullD <c/ 1@ ’Z| (/5(9,5(1 |Z))dy(w)>dA(z)
2
B C</|z§1—5+ /z|>1—5) (|1fn_( yi||)2 u(S(0,s(1—|z])))dA(z)

for 0 < 6 < 1. By condition (ii), For any € > 0,

/s(e,h) dp(w) = u(S(6,h)) < eh’

tor h close enough to 0. So, for 0 < § < h/s,
2 1 1|2 2
ICofallh < (55 sup Ifa(2)2 +ellfullfe).
|z|<1-6
Consequently
T}g{}o ||C¢fn‘|%> < Ce.

As ¢ is arbitrary, 7}1_r>r010 |ICofull3 = 0. ]

Example 3.4. Let () be a simply connected region in ID touching JID only at 1 and
suppose that near 1 the boundary of () is a piece of the curve (x —1)¢ —y? = 0
(z=x+1iy).

Let ¢ be a univalent map of ID onto (). Then

dA(z) = |¢(D))NS(1,h
/S(l,h) ng(z)dA(z) = [¢(D)) (1,h)]
~ -2 1 1)°%dx = "
- 1_h(x —1)%dx >
So C, is compact from H? to D.

Finally we make a comparison amongst the known results on the Hilbert-
Schmidtness of composition operators related to our case (refer to [4, 5, 9, 10]).
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Theorem 3.5. For ¢ € S(ID), the following hold.

(i) Cg is Hilbert-Schmidt on H? if and only if

/ 2
o l4)|<(oz<i-,|>|2)~°’ (1~ 12) dA(z) < oo.

(it) Cy is Hilbert-Schmidt on D if and only if

¢/ ()2
Jo T o G <

(iii) C, is Hilbert-Schmidt from H? to D if and only if

()
Jo @ Ty 4@ <

Thus, if C,, is Hilbert-Schmidt from H 2 to D, then C, is Hilbert-Schmidt on D
and so on H?.

Let ¢(z) = (z+1)/2. It is known that C,, is neither Hilbert-Schmidt on H?
nor on D ([4]). So C, is not Hilbert-Schmidt from H?to D.

A function ¢ in Example 3.4 induces a Hilbert-Schmidt operator C, from H?
to D.
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