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Abstract

By using unbounded modulus functions we introduce a new concept of
density for sets of pairs of natural numbers. Consequently, we obtain a gen-
eralization of the notion of statistical convergence of double sequences which
is studied and characterized. As an application, we prove that ‘Pringsheim
convergence’ is equivalent to ‘module statistical convergence for every un-
bounded modulus function’.

1 Introduction

The concept of statistical convergence was first defined by Steinhaus ([16]) and
also independently by Fast ([4]). In [8], Kolk begins to study its applications to
Banach spaces. In [3] the authors find a remarkable connection of statistical con-
vergence with some classical properties; concretely, Banach spaces with separable
duals are characterized, in a way which cannot be reproduced with usual conver-
gence. In [2], the weakly unconditionally Cauchy series are also characterized by
means of statistical convergence. In [6] and [10], certain summability matrices are
used to characterize the statistical convergence of simple and double sequences,
respectively. Other works studying this convergence are [5], [7] and [11].

Let A ⊂ N = {1, 2, . . . }. We denote by |A| the cardinality of A and if n ∈ N

we denote A(n) = {i ∈ A : i ≤ n}. The density of A is defined by

d(A) = lim
n

|A(n)|
n

,
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in case this limit exists.
A sequence (xn)n in a normed space X is said to be statistically convergent to

some x ∈ X, and we write stlimk xk = x, if for each ε > 0 we have
d({i ∈ N : ‖xi − x‖ > ε}) = 0. Analogously, (xn)n is said to be statistically
Cauchy if for each ε > 0 and n ∈ N there exists an integer m ≥ n such that
d({i ∈ N : ‖xi − xm‖ < ε}) = 1.

Fast ([4]) proved that stlimn xn = x if and only if there exists A ⊆ N with
d(A) = 1 and limn∈A xn = x. Fridy ([5]) proved that in a Banach space, a se-
quence is statistically convergent if and only if it is statistically Cauchy.

Moricz ([11]), working with double sequences, proved the analogous versions
to Fast’s and Fridy’s results. Namely, if A ⊆ N

2 we say that the density of A, in

case it exists, is the double limit d2(A) = limp,q
|A(p,q)|

pq , where A(p, q) = {(i, j) ∈
A : i ≤ p, j ≤ q}. The double sequence (xij)ij

is said to be statistically convergent

to x0 if for each ε > 0 we have d2({(i, j) : ‖xij − x0‖ < ε}) = 1, or equivalently
d2({(i, j) : ‖xij − x0‖ > ε}) = 0. Statistically Cauchy double sequences are de-
fined similarly. Consequently, Moricz proved that (xij)ij

is statistically convergent

if and only if there exists A ⊂ N
2 with d2(A) = 1 and such that (xij)(i,j)∈A

is con-

vergent to x0 in Pringsheim’s sense. He also proved that the concepts ‘statistically
Cauchy’ and ‘statistically convergent’ are the same in Banach spaces.

We recall that f : R
+ −→ R

+ is called a modulus function if it satisfies:

1. f (x) = 0 if and only if x = 0.

2. f (x + y) ≤ f (x) + f (y) for every x, y ∈ R
+

3. f is increasing.

4. f is continuous from the right at 0.

From these properties it is clear that a modulus function must be continuous
on R

+. Examples of moduli are f (x) = x
1+x and f (x) = xp with 0 < p ≤ 1.

The notion of a modulus function was introduced by Nakano ([12]). This no-
tion was used by Ruckle ([15]) and Maddox ([9]) to introduce and discuss some
properties of sequence spaces and by Pehlivan ([13]) to generalize the strong al-
most convergence.

In [1], a new concept of density of a subset A of N is defined by means of

an unbounded modulus function f , as d f (A) = limn
f (|A(n)|)

f (n)
, if this limit exists,

and we will say that a sequence (xi)i is f -statistically convergent to x if for every
ε > 0 we have d f ({i ∈ A : ‖xi − x‖ > ε}) = 0. The concept of f -statistically
Cauchy sequence is also defined and it is proved that if X is a complete space and
(xi)i is an f -statistically Cauchy sequence, then (xi)i is f -statistically convergent.
Furthermore, in [1] it is also proved that:

1. (xi)i is f -statistically convergent to x if and only if there exists A ⊆ N with
d f (A) = 0 and limi∈N\A xi = x.

2. If f − stlimi xi = x for every unbounded modulus f then limi xi = x.
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In this paper we define and study the f -statistical convergence of double se-
quences for unbounded moduli f and we obtain results similar to those of Moricz
in [11] with the statistical convergence of double sequences. Let us remark that
this generalization is completely nontrivial, since the apparently natural gener-
alization of double density lacks even a basic property which will be stated. We
also obtain a characterization of Pringsheim’s convergence inspired by the results
of [1]. Thus, every double limit we use will be considered in Pringsheim’s sense
unless otherwise stated.

2 Basic results and examples

Let f be an unbounded modulus function. The f -density of a set A ⊆ N
2 is

defined by

d2, f (A) = lim
i,j

lim
p,q

f (|A(p, q, i, j)|)
f (pq)

in case the outer limit exists, where A(p, q, i, j) = {(a, b) ∈ A : i ≤ a ≤ p, j ≤
b ≤ q}. Note that if the modulus function is f (x) = x then clearly d2, f (A) =
d2(A). Although this definition might seem unnatural at first, in example 2.1

we will show that the simpler expression limp,q
f (|A(p,q)|)

f (pq)
is not an appropriate

density, since it is natural to expect that f -statistical convergence is implied by
usual convergence.

Let X be a normed space and (xij)ij
a double sequence in X. We will say that

(xij)ij
is f -statistically convergent to x, and we will write f − stlimij xij = x if for

every ε > 0 we have that d2, f ({(i, j) ∈ N
2 : ‖xij − x‖ > ε}) = 0. Similarly, we

will say that (xij)ij
is f -statistically Cauchy if for every ε > 0 and for every l ∈ N

there exist M, N ≥ l such that d2, f ({(i, j) ∈ N
2 : ‖xij − xMN‖ > ε}) = 0.

Given A ⊆ N
2, if there exist m, n ∈ N such that (i, j) /∈ A if i ≥ m and j ≥ n

then d2, f (A) = 0. Therefore, if limi,j xij = x then f − stlimi,j xij = x.
The next examples are intended to clarify some aspects of this convergence,

as well as its relation to usual convergence.

EXAMPLES 2.1 Let f (x) = log(x + 1). Take A ⊆ N
2 such that limp,q

|A(p,q,i,j)|√
pq = 1

for every i, j ∈ N and let B = N
2 \ A, then d2, f (B) = d2(B) = 1 and d2(A) = 0.

However, d2, f (A) = 1
2 . From this we deduce that stlimi,j χB(i, j) = 1 but it is false

that f − stlimi,j χB(i, j) = 1, where χB is the characteristic function of B.

Besides, if we take C = {(i, j) ∈ N
2 : i > 1 and j > 1}, it is clear that

limi,j χC(i, j) = 1 whereas if we had used the ‘wrong’ notion of f -density we
would have

lim sup
p,q

log(1 + |(N2 \ C)(p, q)|)
log(1 + pq)

= lim sup
p,q

log(p + q)

log(pq)
= 1

which means that the ‘wrong’ f -statistical limit of (χC(i, j))i,j is not 1 (indeed, it

does not even exist). •
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From the next proposition it will follow at once that f -statistical convergence
implies statistical convergence to the same limit.

Proposition 2.2. If A ⊂ N
2 is such that d2, f (A) = 0 then d2(A) = 0.

Proof. Since limi,j limp,q
f (|A(p,q,i,j)|)

f (pq)
= 0, given k ∈ N, there exist i0, j0 ∈ N such

that if i ≥ i0 and j ≥ j0 then limp,q
f (|A(p,q,i,j)|)

f (pq)
<

1
k . Fix t0 = max{i0, j0} and let

r0 > k(t0 − 1) be such that if p, q ≥ r0 then

f (|A(p, q, t0 , t0)|)
f (pq)

≤ 1

k
.

By the subadditivity of f , this implies

f (|A(p, q, t0 , t0)|) <
1

k
f (pq) ≤ 1

k
k

(

f

(

1

k
pq

))

= f

(

1

k
pq

)

and we deduce |A(p, q, t0, t0)| < 1
k pq, as f is increasing. Therefore, if p, q ≥ r0 we

will have
|A(p,q)|

pq = |A(p,q,t0,t0)|
pq + |A(t0−1,q,1,t0)|

pq + |A(p,t0−1,t0,1)|
pq + |A(t0−1,t0−1,1,1)|

pq <

1
k + ( 1

p +
1
q +

t0−1
pq )(t0 − 1) < 4

k .

In the first example in 2.1 we have seen that given B ⊆ N
2, the fact d2, f (B) = 1

does not imply d2, f (N
2 \ B) = 0. However, the converse is true under a natural

assumption on the modulus.

Theorem 2.3. Let f be a modulus function such that d2, f (N
2) = 1. If A ⊆ N

2 satisfies

d2, f (A) = 0 then d2, f (N
2 \ A) = 1.

Proof. Given ε > 0 there exist i0, j0, p0, q0 ∈ N such that if i ≥ i0, j ≥ j0, p ≥ p0

and q ≥ q0 then

f (|N2(p, q, i, j)|)
f (pq)

≥ 1 − ε

2
and

f (|A(p, q, i, j)|)
f (pq)

<
ε

2

which immediately implies

f (|(N2 \ A)(p, q, i, j)|)
f (pq)

≥ 1 − ε.

Note that in the previous theorem we have required the hypothesis that the
f -density of the whole space is 1. In [1], the analogous theorem in the one-
dimensional case was proved without that hypothesis. In the propositions and
example that follow we will see that this hypothesis can be weakened but not
removed.
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Proposition 2.4. Let f be a modulus function. If d2, f (N
2) exists it must be 1.

Proof. It is enough to prove that for every k ∈ N there exists (pn)n strictly increas-
ing, divergent and such that

f (p2
n − kpn)

f (p2
n)

n−→ 1

Suppose not, then there exist k ∈ N, α > 1 and p0 ∈ N such that if x ∈ R, x ≥ p0

then
f (x2)

f (x2 − kx)
> α

Let M ∈ N be such that M > max{p0/k, log
α

4}. Define x1 = Mk and
inductively construct (xn)n as the only strictly increasing sequence such that
x2

n+1 − kxn+1 = x2
n. It is easy to prove that xn ≤ Mk + kn − k for every n ∈ N. In

particular, xM+1 ≤ 2Mk and

4 ≥ f (4M2k2)

f (M2k2)
≥

f (x2
M+1)

f (x2
1)

=
f (x2

2)

f (x2
1)

f (x2
3)

f (x2
2)

. . .
f (x2

M+1)

f (x2
M)

≥ α
M

which is in contradiction with the choice of M.

As a consequence, we have the announced weakening of the hypothesis.

Corollary 2.5. Let f be a modulus function such that d2, f (N
2) exists. If A ⊆ N

2

satisfies d2, f (A) = 0 then d2, f (N
2 \ A) = 1.

There still remains the natural question: Can it happen that d2, f (N
2) does not

exist? The next example answers this affirmatively.

EXAMPLE 2.6
Let us construct a modulus g such that lim infi,j lim infp,q

g(|N2(p,q,i,j)|)
g(pq)

≤ 1
2 and

thus d2,g(N
2) do not exist.

Consider an = 22n−1
, bn =

(

1
10

)2n−1

, yn = a2
n − an and zn = a2

n. It is clear

that y1 < z1 < y2 < z2 < y3 < . . . . It is also straightforward to prove that
zk ≤ min{2yk, 1

2yk+1} for every k ∈ N. Now define g by g(0) = 0, g(1) = 1,
g(2) = 1 + b1 and recursively, on the positive integers, as follows:

g(x) =

{

g(yk) + g(x − yk) if x ∈ (yk, zk], k ∈ N

g(zk) + bk+1(x − zk) if x ∈ (zk, yk+1], k ∈ N

Next, extend g piecewise linearly to obtain a function g : [0,+∞) → [0,+∞)
which is, by construction, strictly increasing. To see that g is a modulus we only
need to prove the subadditivity. To begin with, it is straightforward to prove
inductively that for each k ∈ N, if a ≤ b ≤ zk then g(b)− g(a) ≥ (b − a)bk+1.

Take x, u, v ∈ N satisfying u + v = x. First, suppose x ∈ (yk+1, zk+1]. We
will assume that x − yk+1 < u ≤ zk since the remaining cases are simpler. Then
zk < v < yk+1 and thus g(u)− g(x − yk+1) ≥ bk+1(yk+1 − v), which is equivalent
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to g(x) = g(yk+1) + g(x − yk+1) ≤ g(u) + g(v). Now suppose x ∈ (zk, yk+1], we
have by definition the useful equalities g(x) = g(zk) + bk+1(x − zk) = g(yk) +
g(zk−1) + bk+1(x − zk) = 2g(zk−1) + bk(yk − zk−1) + bk+1(x − zk). We will as-
sume u, v ∈ (zk−1, zk] since the remaining cases are simpler. If u ∈ (zk−1, yk] and
v ∈ (yk, zk] we get g(u) + g(v) = g(zk−1) + bk(u − zk−1) + g(yk) + g(v − yk) ≥
g(yk) + g(zk−1) + bk(u − zk−1) + bk(v − yk) = g(yk) + g(zk−1) + bk(x − zk) >

g(x). If u, v ∈ (zk−1, yk] we get g(u) + g(v) = 2g(zk−1) + bk(u + v − zk−1) =
g(x) + bk(x − yk)− bk+1(x − zk)) > g(x). If u, v ∈ (yk, zk] we get g(u) + g(v) =
2g(yk) + g(u − yk) + g(v − yk) ≥ g(yk) + g(zk−1) + bk(u + v − yk − zk−1) =
g(yk) + g(zk−1) + bk(x − zk) > g(x).

We conclude that

lim inf
n

g(n2 − n)

g(n2)
≤ lim

n

g(a2
n − an)

g(a2
n)

= lim
n

g(a2
n−1) + bn(a

2
n − 2an)

g(a2
n − an) + g(an)

=

= lim
n

g(a2
n−1) + bn(a2

n − 2an)

2g(a2
n−1) + bn(a2

n − 2an)
=

1

2
.

•
The previous modulus can be considered a pathological example, since many

of the common moduli satisfy the aforementioned hypothesis, as the two theo-
rems following the next lemma will show.

Lemma 2.7. If a modulus function f satisfies sup
m

lim inf
r

f (r(1 − 1
m))

f (r)
= 1 then

d2, f (N
2) = 1.

Proof. It suffices to prove that lim infp,q
f ((p−i+1)(q−j+1))

f (pq)
= 1 for every i, j ∈ N.

Take k = max{i, j}, then f ((p − i + 1)(q − j + 1)) ≥ f (pq − k(p + q)) and for
every m ∈ N,

lim inf
p,q

f (pq − k(p + q))

f (pq)
= lim inf

p≥2km
q≥2km

f ((
p
2 − k)q + (

q
2 − k)p)

f (pq)
≥

≥ lim inf
p≥2km
q≥2km

f (pq(1 − 1
m))

f (pq)
= lim inf

r

f (r(1 − 1
m))

f (r)

from which the conclusion follows.

For the next theorem, a function f : [0, ∞) → [0, ∞) will be called eventually
concave if there exists a ≥ 0 such that f restricted to [a, ∞) is concave.

Theorem 2.8. If a modulus function f is eventually concave then d2, f (N
2) = 1.

Proof. Let n0 ∈ N be such that if p, q ≥ n0 and t ∈ [0, 1] then f (tp + (1 − t)q) ≥
t f (p) + (1 − t) f (q). For every m ∈ N we have

lim inf
r

f (r(1 − 1
m))

f (r)
≥ lim inf

r≥2n0

2
m f (r/2) + (1 − 2

m) f (r)

f (r)
≥ 1 − 2

m
.
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Theorem 2.9. If a modulus function f satisfies infn∈N

f (n)
n > 0 then d2, f (N

2) = 1.

Proof. Call α = infn∈N

f (n)
n . Since f is subadditive, it is known that limn

f (n)
n = α

(see [14], pp. 23 and 198). In addition,

α = lim
x→∞

f (⌊x⌋)
⌊x⌋

⌊x⌋
x

≤ lim
x→∞

f (x)

x
≤ lim

x→∞

f (⌈x⌉)
⌈x⌉

⌈x⌉
x

= α

which proves that lim
x→∞

f (x)

x
= α > 0. In consequence,

lim
r

f (r(1 − 1
m))

f (r)
=

α(1 − 1
m)

α
= 1 − 1

m
.

Our last examples in this section show that the two previous theorems cannot
be immediately deduced from each other.

EXAMPLES 2.10 On one hand, it is well known that f (x) = log(x + 1) is an

eventually concave function with infn∈N

f (n)
n = 0. On the other hand, if g is the

function constructed in example 2.6, by virtue of the two previous theorems we

know that it must satisfy infn∈N

g(n)
n = 0 and cannot be eventually concave. If

we consider f (x) = g(x) + x, it is clear that infn∈N

f (n)
n > 0 and f is still not

eventually concave, since we are adding just a linear function to g. •

3 Main results

As mentioned in the introduction, in this section we will generalize the results in
[11], which can be retrieved by considering in our results the modulus function
f (x) = x. Theorems 3.1 and 3.2 are the analogous to theorem 1 and proposition 1
(reformulated as theorem 2) in [11], respectively. Whereas the proof of the former
is similar, we have used a different technique for the latter.

Afterwards, a characterization of Pringheim’s convergence will be proved, in
a similar fashion to that in [1].

Theorem 3.1. Let X be a Banach space, f an unbounded modulus and (xij)ij
a double

sequence of X, then (xij)ij
is an f -statistically Cauchy sequence if and only if (xij)ij

is

f -statistically convergent.

Proof. We suppose that f − stlimi,j xij = x, then given ε > 0 and l ∈ N there exist
M, N ≥ l such that ‖xMN − x‖ < ε then A = {(i, j) ∈ N : ‖xij − xMN‖ > ε} ⊆
{(i, j) ∈ N : ‖xij − x‖ > ε/2} and we can deduce that d2, f (A) = 0.

Conversely, assume that (xij)ij
is an f -statistically Cauchy sequence. For ε = 1

there exist M1, N1 ∈ N such that d2, f ({(i, j) : ‖xij − xM1N1
‖ ≥ 1}) = 0. For

ε = 1/2 there exist M2, N2 > max{M1, N1} such that d2, f ({(i, j) : ‖xij − xM2N2
‖ ≥

1/2}) = 0. Inductively we obtain two sequences (Nk)k and (Mk)k of natural
numbers such that Mn+1, Nn+1 > max{Mn, Nn} and d2, f ({(i, j) : ‖xij − xMkNk

‖ ≥
1/k}) = 0.
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Given r, s ∈ N there exists (a, b) ∈ N
2 such that ‖xab − xMr Nr‖ < 1/r and

‖xab − xMs Ns‖ < 1/s, thus ‖xMr Nr − xMs Ns‖ < 1/r + 1/s and we deduce that
(xMk Nk

)
k

is a Cauchy sequence, so it converges to some x ∈ X. Let ε > 0 and take

t ∈ N with t > 2/ε and ‖xMt Nt − x‖ < ε/2. Consider A = {(i, j) ∈ N
2 : ‖xij −

x‖ ≥ ε} ⊆ {(i, j) ∈ N
2 : ‖xij − xMtNt‖ ≥ ε/2} ⊆ {(i, j) ∈ N

2 : ‖xij − xMt Nt‖ ≥
1/t}, it is thus clear that d2, f (A) = 0.

Theorem 3.2. Let (xij)ij
be a sequence in a normed space X and f an unbounded mod-

ulus. Then f − stlimij xij = x if and only if there exists A ⊆ N
2 such that d2, f (A) = 0

and lim(i,j)∈N2\A xij = x.

Proof. Suppose that f − stlimi,j xij = x. For every n ∈ N define Bn = {(i, j) ∈
N

2 : ‖xij − x‖ >
1
n}, we have d2, f (Bn) = 0 and Bn ⊂ Bn+1. Just from the defini-

tion of density, given n ∈ N there exists rn ∈ N such that for every i, j, p, q ≥ rn

we have
f (|Bn(p,q,i,j)|)

f (pq)
<

1
2n , and we may also assume that (rn)n is a strictly increas-

ing sequence.
Define

A1 =
⋃

n∈N

(Bn ∩ [rn, rn+1)× [rn,+∞))

A2 =
⋃

n∈N

(Bn ∩ [rn,+∞)× [rn, rn+1))

and consider A = A1 ∪ A2. Note that we can also write, by the construction,

A ⊆
⋃

n∈N

{(a, b) ∈ Bn : rn ≤ min{a, b} < rn+1}.

Therefore, if i, j ≥ rn for some n ∈ N then

f (|A(p, q, i, j)|)
f (pq)

≤ ∑
m≥n

f (|Bm(p, q, rm, rm)|)
f (pq)

< ∑
m≥n

1

2m
=

1

2n−1

which clearly implies d2, f (A) = 0.

Now let us see lim(i,j)∈N2\A xij = x. Let ε > 0 and take n ∈ N satisfying n >
1
ε
.

Let (i, j) ∈ N
2 \ A be such that i, j ≥ rn. If we assume that i ≤ j then there exists

s ≥ n such that i ∈ [rs, rs+1) and we know (i, j) /∈ A1; this implies (i, j) /∈ Bs and
‖xij − x‖ ≤ 1

s ≤ 1
n < ε. Analogously if j ≤ i, this time by using A2.

For the converse, given ε > 0 there exist (i0, j0) ∈ N
2 \ A such that if (i, j) /∈ A

and i ≥ i0, j ≥ j0 then ‖xij − x‖ ≤ ε. Thus, {(i, j) ∈ N
2 : ‖xij − x‖ > ε} ⊂

A ∪ {(i, j) ∈ N
2 : i < i0 or j < j0}, which implies d2, f ({(i, j) ∈ N

2 : ‖xij − x‖ >

ε}) = 0.

The next three lemmas are oriented towards a characterization of Pringsheim’s
convergence in terms of f -statistical convergence. This will be accomplished in
Theorem 3.6.

Lemma 3.3. If A ⊆ N is infinite and (bk)k is an increasing divergent sequence, then

there exists an unbounded module f such that limk
f (|A(k)|)

f (bk)
= 1.
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Proof. We shall write A as a strictly increasing sequence, A = (ak)k. Let us
define g : N → N by g(1) = 1, g(2) = a2 and if k ≥ 2 then g(k + 1) =
max{a1+g(k), bg(k)}.

We have by construction that g is strictly increasing and

|A(g(k + 1))| ≥ 1 + g(k).

Now define f : [0, ∞) → [0, ∞) by f (0) = 0, for n ∈ N let f (g(n)) = n and finally
extend f to be piecewise linear in the remaining intervals.

We observe that
f (g(2))− f (g(1))

g(2)−g(1)
≤ 1 and if k ≥ 2 then g(k + 1) − g(k) ≥

g(k) − g(k − 1) and that is why (k+1)−k
g(k+1)−g(k)

≤ k−(k−1)
g(k)−g(k−1)

, which means that

f (g(k+1))− f (g(k))
g(k+1)−g(k)

≤ f (g(k))− f (g(k−1))
g(k)−g(k−1)

, therefore the corresponding slopes of the seg-

ments that form the graph of f are decreasing and thus if x, y ∈ [0,+∞) then
f (x + y) ≤ f (x) + f (y). Consequently, f is an unbounded modulus. Let us show

that limk
f (|A(k)|)

f (bk)
= 1.

For every k > g(2) there exists n ∈ N such that g(n + 1) ≤ k ≤ g(n + 2).
Then

f (|A(k)|)
f (bk)

≥ f (|A(g(n + 1))|)
f (bg(n+2))

≥ f (1 + g(n))

f (g(n + 3))
≥ f (g(n))

f (g(n + 3))
=

n

n + 3
→ 1.

Lemma 3.4. If B ⊆ N is infinite and we consider DB = {(p, q) ∈ N
2 : p = q ∈ B},

then there exists an unbounded module g such that

lim sup
i,j

lim sup
p,q

g(|DB(p, q, i, j)|)
g(p q)

= 1.

Proof. We consider B(p, i) = {n ∈ B : i ≤ n ≤ p} and we have that for every
modulus f and i ∈ N,

1 ≥ f (|B(p, i)|)
f (|B(p)|) ≥ f (|B(p)|) − f (|B(i − 1)|)

f (|B(p)|)
p→ 1

On the other hand, by the above lemma, taking bk = k2 there exists an unbounded
modulus g such that

lim
p

g(|B(p)|)
g(p2)

= 1

so, for every i ∈ N,

lim
i

lim
p

g(|DB(p, p, i, i)|)
g(p2)

= lim
i

lim
p

g(|B(p, i)|)
g(p2)

= 1.

Lemma 3.5. Let (pk)k and (qk)k be strictly increasing sequences and consider A =
{(pk, qk) : k ∈ N}, B = {max{pk, qk} : k ∈ N} and DB as in lemma 3.4. Given
i, j ∈ N there exists n ∈ N such that for every p ≥ i and q ≥ j,

|DB(p, q, i, j)| < |A(p, q, i, j)| + n.
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Proof. Given i, j ∈ N let n ∈ N be such that pn > i and qn > j. Taking into
account that (pk)k and (qk)k are increasing, this implies

|A(p, q, 1, 1) \ A(p, q, i, j)| < n

for every p ≥ i, q ≥ j. The desired result is obtained from the following chain of
simple facts:

|DB(p, q, i, j)| ≤ |DB(p, q, 1, 1)| = |DB(min{p, q}, min{p, q}, 1, 1)| =

= |A(min{p, q}, min{p, q}, 1, 1)| ≤ |A(p, q, 1, 1)| < |A(p, q, i, j)| + n.

Theorem 3.6. Let (xij)ij
be a sequence in X. If for every unbounded modulus f there

exists f − stlim xij then all these limits are the same x ∈ X and (xij)ij
also converges to

x in Pringsheim’s sense.

Proof. Suppose that (xij)ij
is not a Cauchy sequence. Then there exist two strictly

increasing sequences of natural numbers (pk)k and (qk)k and ε0 > 0 such that
‖xprqr − xpsqs‖ > ε0 whenever r 6= s. Let A = {(pk, qk) ∈ N

2 : k ∈ N}. For every
unbounded modulus f , if x f = f − stlim xij then we have that

A f =
{

(i, j) ∈ N : ‖xij − x f‖ >
ε0

2

}

satisfies d2, f (A f ) = 0 and it is clear from the definitions that A \ A f has at most
one element. We deduce that d2, f (A) = 0 for every unbounded modulus f .

Now define B = {max{pk, qk} : k ∈ N}, we have by lemma 3.5 that d2, f (DB) ≤
d2, f (A) = 0 for every unbounded modulus f . However, taking gB as in lemma
3.4, the fact that the density d2,gB

(DB) exists implies d2,gB
(DB) = 1, which is a

contradiction. Therefore (xij)ij
is a Cauchy sequence and it it easy to check that

it must converge to x f for every unbounded modulus f . In particular, all these
limits are the same.
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