Property (aw) and perturbations

M. H.M. Rashid

Abstract

A bounded linear operator T € L(X) acting on a Banach space satisfies
property (aw), a variant of Weyl’s theorem, if the complement in the spec-
trum o (T) of the Weyl spectrum o, (T) is the set of all isolated points of the
approximate-point spectrum which are eigenvalues of finite multiplicity. In
this article we consider the preservation of property (aw) under a finite rank
perturbation commuting with T, whenever T is polaroid, or T has analytical
core K(T — AgI) = {0} for some Ay € C. The preservation of property (aw)
is also studied under commuting nilpotent or under injective quasi-nilpotent
perturbations or under Riesz perturbations. The theory is exemplified in the
case of some special classes of operators.

1 Introduction

Throughout this paper, X denotes an infinite-dimensional complex Banach space,
L(X) the algebra of all bounded linear operators on X. For an operator T € L(X)
we shall denote by «(T) the dimension of the kernel ker(T), and by B(T) the
codimension of the range T(X). Let

P (X):={T e L(X):a(T) <oo and T(X) is closed}
be the class of all upper semi-Fredholm operators, and let

®_(X) == {T € L(X) : B(T) < oo}
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be the class of all lower semi-Fredholm operators. The class of all semi-Fredholm
operators is defined by @ (X) := &4 (X) UP_(X), while the class of all Fredholm
operators is defined by ®(X)) := &, (X) NP_(X). f T € ®4(X), the index of T
is defined by

ind(T) := a(T) — B(T).

Recall that a bounded operator T is said bounded below if it injective and has closed
range. Evidently, if T is bounded below then T € & (X) and ind(T) < 0. Define

Wi (X):=A{T € &, (X) :ind(T) <0},
and
W_(X):={T € ®_(X) :ind(T) > 0} .

The set of Wey! operators is defined by
W(X) := WL (X)NW_(X) ={T € &(X) :ind(T) = 0}.
The classes of operators defined above generate the following spectra. Denote by
0a(T) := {A € C: T — Al is not bounded below }
the approximate point spectrum, and by
0s(T) :== {A € C: T — Alis not surjective }
the surjectivity spectrum of T € L(X). The Weyl spectrum is defined by
ow(T) ={AeC:T-A¢W(X)},
the Weyl essential approximate point spectrum is defined by
Ouw(T) :={AeC: T—-A¢& WL (X)},
while the Weyl essential surjectivity spectrum is defined by
0w(T) :={AeC: T-A ¢ W_(X)},
Obviously, 04 (T) = 0uw(T) U 074 (T) and from basic Fredholm theory we have
Ouw(T) = ows(TF) Ows(T) = 0w (TF).

Note that 0y, (T) is the intersection of all approximate point spectra 0, (T + K) of
compact perturbations K of T , while 07,,(T) is the intersection of all surjectivity
spectra 05 (T 4 K) of compact perturbations K of T, see, for instance, [1, Theorem
3.65].

Recall that the ascent, a(T), of an operator T is the smallest non-negative in-
teger p such that ker(T?) = ker(TP*!). If such integer does not exist we put
a(T) = oo. Analogously, the descent, d(T), of an operator T is the smallest non-
negative integer g such that T7(X) = T971(X), and if such integer does not exist
we put d(T) = oco. It is well known that if a(T) and d(T) are both finite then
a(T) = d(T) [16, Proposition 1.49]. Moreover, 0 < a(T —AI) = d(T — AI) < o0
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precisely when A is a pole of the resolvent of T , see Dowson [16, Theorem 1.54].
The class of all upper semi-Browder operators is defined by

B (X) == {T € ®.(X) : a(T) < oo},
while the class of all lower semi-Browder operators is defined by
B_(X):={T € &, (X) : d(T) < oo}.
The class of all Browder operators is defined by
B(X) :=B+(X)NB_(X) ={T € ®(X) : a(T),d(T) < oo}.
We have
BX) CW(X),  By(X) CWi(X),  B_(X)C W-(X),
see [1, Theorem 3.4]. The Browder spectrum of T € L(X) is defined by
op(T):={A e C:T—-AI ¢ B(X)},
the upper Browder spectrum is defined by
oup(T) :={A e C:T—-Al ¢ B(X)},
and analogously the lower Browder spectrum is defined by
op(T):={AeC:T—AI ¢B_(X)}.

Clearly, 0y(T) = 0,p(T) U03(T) and 03 (T) C 03(T).

The single valued extension property plays an important role in local spectral
theory, see the recent monograph of Laursen and Neumann [23] and Aiena [1].
In this article we shall consider the following local version of this property, which
has been studied in recent papers, [4, 22] and previously by Finch [18].

Let Hol(o(T)) be the space of all functions that analytic in an open neighbor-
hoods of o (T). Following [18] we say that T € L(X) has the single-valued exten-
sion property (SVEP) at point A € C if for every open neighborhood U, of A, the
only analytic function f : Uy — H which satisfies the equation (T — p)f(u) =0
is the constant function f = 0. It is well-known that T € L(X) has SVEP at every
point of the resolvent p(T) := C\ ¢(T). Moreover, from the identity Theorem
for analytic function it easily follows that T € L(X) has SVEP at every point of
the boundary 0o (T) of the spectrum. In particular, T has SVEP at every isolated
point of ¢(T). In [22, Proposition 1.8], Laursen proved that if T is of finite ascent,
then T has SVEP.

The basic role of SVEP arises in local spectral theory since all decomposable
operators enjoy this property. Recall T € L(X) has the decomposition property (J)
if X = Xr(U) + Xr(V) for every open cover {U, V} of C. Decomposable opera-
tors may be defined in several ways for instance as the union of the property ()
and the property (), see [23, Theorem 2.5.19] for relevant definitions. Note that
the property () implies that T has SVEP, while the property (4) implies SVEP
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for T*, see [23, Theorem 2.5.19]. Every generalized scalar operator on a Banach
space is decomposable, see [23] for relevant definitions and results. In particular,
every spectral operators of finite type is decomposable [14, Theorem 3.6]. Also
every operator T € L(X) with totally disconnected spectrum is decomposable
[23, Proposition 1.4.5].

The quasinilpotent part Hy(T — AI) and the analytic core K(T — AI) of T — Al
are defined by

— — . 1 —_— n % pr—
Ho(T — Al) := {x € X: nhmoo (T — AT)"x|| 0}.
and

K(T — AI) = {x € X : there exists a sequence {x,} C Xand ¢ >0
for which x = x, (T — Al)x,.1 = xyand  ||xy|| < 6"||x|forall n=1,2,---}.
We note that Hy(T — AI) and K(T — AI) are generally non-closed hyper-invariant
subspaces of T — Al such that (T —AI)"P(0) C Ho(T — AI) forallp =0,1,--- and
(T — AI)K(T — AI) = K(T — AI). Recall that if A € iso(c(T)), then
Ho(T — AI) = x7({A}), where xT({A}) is the global spectral subspace consisting

of all x € H for which there exists an analytic function f : C\ {A} — X that
satisfies (T — u)f(u) = x forall u € C\ {A}, see, Duggal [17].

Theorem 1.1. [3, Theorem 1.3] If T € ® (X) the following statements are equivalent:
(i) T has SVEP at Ay;
(ii) a(T — Agl) < oo;
(iii) 0,(T) does not cluster at Ay,
(iv) Ho(T — Agl) is finite dimensional.
By duality we have
Theorem 1.2. If T € ®4(X) the following statements are equivalent:
(i) T* has SVEP at Ay,
(ii)) d(T — Apl) < o0;
(iii) 05(T) does not cluster at Ay.

Theorem 1.3. [4, Theorem 1.3] Suppose that T — Al € ®4(X). If T has SVEP at A
then ind(T — AI) < 0, while if T* has SVEP at A then ind(T — AI) > 0.
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2 Property (aw) and SVEP

Let write isoK for the set of all isolated points of K C C. For a bounded operator
T € L(X) set

710(T) == o(T) \ 0(T) = {A € o(T) : T — AL € B(X)}.

Note that every A € 71(T) is a pole of the resolvent and hence an isolated point
of o(T), see [21, Proposition 50.2]. Moreover, 71o(T) = 1o(T*). Define

Eo(T) :={A €isoc(T) :0 < a(T —AI) < o0} .

Obviously,
o(T) € Eo(T) for every T € L(X).

For a bounded operator T € L(X) let us define
E(T) == {A € is00,(T) : 0 < a(T — AI) < oo},

and
73(T) = 0u(T) \ 0 (T) = {A € @u(T) : T— M € By (X)}.

Lemma 2.1. [4] For every T € L(X) we have
(a) 1o(T) C m§(T) € EG(T) and
(b) Eo(T) C E§(T).

Following Harte and W.Y. Lee [19], we shall say that T satisfies Browder’s
theorem if
w(T) = o(T),

while, T € L(X) is said to satisfy a-Browder’s theorem if
Tuw(T) = 0p(T).

Browder’s theorem and a-Browder’s theorem may be characterized by localized
SVEP in the following way:

Lemma 2.2. [5]If T € L(X) the following equivalences hold:
(i) T satisfies Browder’s theorem <> T has SVEP at every A ¢ o, (T);

(ii) T satisfies a-Browder’s theorem <> T has SVEP at every A ¢ 0y (T).
Moreover, the following statements hold:

(iii) If T has SVEP at every A & 07,,(T) then a-Browder’s theorem holds for T*.
(iv) If T* has SVEP at every A ¢ 0y(T) then a-Browder’s theorem holds for T.

Obviously,
a-Browder’s theorem holds for T = Browder’s theorem holds for T and the con-
verse is not true.
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Remark 2.3. The opposite implications of (iii) and (iv) in Theorem 2.2 in general
do not hold. In [2] it is given an example of unilateral weighted left shift on
¢1(IN) which shows that these implications cannot be reversed.

By Lemma 2.2 we also have
T or T* has SVEP = a-Browder’s theorem holds for both T, T*.
Following Coburn [13], we say that Weyl’s theorem holds for T € L(X) if

A(T) := o(T) \ 0(T) = Eo(T).

An approximate point version of Weyl’s theorem is a-Weyl’s theorem: according
Rakovevi¢ [30] an operator T € L(X) is said to satisfy a-Weyl’s theorem if

Aa(T) := 0a(T) \ 0uw(T) = Eg(T).
Since T — AI € W (X) implies that (T — AI)(X) is closed, we can write
A(T) ={A €C:T—Al € W (X),0 < a(T — Al)}.

It should be noted that the set A,(T) may be empty. This is, for instance, the case
of a right shift on ¢2(IN), see [3]. Furthermore,

a-Weyl’s theorem holds for T = Weyl’s theorem holds for T,
while the converse in general does not hold.
Definition 2.4. A bounded operator T € L(X) is said to satisfy property (w) if
Au(T) = 02(T) \ Gueo(T) = Eo(T).
Definition 2.5. A bounded operator T € L(X) is said to satisfy property (aw) if
A(T) = o(T) \ 0w(T) = E(T).

Following [11], we say that T € L(X) satisfies property (ab) if A(T) = 7§(T).
It is shown [11] that an operator T € L(X) satisfies property (aw) satisfying
property (ab) but the converse is not true in general.

Lemma 2.6. Let T € L(X). Then

(i) T satisfies property (ab) if and only if T satisfies Browder’s theorem and 71o(T) =
mg(T), see [11, Corollary 2.6].

(it) T satisfies property (aw) if and only if T satisfies property (ab) and E{(T) =
m4(T), see [11, Theorem 3.6].

Theorem 2.7. Let T € L(X). If T satisfies property (aw) then T satisfies Weyl’s theo-
rem.

Proof. If T satisfies property (aw) then T satisfies Browder’s theorem and 71y(T) =
E§(T). Hence A(T) = mo(T) = E§(T). As mo(T) € n§(T) C E§(T) is always ver-
ified. Therefore, A(T) = Eo(T). ]



Property (aw) and perturbations 7

The converse of of Theorem 2.7 is not true in general as shown by the follow-
ing example.

Example 2.8. Let R € />(IN) be the unilateral right shift and
U(xl,X2, s ) = (O,xz,x3,- . ) for all (xn) € EZ(N)

If T := R& U then 0(T) = 04 (T) = D(0,1), where D(0,1) is the unit disc of
C. So isoo(T) = Eo(T) = @. Moreover, 0,(T) = C(0,1) U {0}, where C(0,1) is
the unit circle of C, 0y, (T) = D(0,1), so T does not satisfy property (aw), since
A(T) =@ # E{(T) = {0} . On the other hand, T satisfies a-Weyl’s theorem, since
Aq(T) = E§(T) and hence satisfies Weyl’s theorem.

Proposition 2.9. Let T € L(X). Then property (aw) holds for T if and only if T satisfies
Weyl’s theorem and 1to(T) = E§(T).

Proof. If T satisfies property (aw) then it follows from Theorem 2.7 that T satisfies
Weyl’s theorem and from Lemma 2.6 that mo(T) = 7n§(T) = E{(T). For the
converse, assume that T satisfies Weyl’s theorem and 7o(T) = E{(T). Then T
satisfies Browder’s theorem and 719(T) = Eo(T). Hence A(T) = Ej(T). Thatis, T

satisfies property (aw). ]
Define
A(T) := {A € Ay(T) : ind(T — AI) < 0} 2.1)
Clearly
Aa(T) = A(T)UA(T) and A(T)NA(T) = Q. (2.2)

Proposition 2.10. Suppose that T € L(X) is decomposable. Then T satisfies property
(aw) if and only if T satisfies Weyl's theorem.

Proof. 1f T is decomposable then both T and T* have SVEP. This, by Theorem
1.3 entails that T — AI has index zero for every A € A,(T) = A(T), and hence
A(T) = @. Property (aw) implies Weyl's theorem for every operator T € L(X).
For the converse, if T satisfies Weyl's theorem then A(T) = Ey(T) and since T*
has SVEP then Eo(T) = Ej(T), hence the result. ]

As a consequence of Proposition 2.10, we have that for a bounded operator
T € L(X) having totally disconnected spectrum then property (aw) and Weyl’s
theorem are equivalent.

A bounded operator T € L(X) is said to have property H(p) if for all A € C
there exists a p := p(A) such that:

Ho(T — AI) = ker(T — AI)”. 2.3)

Let f(T) be defined by means of the classical functional calculus. In [27] it has
been proved that if T € L(X) has property H(p) then f(T) and f(T*) satisfy
Weyl'’s theorem.
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Proposition 2.11. If T € L(X) is generalized scalar then property (aw) holds for both
T and T*. In particular, property (aw) holds for every spectral operator of finite type.

Proof. Every generalized scalar operator T is decomposable and hence also the
dual T* is decomposable, see [23, Theorem 2.5.3]. Moreover, every generalized
scalar operator has property H(p) [27, Example 3], so Weyl’s theorem holds for
both T and T*. By Proposition 2.10 it then follows that both T and T* satisfy
property (aw). The second statement is clear: every spectral operators of finite
type is generalized scalar. n

The following example show that property (aw) and property (w) are inde-
pendent.

Example 2.12. Let T be the hyponormal operator T given by the direct sum of
the 1-dimensional zero operator and the unilateral right shift R on £>(IN). Then
c(T) = D(0,1), D(0,1) the closed unit disc in C. Moreover, 0 is an isolated
point of 0, (T) = C(0,1) U {0}, C(0,1) the unit circle of C, and 0 € E§(T) while
0 ¢ mj(T) = @, since a(T) = a(R) = oco. Hence, by Theorem 2.4 of [4], T
does not satisfy a-Weyl’s theorem. Now 719(T) = Eo(T) = @, since ¢(T) has
no isolated points, 1*(T) = Eo(T). Since every hyponormal operator has SVEP
we also know that a-Browder’s theorem holds for T, so from Theorem 2.7 of [4]
we see that property (w) holds for T. On the other hand, ¢4,(T) = D(0, 1), then
0 € E§(T) # A(T) = @. Therefore, T does not satisfy property (aw). Note that
A(T) = Eo(T) = @. That s, T satisfies Weyl’s theorem.

The next result shows that property (w) and property (aw) are equivalent in
presence of SVEP.

Theorem 2.13. Let T € L(X). Then the following equivalences holds:

(i) If T* has SVEP, the property (aw) holds for T if and only if the property (w) holds
for T.

(ii) If T has SVEP, the property (aw) holds for T* if and only if the property (w) holds
for T*.

Proof. (i) The SVEP of T* implies that 0,(T) = o(T), see [1, Corollary 2.5],
0uw(T) = 0w(T) = 03(T), see [8, Theorem 2.6] so E§(T) = Eo(T), and hence
As(T) = A(T). Therefore, the property (aw) holds for T if and only if the prop-
erty (w) holds for T.

(ii) If T has SVEP then o(T*) = 0(T) = 0s(T) = 0,(T*), see [1, Corollary 2.5],
Ouw(T*) = 0w(T) = 03(T), see [8, Theorem 2.6] and hence Eo(T*) = Ej(T*).
Therefore, A(T*) = A;(T*). Therefore, the property (aw) holds for T* if and only
if the property (w) holds for T*. ]

Example 2.8 shows that a-Weyl’s theorem does not imply property (aw). But
in presence of SVEP a-Weyl’s theorem, Weyl’s theorem and property (aw) are
equivalent as shown by the following result.
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Theorem 2.14. Let T € L(X). Then the following equivalences holds:

(i) If T* has SVEP, the property (aw) holds for T if and only if Weyl's theorem holds
for T, and this is the case if and only if a-Weyl’s theorem holds for T.

(ii) If T has SVEP, the property (aw) holds for T* if and only if Weyl’s theorem holds
for T*, and this is the case if and only if a-Weyl’s theorem holds for T*.

Proof. (i) The SVEP of T* implies that 0,(T) = o(T), see [1, Corollary 2.5],
0uw(T) = 0w(T) = 03(T), see [8, Theorem 2.6] so E§(T) = Eo(T), and hence
Ay(T) = A(T). Furthermore, by [1, Corollary 3.53] we also have 0,,,(T) = 0 (T)
from which it follows that E§(T) = 0,4(T) \ 0y(T) = 7§(T). Since the SVEP for
T* implies a-Browder’s theorem for T we then conclude, by part (ii) of Theorem
2.4 of [4], that a-Weyl’s theorem hold s for T. Hence the equivalence follows.

(ii) If T has SVEP then o(T*) = o(T) = 0s(T) = 0,(T*), see [1, Corollary 2.5],
Ouw(T*) = 0w(T) = 03(T), see [8, Theorem 2.6] and hence Eo(T*) = Ej(T*).
Therefore, A(T*) = A;(T*). Moreover, by [1, Corollary 3.53] we also have

ow(T*) = 0w(T) = opp(T) = p(T"),

from which it easily follows that 7r§(T*) = Ej(T*). The SVEP for T implies that
T* satisfies a-Browder’s theorem, so by part (ii) of Theorem 2.4 of [4], a-Weyl’s
theorem for T*. Hence the equivalence follows. n

Corollary 2.15. If T is generalized scalar then property (aw) holds for both f(T) and
f(T*) for every f € Hol(o(T)).

Proof. Since T has property H(p) then Weyl’s theorem holds for f(T) and f(T*),
see [27, Corollary 3.6]. Moreover, T and T* being decomposable, both T and T*
have SVEP, hence also f(T) and f(T*) = f(T)* have SVEP by Theorem 2.40 of
[1]. By Theorem 2.14 it then follows that property (aw) holds for both f(T) and

f(T). n

Remark 2.16. Corollary 2.15 applies to a large number of the classes of operators
defined in Hilbert spaces. In [27] Oudghiri observed that every sub-scalar opera-
tor T (i.e., T is similar to a restriction of a generalized scalar operator to one of its
closed invariant subspaces) has property H(p). Consequently, property H(p) is
satistied by p-hyponormal operators and log-hyponormal operators [24, Corol-
lary 2], w-hyponormal operators [25], M-hyponormal operators [23, Proposition
2.4.9], and totally paranormal operators [7]. Also totally *-paranormal operators
have property H(1) [20].

An operator T € L(X) is said to be polaroid if every isolated point of ¢(T) is
a pole of the resolvent operator (T — AI)~!, or equivalently a(T — AI) = d(T —
Al) < oo, see [21, Proposition 50.2]. An operator T € L(X) is said to be a-polaroid
if every isolated point of 0, (T) is a pole of the resolvent operator (T — AI)~!, or
equivalently a(T — AI) = d(T — AI) < oo, see [21, Proposition 50.2]. Clearly,

T a-polaroid = T polaroid. (2.4)

and the opposite implication is not generally true.
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Theorem 2.17. Suppose that T is a-polaroid. Then property (w) holds for T if and only
if T satisfies property (aw).

Proof. Note first that if T is a-polaroid then 77o(T) = E§(T). In fact, if A € E{(T)
then A is isolated in isoo, (T) and hence a(T — AI) = d(T — AI) < oo. Moreover,
a(T — AI) < oo, so by Theorem 3.4 of [1] it follows that B(T — AI) is also finite,
thus A € 71o(T). This shows that E§(T) C mo(T), and consequently by Lemma 2.1
we have 71o(T) = EG(T). Now, if T satisfies property (w) theorem then A,(T) =
Ey(T), and since Weyl’s theorem holds for T we also have by Theorem 2.4 of [4]
that 71o(T) = Eo(T). Hence A(T) = Ej(T). Therefore, property (aw) holds for
T. Conversely, if T satisfies property (aw) then A(T) = E§(T). Since by Theorem
2.7 T satisfies Weyl’s theorem we also have, by Theorem 2.4 of [4], Eo(T) =
mo(T) = EG(T). If A € Ay(T), as T satisfies property (aw) then A € Eo(T).
Since A(T) C A4(T) it then follows if A € Eo(T) = A(T) then A € A,(T). So
Ay (T) = Eo(T). Therefore, T satisfies property (w). u

Recall that a bounded operator T € L(X) is said to be isoloid (respectively, a-
isoloid) if every isolated point of o(T) (respectively, every isolated point of 0, (T))
is an eigenvalue of T. Every a-isoloid operator is isoloid. This is easily seen: if T
is a-isoloid and A € isoo(T) then A € 0,(T) or A & 0,(T). In the first case T — A
is bounded below, in particular upper semi-Fredholm. The SVEP of both T and
T* at A then implies that a(T — AI) = d(T — AI) < oo, s0 A is a pole. Obviously,
also in the second case A is a pole, since by assumption T is a-isoloid.

Theorem 2.18. Suppose that T is a-polaroid and that T* has SVEP. Then f(T) satisfies
property (aw) forall f € Hol(o(T)).

Proof. If T is a-polaroid then T is a-isoloid (i.e., every isolated point of 0;(T) is an
eigenvalue of T ). The SVEP for T* ensures that the spectral mapping theorem
holds for 0,,(T), i.e., if f € Hol(c(T)) then f(0uw(T)) = 0uw(f(T)), [1, Theorem
3.66]. By Theorem 5.4 of [15] then f(T) satisfies a-Weyl’s theorem, and since
f(T*) = f(T)* has SVEP from Theorem 2.14 we conclude that property (aw)
holds for f(T). ]

Theorem 2.19. Suppose that T € L(X). Then the following statements hold:
(i) If T is polaroid and T has SVEP then property (aw) holds for T*.
(ii) If T is polaroid and T* has SVEP then property (aw) holds for T.

Proof. (i) By Theorem 2.14 it suffices to show that Weyl’s theorem holds for
T*. The SVEP ensures that Browder’s theorem holds for T*. We prove that
mo(T*) = Eo(T*). Let A € Eo(T*) Then A € isoo(T*) = isoc(T) and the polaroid
assumption implies that A is a pole of the resolvent, or equivalently a(T — AI) =
d(T — AI) < oo. If P denotes the spectral projection associated with {A} we have
(T — AI)P(X) = ker(P) [1, Theorem 3.74], so (T — AI)P(X) is closed, and hence
also (T* — AI)P(X*) is closed. Since A € Ey(T*) then a(T* — AI*) < co and
this implies (T* — AI)P(X*) < oo, from which we conclude that (T* — AI*)P €
®, (X*), hence T* — AI* € &, (X*), and consequently T — AT € ®_(X). There-
fore B(T — AI) < oo and since a(T — AI) = d(T — AlI) < oo by Theorem 3.4 of [1]
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we then conclude that a(T — AI) < co. Hence A € 11p(T) = mp(T*). This proves
that Eo(T*) C 7mo(T*), and since by Lemma 2.1 the opposite inclusion is satisfied
by every operator we may conclude that Eq(T*) = 719(T*). By Theorem 2.4 of [4]
then T* satisfies Weyl’s theorem.

(ii) The SVEP for T* implies that Browder’s theorem holds for T. Again by Theo-
rem 2.14 it suffices to show that T satisties Weyl's theorem, and hence by Lemma
2.1 and Theorem 2.4 of [4] we need only to prove that Eo(T) = mp(T). Let A €
Eo(T). Then A € isoo(T) and since T is polaroid then a(T — AI) = d(T — AI) < co.
Since a(T — AI) < oo we then have (T — AI) < oo and hence A € 7p(T). Hence
Eo(T) C mp(T) and by Lemma 2.14 we then conclude that Eo(T) = 71o(T). ]

Remark 2.20. Part (i) of Theorem 2.19 shows that the dual T* of a multiplier
T € M(A) of a commutative semi-simple Banach algebra A has property (aw),
since every multiplier T € M(A) of a commutative semi-simple Banach algebra
satisfies Weyl’s theorem and is polaroid, see [1, Theorem 4.36].

Theorem 2.21. Let T € L(X) be such that there exists A\g € C such that K(T —
AoI) = {0} and ker(T — AgI) = {0}. Then property (aw) holds for f(T) for all
f € Hol(o(T)).

Proof. We know from [9, Lemma 2.4] that ¢,,(T) = @, so T has SVEP. We show
that also 0, (f(T)) = @. Let u € o(f(T)) and write f(A) — u = p(A)g(A), where
¢ is analytic on an open neighborhood U containing ¢(T) and without zeros in
o(T), p a polynomial of the form

p(A) = (A= A1)"(A = A)"™2 - (A = Ay)"™,
with distinct roots Ay, Ay, - -+, Ay lying in o(T). Then
f(T) —pl = (T =MD" (T = A0)"™ -+ (T = Ay 1)"™g(T)

Since g(T) is invertible, 0,(T) = @ implies that ker(f(T) — uI) = {0} for all
u € C,s00,(f(T)) = @. Since T has SVEP then f(T) has SVEP, see Theorem 2.40
of [1], so that a-Browder’s theorem holds for f(T) and hence Browder’s theorem
holds for f(T'). To prove that property (aw) holds for f(T), by Lemma 2.6 it then

suffices to prove that
E3(f(T)) = mo(£(T))-

Obviously, the condition ¢,,(f(T)) = @ entails that Eo(f(T)) = Ej(f(T)) = @.
On the other hand, the inclusion 7ro(f(T)) C Ej(f(T)) holds for every operator
T € L(X), so also mp(f(T)) is empty. By Lemma 2.6 it then follows that f(T)
satisfies property (aw). ]

3 Property (aw) under perturbations

In this section we shall give some conditions for which property (aw) is preserved
under commuting finite-rank or quasinilpotent perturbations.

As property (w), property (aw) is not preserved under finite rank perturba-
tions (also commuting finite rank perturbations).
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Example 3.1. Let T := Q @ I defined on X & X, where Q is an injective quasi-
nilpotent operator. It is easily seen that T satisfies a-Weyl’s theorem. Define K :=
0 & (—P), where P is a finite rank projection. Then TK = KT, and since T* has a
finite spectrum then T* has SVEP, hence T* + K* has SVEP, by Lemma 2.8 of [6].
Therefore o (T + K) = 0,(T + K), by Corollary 2.45 of [1]. On the other hand it
is easy to see that 0 € o(T + K) Now(T + K),s00 ¢ o(T + K) \ 00 (T + K), while
0 € Eo(T + K) = E§(T + K), thus T 4 K does not verify property (aw).

Theorem 3.2. Suppose that T € L(X) is polaroid and K is a finite rank operator com-
muting with T.

(i) If T* has SVEP then f(T) + K satisfies property (aw) for all f € Hol(o(T)).
(ii) If T has SVEP then f(T*) 4 K* satisfies property (aw) for all f € Hol(o(T)).

Proof. (i) By [1, Corollary 2.45] we have 0,(T) = o(T), so T is a-polaroid and
hence a-isoloid. By Theorem 2.18 it then follows that f(T) has property (aw) for
all f € Hol(c(T)). Now, by [1, Theorem 2.40] f(T*) = f(T)* has SVED, so that,
by Theorem 2.14 a-Weyl’s theorem holds for f(T). Since f(T) and K commutes,
by Theorem 3.2 of [6] we then obtain that f(T) + K satisfies a-Weyl’s theorem. By
Lemma 2.8 of [5] f(T)* +K* = (f(T) 4+ K)* has SVEP. This implies that property
(aw) and a-Weyl’s theorem for f(T) + K are equivalent, again by Theorem 2.14,
so the proof is complete.

(ii) The argument is analogous to that of part (i). Just observe that o, (T*) = o(T*)
by [1, Corollary 2.45], so that T* is a-polaroid, hence a-isoloid. Moreover, by
Theorem 2.18 it then follows that f(T*) has property (aw) for all f € Hol(c(T)).
By Theorem 2.40 of [1] f(T) has SVEP, so that, so, by Theorem 2.14 a-Weyl’s
theorem holds for f(T*). Since f(T*) and K* commutes, by Theorem 3.2 of [6]
we then obtain that f(T*) + K* satisfies a-Weyl's theorem. Again by Lemma 2.8
of [5] f(T) + K has SVEP, so that (aw) and a-Weyl’s theorem for f(T*) + K* are
equivalent, by Theorem 2.14. n

The basic role of SVEP arises in local spectral theory since for all decompos-
able operators both T and T* have SVEP. Every generalized scalar operator on a
Banach space is decomposable (see [23] for relevant definitions and results). In
particular, every spectral operators of finite type is decomposable.

Corollary 3.3. Suppose that T € L(X) is generalized scalar and K is a finite rank opera-
tor commuting with T.  Then property (aw) holds for both f(T) + K and
f(T*) 4+ K*. In particular, this is true for every spectral operator of finite type.

Proof. Both T and T* have SVEP. Moreover, every generalized scalar operator T
has property H(p) [27, Example 3], so T is polaroid. The second statement is
clear: every spectral operators of finite type is generalized scalar. m

The next results deal with quasi-nilpotent perturbations. We first recall two
well-known results: if Q a quasi-nilpotent operator commuting with T € L(X),
then

UQ(T) — O-Q(T + Q) and 0’uu)(T) — UMZU(T + Q). (3.1)

Since 0(T+ Q) = o(T) and 0,(T + Q) = 03,(T) (for the last equality see [32]), we
then have (T + Q) = 71o(T).
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Lemma 3.4. Let T € L(X). If N € L(X) is a nilpotent operator commuting with T,
then E{(T 4+ N) = E§(T).

Proof. Let A € Ej(T) be arbitrary. There is no loss of generality if we assume that
A = 0. As N is nilpotent we know that 0,(T + N) = 0,(T), thus
0 € isoo,(T + N). Let m € N be such that N" = 0. If x € ker(T), then
(T+ N)"(x) = T, CPTEN™*(x) = 0. So ker(T) C ker(T + N)". As
0 < a(T) < oo, it follows that 0 < a((T + N)™) < oo and this implies that
0 <a(T+ N) <oco. Hence 0 € E{(T + N). So Ej(T) C E§(T + N). By symmetry
we have E§(T) = E§(T + N). ]

It is easily seen that property (aw) is transmitted under commuting nilpotent
perturbations N.

Theorem 3.5. If T € L(X) satisfies property (aw),N € L(X) is a nilpotent operator
commuting with T then T + N satisfies property (aw).

Proof. If T satisfies property (aw) then T satisfies Browder’s theorem, so by Lemma
2.6, E§(T) = mo(T). Hence

E§(T+ N) = E§(T) = rio(T + N) = o(T).
Since 0(T + N) = 0(T) and 0, (T + N) = 0(T), we have
o(T+ N)\ow(T+N) =0(T)\ 0w(T) = E§(T) = E§(T + N).
Thatis, T + N satisfies property (aw). ]

Generally, property (aw) is not transmitted from T to a quasi-nilpotent per-
turbation T + Q. In fact, if Q € ¢?(IN) is defined by

Qx1, %2, ) = (ﬁ s ) for all (x,) € 2(N).

Then Q is quasi-nilpotent, 0(Q) = 04,(Q) = {0} and

{0} = E5(Q) # o(Q) \ 0w(Q)

Take T = 0. Clearly, T satisfies property (aw) but T + Q = Q fails this property.
Note that Q is not injective.

Theorem 3.6. Suppose that for T € L(X) there exists an injective quasi-nilpotent Q
operator commuting with T. Then both T and T + Q satisfy property (aw), a-Weyl’s
and Weyl's theorem.

Proof. We show first a-Weyl’s theorem holds for T. It is evident, by Lemma 3.9
of [9], that E§(T) is empty. Suppose that 0;(T) \ ¢yw(T) is not empty and let
A € Ay(T). Since T — AI € W4 (X) then a(T — AI) < oo and T — Al has closed
range. Since T — Al commutes with Q it then follows, by Lemma 3.9 of [9], that
T — Al is injective, so A ¢ 0,(T), a contradiction. Therefore, also 0;(T) \ 0w (T)
is empty. Therefore, a-Weyl’s theorem holds for T. To show that property (aw)
holds for T. Observe that A(T) C A,(T) = Ej(T) = @. Hence A(T) = E§(T) =
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@. That is, property (aw) holds for T.

Analogously, a-Weyl’s theorem also holds for T + Q , since the operator T + Q
commutes with Q. Weyl’s theorem is obvious: property (aw), as well as a-Weyl’s
theorem, entails Weyl’s theorem. Property (aw), as well as a-Weyl’s theorem and
Weyl’s theorem, for T + Q is clear, since also T + Q commutes with Q. ]

Theorem 3.7. Suppose that isoo,(T) = @. If T satisfies property (aw) and K is a finite
rank operator commuting with T , then T + K satisfies property (aw).

Proof. Since T satisfies Browder’s theorem then T + K satisfies Browder’s theo-
rem, see [10, Theorem 3.4]. From Lemma 2.6 of [6], we have isoo, (T + K) = @.
Hence Ej(T + K) = mo(T + K). Therefore, it follows from Lemma 2.6 that prop-
erty (aw) holds for T + K. u

From [12], we recall that an operator R € L(X) is said to be Riesz if R — Al is
Fredholm for every non-zero complex number A, that is, Y(R) is quasi-nilpotent
in C(X) where C(X) := L(X)/K(X) is the Calkin algebra and Y is the canonical
mapping of L(X) into C(X). Note that for such operator,77o(R) = ¢(R) \ {0}, and
its restriction to one of its closed subspace is also a Riesz operator, see [12]. The
proof of the following result may be found in [32].

Lemma 3.8. Let T € L(X) and R be a Riesz operator commuting with T. Then
(i) T € BL(X) < T+R € B4(X).
(ii) Te B_(X) < T+ R e B_(X).
(iii) T € B(X) & T+ R € B(X).

Lemma 3.9. [28, Lemma 2.2] Let T € L(X) and R be a Riesz operator such that
TR = RT.

(i) If T is Fredholm then so is T + R and ind(T + R) = ind(T).
(ii) If T is Weyl then so is T + R. In particular 0,(T + R) = 0 (T).
(iii) If T satisfies Browder’s theorem then so does T + R.

For a bounded operator T on X, we use Ej f(T) to denote the set of isolated
points A of 0;(T) such that ker(T — AI) is finite-dimensional. Evidently,

(1) C E§(T) C Eg(T).

Lemma 3.10. Let T be a bounded operator on X. If R is a Riesz operator that commutes
with T, then
EG(T +R) Noa(T) Cisooy(T).

Proof. Clearly,
Eo(T + R) Noa(T) € Egp(T + R) Noa(T).

and by Proposition 2.4 of [29] the last set contained in isoc, (T). ]
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For a bounded operator T on X, we denote by Eq¢(T) the set of isolated points
A of o(T) such that ker(T — Al) is finite-dimensional. Evidently,Eq(T) C Eof(T).

Lemma 3.11. Let T be a bounded operator on X. If R is a Riesz operator that commutes
with T, then
Eo(T+ R)No(T) Cisoo(T).

Proof. Clearly,
Eo(T + R)No(T) C Eoge(T + R) No(T).

and by Lemma 2.3 of [28] the last set contained in isoo(T). ]

Recall that T € L(X) is called finite a-isoloid (resp., finite isoloid) operator
if isoo,(T) € 0,(T) (resp., isoo(T) C 0,(T)). Clearly, finite a-isoloid implies
a-isoloid and finite isoloid, but the converse is not true in general.

Lemma 3.12. Suppose that T € L(X) be finite-isoloid satisfies property (aw) and R is
a Riesz operator commuting with T. Then 7i§(T + R) C Eo(T + R).

Proof. Let A € (T + R) be arbitrary given. Then A € isoo,(T + R) and
T+ R—AI € B{(X),soa(T + R —AlI) < 0. Since T + R — Al has closed range,
the condition A € 0,(T + R) entails that «(T + R — AI) > 0. Therefore, in order
to show that A € Eo(T + R), we need only to prove that A is an isolated point of
c(T+R).

Now, by assumption T satisfies property (aw) so, by Lemma 2.6, 7§(T) =
Eo(T) = Ej(T). Moreover, T satisfies Weyl’s theorem and hence, by Theorem 2.7
of [28], T + R satisfies Weyl’s theorem. So

(T +R) = Eo(T+ R) =0(T+R) \ 0,(T +R).
Therefore, T + R — Al is Browder, so
0<a(T+R—-AI)=d(TH+R—-AI) <o0

and hence A is a pole of the resolvent of T + R. Consequently, A an isolated point
of (T + R), as desired. u

Theorem 3.13. Let T € L(X) be an isoloid operator satisfying property (aw). If F is an
operator that commutes with T and for which there exists a positive integer n such that
F" is finite rank, then T + F satisfies property (aw).

Proof. First observe that F is a Riesz operator. Since Weyl's theorem holds for
T + F, by Theorem 2.4 of [28], then Eq(T + F) = mo(T + F). As T satisfies prop-
erty (aw) then it follows from Lemma 3.12 that 7t§(T + F) C Eo(T + F). Hence

(T +F) = Eo(T + R) = A(T + F) = 71o(T + F) = 71(T) = E&(T) = A(T).

To prove property (aw) holds for T + F, it suffices to show that Eo(T + F) =
E§(T + F). To show this, let A € Ej(T + F). If T — Al is invertible, then
T + F — Al is Weyl, and hence A € Eo(T + R). Suppose that A € ¢(T). Then
it follows from Lemma 3.11 that A € isoo(T). Furthermore, since the opera-
tor (T + F — A" |xer(r—a1) = F"ker(T—ar) i8 both of finite-dimensional range and
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kernel, we obtain easily that also ker(T — AI) is finite-dimensional, and therefore
that A € Eo(T), because T is a-isoloid. On the other hand, if T satisfies prop-
erty (aw), then E§(T) Now(T) = @. Consequently, T — Al is Weyl and hence so
is T + F — AI, which implies that A € Eo(T + F). The other inclusion is trivial.
Thus, property (aw) holds for T + F. ]

Corollary 3.14. Let T € L(X) be an isoloid operator. If property (aw) holds for T, then
it also holds for T + F for every finite rank operator F commuting with T.

Theorem 3.15. Let T be a finite-isoloid operator on X that satisfies property (aw). If R
is a Riesz operator that commutes with T, then T + R satisfies property (aw).

Proof. Suppose that T satisfies property (aw). Then From Theorem 2.7, Theorem
2.7 of [28], and Lemma 3.12, we conclude that

74T + R) = Eo(T + R) = A(T +R) = mo(T + R) = 71o(T) = A(T) = EX(T).

To prove property (aw) holds for T + R, it suffices to show that Eo(T + R) =
E§(T 4+ R). Let A € E{(T + R). If T — Al is invertible, then T + R — AI € W(X)
and hence A € Ey(T + R). Suppose that A € ¢(T). It follows by Lemma 3.11
that A is an isolated point of ¢(T), and because T is finite-isoloid, we see that
A € Eo(T). On the other hand, property (aw) holds for T implies that
0w(T) NEJ(T) = @, therefore T — Al is Weyl and hence so is T + R — Al. Thus,
A € Eo(T + R). The other inclusion is trivial, therefore T + R satisfies property
(aw). ]

Corollary 3.16. Let T be an finite-isoloid operator on X that satisfies property (aw). If
K is a compact operator commuting with T, then property (aw) holds for T + K.

Theorem 3.17. Let T be an operator on X that satisfies property (aw) and such that
0p(T) Nisooy(T) € EG(T). If Q is a quasi-nilpotent operator that commutes with T,
then T + Q satisfies property (aw).

Proof. Since o(T + Q) = ¢(T) and also, by Lemma 2 of [26], 05 (T + Q) = 0w (T),
it suffices to show that E{(T + Q) = E§(T). Let A € E{(T) = o(T) \ 0w(T). If
T — Al is invertible, then T — AI € W(X) and so T + R — AI € W(X). Hence
A € Eo(T + R) C E§(T + Q). Conversely, suppose A € E§(T + Q). Since Q is a
quasi-nilpotent operator that commutes with T, we obtain that the restriction of
T — Al to the finite-dimensional subspace ker(T + Q — AI) is not invertible, and
hence ker(T — AI) is non-trivial. Therefore, A € 0,(T) Nisoo,(T) C Ej(T), which
completes the proof. n
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