
One-step smoothing inexact Newton method for

nonlinear complementarity problem with a P0

function∗

Caiying Wu† Yue Zhao

Abstract

Based on Fischer-Burmeister function, we propose a new smoothing func-
tion. Using this function,the existence and continuity of the smooth path
for solving the nonlinear complementarity problem with a P0 function are
discussed. Then we present a one-step smoothing inexact Newton method
for nonlinear complementarity problem with a P0 function. The proposed
method solves the corresponding linear system approximately in each iter-
ation. Furthermore, we investigate the boundedness of the sequence gener-
ated by our algorithm and prove the global convergence and local superlin-
ear convergence under mild conditions.

1 Introduction

Consider the nonlinear complementarity problem (denoted the NCP(F)): Find a
vector x ∈ IRn, such that

x ≥ 0, F(x) ≥ 0, xTF(x) = 0, (1)
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where F : IRn → IRn denotes a continuously differentiable function. In this pa-
per, we suppose that F is a P0 function, i.e. for all x, y ∈ IRn, x 6= y, there is
an index i such that xi 6= yi and (xi − yi)

[
Fi(x) − Fi(y)

]
≥ 0. Duo to the appli-

cations in many fields including operations research and engineering design, a
number of well known direct and iterative methods for the solution of NCP(F)
exist, for example [1]-[8]. Among them the one-step smoothing Newton method
were proposed by [1] for NCP(F) and box constrained variational inequalities.
Because of its simplicity and stronger numerical results, this method has recently
drawn much interest [1]-[4]. At each iteration, this method solves only one linear
system of equations and performs only one line search. It is proved that one-
step smoothing Newton method has superlinear (quadratic) convergence under
weaker conditions. In these methods, the smoothing functions play an important
role. Up to now, many smoothing functions have been proposed [9]-[13].

In this paper, on the one hand, based on the Fischer-Burmeister function, we
present a new smoothing function that possesses a property not satisfied by many
other function. Using the new smoothing function, the nonlinear complemen-
tarity problem can be reformulated as a smooth system of equations. On the
other hand, we propose a one-step smoothing inexact Newton method for non-
linear complementarity problem with a P0 function. Compared to the previous
literatures (for example [1]-[4]), in each iteration, our algorithm solves the corre-
sponding linear system approximately. Our method has bounded level set. The
existence and continuity of a smooth path for solving NCP(F) with P0 function
are discussed. Furthermore, the global convergence and superlinear convergence
are established under mild assumptions.

The following notions will be used throughout this paper. IRn (respectively,
IR) denotes the space of n-dimensional real column vectors (respectively, real
numbers), IRn

+ denotes the nonnegative orthant of IRn, IR+ (respectively, IR++)
denotes the the nonnegative (respectively, positive) orthant in IR. We define
N = {1, 2, · · · , n}. For any vector u ∈ IRn, we denote by diag{ui : i ∈ N}
the diagonal matrix whose ith diagonal elements is ui and by vec{ui : i ∈ N} the
vector u.

2 The smoothing function and its properties

For any (µ, a, b) ∈ IR3, we give the following smoothing function

φ(µ, a, b) = a + b −
√
[a − µ2(a − b)]2 + [b + µ2(a − b)]2 + µ2. (2)

Obviously, φ(0, a, b) is just the Fischer-Burmeister function [13]. The following
lemma give two simple properties of the function φ(·, ·, ·) defined by (2).

Lemma 1. Let (µ, a, b) ∈ IR3 and φ(µ, a, b) defined by (2). Then

(i) φ(0, a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

(ii) If µ > 0, φ(µ, a, b) is continuously differentiable on the whole space IR2 .
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For any (µ, x) ∈ IR++ × IRn, Let z = (µ, x) and

H(z) =

(
µ

Φ(z)

)
and Φ(z) =




φ(µ, x1, F1(x))
...

φ(µ, xn, Fn(x))


 . (3)

Definition 1. The mapping F : IRn → IRn is said to be a P-function if there is an index
i such that

xi 6= yi and (xi − yi)
[
Fi(x)− Fi(y)

]
> 0, f or all x, y ∈ IRn, x 6= y.

Lemma 2. Suppose that F is a continuous P0 function. Then Φ(0, x) is a continuous P0

function, and Φ(µ, x) is a continuous P function in x for each 0 < µ < 1.

Proof. It is obvious that Φ(0, x) is a continuous P0 function. Next, we show that
Φ(µ, x) is a continuous P function. Since F is a P0 function, for any x 6= y ∈ IRn,
there exists an index i0 ∈ {i : xi 6= yi} such that

(xi0 − yi0)(Fi0(x)− Fi0(y)) ≥ 0.

For simplicity, we assume xi0 > yi0 . Then, Fi0(x) ≥ Fi0(y). Let

A = yi0 − µ2(yi0 − Fi0(y)), C = Fi0(y) + µ2(yi0 − Fi0(y)),

B = xi0 − µ2(xi0 − Fi0(x)), D = Fi0(x) + µ2(xi0 − Fi0(x)).

Then,

A2 − B2 = (A + B)
(
(µ2 − 1)(xi0 − yi0)− µ2(Fi0(x)− Fi0(y))

)

and

C2 − D2 = (C + D)
(
− µ2(xi0 − yi0) + (µ2 − 1)(Fi0(x)− Fi0(y))

)
.

Since 0 < µ < 1, we have

∣∣∣
(µ2 − 1)(A + B)− µ2(C + D)√
A2 + C2 + µ2 +

√
B2 + D2 + µ2

∣∣∣ < 1 and

∣∣∣
(µ2 − 1)(C + D)− µ2(A + B)√
A2 + C2 + µ2 +

√
B2 + D2 + µ2

∣∣∣ < 1.

Therefore,

φ(µ, xi0 , Fi0(x))− φ(µ, yi0 , Fi0(y))

= xi0 − yi0 + Fi0(x)− Fi0(y) +
A2 − B2 + C2 − D2

√
A2 + C2 + µ2 +

√
B2 + D2 + µ2

=
(

1 +
(µ2 − 1)(A + B)− µ2(C + D)√
A2 + C2 + µ2 +

√
B2 + D2 + µ2

)
(xi0 − yi0) +

(
1 +

(µ2 − 1)(C + D)− µ2(A + B)√
A2 + C2 + µ2 +

√
B2 + D2 + µ2

)
(Fi0(x)− Fi0(y))

> 0.

That is, Φ(µ, x) is a continuous P function in x for each 0 < µ < 1.



280 C. Wu – Y. Zhao

Lemma 3. [14] Let ϕ(a, b) = a + b −
√

a2 + b2 + ε, where (a, b)T ∈ IR2 and ε > 0 is
a constant. Assume that {ak} and {bk} are two sequences in IR such that either ak, bk →
∞, or ak, bk → −∞ (k → ∞). Then |ϕ(ak , bk)| → ∞ (k → ∞).

Lemma 4. Suppose that F is a continuous P0 function and that H is defined by (3). Then
H(z) is coercive in x for each 0 < µ < 1, i.e.,

lim
‖x‖→∞

‖H(z)‖ = ∞.

Proof. Suppose, to the contrary, that the lemma is not true. Then for some fixed
c > 0, there exists a sequence {xk} such that

‖H(µ, xk)‖ ≤ c, ‖xk‖ → ∞. (4)

Since F is a P0 function, by using lemma 1 in [15] there exists a subsequence,
which we write without loss of generality as {xk}, and an index i0 such that either
xk

i0
→ ∞ and {Fi0(x

k)} is bounded from below or xk
i0

→ −∞ and {Fi0(x
k)} is

bounded from above. Thus, from xk
i0
→ ∞ we have

xk
i0
− µ2(xk

i0
− Fi0(x

k)) = (1 − µ2)xk
i0
+ µ2Fi0(x

k) → ∞

Fi0(x
k) + µ2(xk

i0
− Fi0(x

k)) = µ2xk
i0
+ (1 − µ2)Fi0(x

k) → ∞.

From xk
i0
→ −∞ we have

xk
i0
− µ2(xk

i0
− Fi0(x

k)) = (1 − µ2)xk
i0
+ µ2Fi0(x

k) → −∞

Fi0(x
k) + µ2(xk

i0
− Fi0(x

k)) = µ2xk
i0
+ (1 − µ2)Fi0(x

k) → −∞.

Considering lemma 3, we obtain |φ(µ, xk
i0

, Fi0(x
k))| → ∞ (k → ∞). Since 0 < µ <

1, ‖H(µ, xk)‖ → ∞ (k → ∞), which contradicts (4).

Corollary 1. Suppose that F is a continuous P0 function. Then Φ(µ, x) is coercive in x
for 0 < µ < 1, i.e. lim

‖x‖→∞

‖Φ(µ, x)‖ = ∞.

Lemma 5. [16] Suppose that Ψ : IRl → IRm is a locally Lipschitz continuous function.
Then

(i) Ψ(·) has a generalized Jacobian ∂Ψ(x), and Ψ
′(x; h), the directional derivative

of Ψ at x in the direction h, exists for any h ∈ IRl if Ψ is semismooth at x. Also,
Ψ : IRl → IRm is semismooth at x ∈ IRl if and only if all its component functions are.

(ii) Ψ(·) is semismooth at x if and only if for any V ∈ ∂Ψ(x + h), h → 0,

‖Ψ(x + h)− Ψ(x)− Ψ
′(x; h)‖ = o(‖h‖).

(iii) Ψ(·) is strongly semismooth at x if and only if for any V ∈ ∂Ψ(x + h), h → 0,

‖Ψ(x + h)− Ψ(x)− Ψ
′(x; h)‖ = O(‖h‖2).
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Lemma 6. Let H : IRn+1 → IRn+1 and Φ : IRn+1 → IRn be defined by (3). Then
(i) If F is a P0 function, then its Jacobian H′(µ, x) is nonsingular on IR++ × IRn with

0 < µ < 1.
(ii) H is locally Lipschitz continuous and semismooth on IRn+1. Furthermore, H is

strongly semismooth on IRn+1 if F′(x) is Lipschitz continuous on IRn.

Proof. By Theorem 19 in Fischer [17], it is not difficult to see that (ii) holds.
Now, we prove (i). For any 0 < µ < 1, from the definition of H, we have

H′(z) =
[

1 0
v(z) U(z)

]
,

where

v(z) = vec{φ
′
µ(µ, xi, Fi(x)), i ∈ N},

U(z) = D1(z) + D2(z)F
′(x)

= diag{∂φ(µ, xi, Fi(x))

∂xi
, i ∈ N}+ diag{∂φ(µ, xi, Fi(x))

∂Fi
, i ∈ N}F′(x).

For any i ∈ N, by straightforward calculation, we have

φ
′
µ(µ, xi, Fi(x)) =

2µ(1 − 2µ2)(xi − Fi(x))− µ√
[xi − µ2(xi − Fi(x))]2 + [Fi(x) + µ2(xi − Fi(x))]2 + µ2

,

∂φ(µ, xi, Fi(x))

∂xi
= 1 − (1 − 2µ2 + 2µ4)xi + 2µ2(1 − µ2)Fi(x)√

[xi − µ2(xi − Fi(x))]2 + [Fi(x) + µ2(xi − Fi(x))]2 + µ2
,

∂φ(µ, xi, Fi(x))

∂Fi
= 1 − (1 − 2µ2 + 2µ4)Fi(x) + 2µ2(1 − µ2)xi√

[xi − µ2(xi − Fi(x))]2 + [Fi(x) + µ2(xi − Fi(x))]2 + µ2
.

Thus,
∣∣∣
∂φ(µ, xi, Fi(x))

∂xi
− 1

∣∣∣ < 1 and
∣∣∣
∂φ(µ, xi, Fi(x))

∂Fi
− 1

∣∣∣ < 1 for all i ∈ N. Then,

the matrices D1(z) and D2(z) are positive. Since F is a P0 function, F′(x) is a P0

matrix. Hence, D2(z)F
′(x) is a P0 matrix. By Theorem 3.3 in [9], the matrix U(z)

is nonsingular, which implies that the matrix H′(z) is.

Define the smooth path associated with smoothing function (2) as
P = {x ∈ IRn : H(µ, x) = 0, 0 < µ < 1}. The following lemma is due to
Gowda and Tawhid [15].

Lemma 7. Let f (x) : IRn → IRn be a continuous P0 function and f (x, ε) be a continuous
perturbation of f ; that is, f (x, ε) : IRn × IR+ → IRn is continuous and f (x, 0) ≡ f (x).
Suppose that f (x, ε) is a continuous P function in x for each ε > 0 and f (x, ε) is coercive
in x for each ε > 0. Then f (x, ε) = 0 will have a unique solution x(ε) for every ε > 0
and the mapping ε → x(ε) is continuous on (0, ∞).

In the following, we investigate the existence and continuity of smooth path
P using lemma 2, 7 and corollary 1.

Theorem 1. Suppose that F is a continuous P0 function. Then the path P exists, and
every point x(µ) ∈ P is continuous in µ on (0, 1).
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By a simple continuity discussion, it is easy to obtain the following result.

Theorem 2. Suppose that F is a continuous P0 function. Let {µk} be a sequence of
positive values converging to 0 and for any k ≥ 0, let x(µk) converge to a point x∗, then
x∗ solves NCP(F).

3 Algorithm

Now, we give our algorithm formally. Define a function ρ : IRn+1 → IR+ and
r : IRn+1 → IRn by

ρ(z) =
γ2

2
‖H(z)‖2 max{min{1, ‖H(z)‖}, µ0}, r(z) =

γ

2
√

n
µ2e,

γ ∈ (0, 1), e = (1, 1, · · · , 1)T.

Algorithm 3.1
Step 0 Choose δ, σ, µ0 ∈ (0, 1) and ε > 0. Let x0 ∈ IRn be an arbitrary point

and z0 = (µ0, x0). Choose γ ∈ (0, 1) such that γ‖H(z0)‖ < µ0. Set k = 0.
Step 1 If ‖H(zk)‖ ≤ ε, stop. Otherwise, let ρk = ρ(zk) and rk = r(zk).
Step 2 Compute △zk = (△µk,△xk) by

H(zk) + H′(zk)△zk =

(
ρk

rk

)
. (5)

Step 3 Find the smallest m = 0, 1, 2, · · · (denote mk to be the smallest number)
such that

‖H(zk + δmk△zk)‖ ≤ [1 − σ(1 − γ)δmk ]‖H(zk)‖. (6)

Let αk = δmk .
Step 4 Set zk+1 = zk + αk△zk, k = k + 1 and return to Step 1.
Remark: The main feature of algorithm 3.1 is that we use (ρk, (rk)T)T in the

perturbed Newton equation (5). Compared to the one-step smoothing Newton
method [1]-[4], we introduce rk to measure the inaccuracy with the equation
H(zk) + H′(zk)△zk = (ρk, 0)T. It should be noted that the equation (5) can guar-
antee the sequence {µk} to be positive and monotone decreasing.

Theorem 3. Suppose that F is a continuous P0 function. Then Algorithm 3.1 is well-
defined and generates an infinite sequence {zk = (µk, xk)} ⊂ IR++ × IRn with
0 < µk ≤ µ0 and µk > γ2‖H(zk)‖2µ0/2 for all k ≥ 0.

Proof. Assume that 0 < µk ≤ µ0 and µk > γ2‖H(zk)‖2µ0/2, then by lemma 6
(i), the matrix H′(zk) is invertible. Hence, step 2 is well-defined at the kth itera-
tion. For any α ∈ (0, 1], define

t(α) = H(zk + α△zk)− H(zk)− αH′(zk)△zk . (7)

From (5), we have △µk = −µk + ρk. Then, for any α ∈ (0, 1], µk + α△µk >

0. Lemma 1 implies that H(·) is continuously differentiable around zk. Thus,
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‖t(α)‖ = o(α). By the definition of ρ(·) and r(·) and ‖H(zk)‖ ≤ ‖H(z0)‖, we
have

ρk ≤ γ‖H(zk)‖/2, ‖rk‖ ≤ γ‖H(zk)‖/2. (8)

It follows from (7) and (8) that, for all α ∈ (0, 1],

‖H(zk + α△zk)‖ = ‖t(α) + H(zk) + αH′(zk)△zk‖
= ‖t(α) + (1 − α)H(zk) + α(ρk, (rk)T)T‖
≤ ‖t(α)‖+ (1 − α)‖H(zk)‖+ αγ

2
‖H(zk)‖+ αγ

2
‖H(zk)‖

= o(α) + [1 − (1 − γ)α]‖H(zk)‖,

which indicates that there exists a constant α ∈ (0, 1] such that

‖H(zk + α△zk)‖ ≤ [1 − σ(1 − γ)α]‖H(zk)‖

holds for any α ∈ (0, α]. This shows that step 3 is well-defined at the kth iteration.
Therefore µk+1 = (1 − αk)µk + αkρk > 0. Noting γ‖H(z0)‖ < µ0, we obtain
ρk < µ0. Since µk > γ2‖H(zk)‖2µ0/2 and µk ≤ µ0, we can write

µk+1 − γ2‖H(zk+1)‖2µ0/2

= (1 − αk)µk + αkρk − γ2‖H(zk+1)‖2µ0/2

> (1 − αk)
γ2

2
‖H(zk)‖2µ0 + αk

γ2

2
‖H(zk)‖2µ0 −

γ2

2
‖H(zk+1)‖2µ0

=
γ2µ0

2
(‖H(zk)‖2 − ‖H(zk+1)‖2) > 0,

and

µk+1 = (1 − αk)µk + αkρk

≤ (1 − αk)µ0 + αkµ0 = µ0.

Considering 0 < µ0 < 1, our algorithm is well-defined and generates an infinite

sequence {zk = (µk, xk)} ⊂ IR++× IRn with 0 < µk ≤ µ0 and µk >
γ2

2
‖H(zk)‖2µ0

for all k ≥ 0.

4 Convergence analysis

In this section, we consider the global convergence and local superlinear conver-
gence of our algorithm. First, we give a condition to ensure {zk} is bounded.

Assumption 1. The solution set S = {x ∈ IRn : x, F(x) ∈ IRn
+, xTF(x) = 0} of (1) is

nonempty and bounded.

Note: Assumption 1 is the weakest condition used in previous literatures to
ensure the boundedness of iteration sequence. [18] presented a sufficient condi-
tion that assumption 1 holds.
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Theorem 4. Suppose that F is a continuous P0 function. Let {zk = (µk, xk)} be the
iteration sequence generated by our algorithm. Then

(i) The sequences {‖H(zk)‖} and {µk} tend to zero.
(ii) If assumption 1 is satisfied, {zk} is bounded and hence it has at least one accumu-

lation point z∗ = (µ∗, x∗) with H(z∗) = 0 and x∗ ∈ S.

Proof. (i) From our algorithm, we know {‖H(zk)‖} is monotonically decreas-
ing and bounded, and hence has limitation, denoted by θ∗. Suppose that θ∗ >

0. By theorem 3, there exists a subset K ⊂ N such that lim
k∈K,k→∞

µk = µ∗ and

0 < γ2θ2
∗µ0/2 ≤ µ∗ ≤ µ0. Thus, there exists a constant ε0 > 0 satisfying

ε0 ≤ µk ≤ µ0, ∀ k ∈ K. Then, {zk}k∈K is bounded by lemma 4. Let z∗ = (µ∗, x∗)
be an accumulation point of {zk}k∈K. Without loss of generality, we assume that

lim
k∈K,k→∞

zk = z∗. So lim
k∈K,k→∞

αk = 0 from (6). Thus, the stepsize α̃ =
αk

δ
does not

satisfy the line search criterion in Step 3 for any sufficiently large k, k ∈ K, i.e., the
following inequality holds:

‖H(zk + α̃△zk)‖ >

[
1 − σ(1 − γ)α̃

]
‖H(zk)‖

for any sufficiently large k, k ∈ K, which implies that

(‖H(zk + α̃△zk)‖ − ‖H(zk)‖)/α̃ > −σ(1 − γ)‖H(zk)‖.

From µ∗ 6= 0, we know that H(·) is continuously differentiable at z∗. Letting
k → ∞, k ∈ K, then the above inequality gives

1

‖H(z∗)‖H(z∗)T H′(z∗)△z∗ ≥ −σ(1 − γ)‖H(z∗)‖. (9)

Additionally, by taking the limit on (5), we get

H(z∗)T H′(z∗)△z∗ = −‖H(z∗)‖2 + H(z∗)T

(
ρ∗
r∗

)
. (10)

Combining (9) with (10) we have

‖H(z∗)‖(γ/2‖H(z∗)‖+ γ/2‖H(z∗)‖) ≥ (1 − σ(1 − γ))‖H(z∗)‖2. (11)

This yields (1 − σ)(1 − γ) ≤ 0, which contradicts the fact that σ, γ ∈ (0, 1). Thus,
H(z∗) = 0. Then, there exists a index k0 such that ‖H(zk)‖ ≤ µ0, for all k > k0. In
this case, ρk = γ2‖H(zk)‖2µ0/2. Therefore, applying µk > γ2‖H(zk)‖2µ0/2, for
all k > k0,

µk+1 = (1 − αk)µk + αkρk

< µk − αkγ2‖H(zk)‖2µ0/2 + αkγ2‖H(zk)‖2µ0/2 = µk,

which indicates {µk} is convergent. From the above analysis, we obtain lim
k→∞

µk =

µ∗ = 0.
(ii) It follows from (i), assumption 1 and Theorem 3.1 in [18] that {xk} is

bounded and hence {zk} is. Thus, {zk} has at least one accumulation point
z∗ = (µ∗, x∗). By (i), we have H(z∗) = 0 and x∗ ∈ S.
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Similarly to the proofs of Theorem 8 in [1] and Theorem 3.7 in [3], we obtain
the local superlinear convergence of algorithm 3.1 as follows.

Theorem 5. Suppose that F is a continuous P0 function, assumption 1 is satisfied and
z∗ = (µ∗, x∗) is an accumulation point of the sequence {zk} generated by algorithm 3.1.
If all V ∈ ∂H(z∗) are invertible, then

(i) αk = 1, for all zk sufficiently close to z∗;

(ii) the whole sequence {zk} converges to z∗, i.e., lim
k→∞

zk = z∗;

(iii) {zk} converges to z∗ superlinearly, i.e., ‖zk+1 − z∗‖ = o(‖zk − z∗‖). Moreover,
µk+1 = o(µk).

Proof. By Theorem 4, we have µ∗ = 0 and H(z∗) = 0. From all V ∈ ∂H(z∗)
are invertible and Proposition 3.1 in [16], for sufficiently large k, there exists some
constant β > 0 such that ‖H′(zk)−1‖ ≤ β. It follows from Lemma 6 (ii) that H(·)
is semismooth at z∗. Hence, for all zk sufficiently close to z∗, we have

‖H(zk)− H(z∗)− H′(zk)(zk − z∗)‖ = o(‖zk − z∗‖). (12)

On the other hand, Lemma 6 (ii) implies that, for all zk sufficiently close to z∗,
‖H(zk)‖ = O(‖zk − z∗‖). Then

‖zk +△zk − z∗‖ =
∥∥∥H′(zk)−1

[
H′(zk)(zk−z∗)−H(zk) +H(z∗)+

(
ρk

rk

) ]∥∥∥

≤ β
[
‖H(zk)−H(z∗)−H′(zk)(zk−z∗)‖+γ‖H(zk)‖2

]

= o(‖zk − z∗‖). (13)

Denote zk+1 = zk +△zk. Then

‖zk+1 − zk‖ =
∥∥∥H′(zk)−1

[
− H(zk) +

(
ρk

rk

)]∥∥∥ ≤ β(1 + γ)‖H(zk)‖.

We get from (13) that for any ε1 ∈ (0, 1), ‖zk+1 − z∗‖ ≤ ε1‖zk − z∗‖. Thus,

‖zk − z∗‖ ≤ ‖zk+1 − zk‖+ ‖zk+1 − z∗‖
≤ β(1 + γ)‖H(zk)‖+ ε1‖zk − z∗‖,

Consequently, ‖zk − z∗‖ ≤ [β(1 + γ)/(1 − ε1)]‖H(zk)− H(z∗)‖, which is equiv-
alent to ‖zk − z∗‖ = O(‖H(zk)− H(z∗)‖). Then, because H(·) is semismooth at
z∗, for all zk sufficiently close to z∗, we have

‖H(zk +△zk)‖ = O(‖zk +△zk − z∗‖) = o(‖zk − z∗‖) = o(‖H(zk)‖). (14)

From theorem 4, lim
k→∞

‖H(zk)‖ = 0. Hence, (14) implies that when zk sufficiently

close to z∗, αk = 1 satisfies the line search in Step 3, which proves (i). Then, (i),
together with (13), proves (ii) and

‖zk+1 − z∗‖ = o(‖zk − z∗‖). (15)
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Obviously, from Step 2, (i) and (ii), for all sufficiently large k, µk+1 =
γ2

2
‖H(zk)‖2µ0.

Hence, (14) shows that

µk+1

µk
=

‖H(zk)‖2

‖H(zk−1)‖2
=

o(‖H(zk−1)‖2)

‖H(zk−1)‖2
= o(1).

This completes our proof.
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