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Abstract

We establish the existence of local solutions for the Cauchy problem for
one-dimensional p-Laplacian equation with a concentrated nonlinear source.

1 Introduction

Consider the Cauchy problem for one-dimensional p-Laplacian with a concen-
trated nonlinear source

o D(|Dul’2Du) = &(x)f(u), (,heQr (D)

ot
u(x,0) = up(x), x € R, (1.2)

d
where 6(x) is the Dirac measure, p > 2, D = Y Qr =R x (0,T).

During the past years, there are rich references concerning the partial differ-
ential equations with measure data as the sources, see for example [1]-[5]. In
particular, the problems with the source of the form (x)f(u) have been consid-
ered by some authors in recent years, see for instance [6]-[10]. If p = 2, Olmstead
and Roberts [6] studied the initial boundary value problem, which is motivated
by the model that a combustible medium be ignited by using a heated wire or
a pair of small electrodes to supply a large amount of energy to a very confined
area. The authors discussed a possible blow-up solution of the problem by using
Green’s function and analyzing its corresponding nonlinear Volterra equation of
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the second kind at the site of the concentrated source. For the porous medium
equation with this kind of source, Yin et al [10] studied the existence of general-
ized solutions for the Cauchy problem based on some a priori estimates on solu-
tions. When the nonlinear source term in Eq. (1.1) is replaced by Dirac measure
d(x), the existence of generalized solutions was obtained by Li etal [11] for p > 2;
while when the nonlinear source term is replaced by a bounded Borel measure,
in [12] the authors considered the existence of solutions and gave summability
results for the gradients of solutions for the case p > 1. And also there are a
large amount of papers devoted to this type of degenerate parabolic problems
when the nonlinear source is of the form f(u), such as [13], in which the authors
studied the local existence of solutions by the regularized methods.

The purpose of this paper is to investigate the local existence of generalized
solutions for the problem (1.1)-(1.2). Due to the degeneracy, we have to consider
solutions in some weak sense, namely

Definition 1.1. A nonnegative function u : Qr — [0, +c0) is called a generalized
solution of the problem (1.1)-(1.2) in Qr, if u € C((R\{0}) x (0,T)) N
L*(0, T; L2 (R)) N BVy(Qr), and u satisfies

loc

/]Ruo(x)go(x,O)dx + // ups — ]Du|p_2DuDgo> dxdt
r 1
+ [ 5( )+ £ (0,))) @0, )dt =0,

for any ¢ € C®(Qr), which vanishes for large |x| and t = T, where BVy(Qr) is a
subset of L (Qr), in which the derivatives in x of each function are Radon measures in
Qr, for fixed t € (0,T), u'(0,t) and u’ (0, t) are the left limit and the right limit of u at
x =0.

The main result of the paper is the following theorem.

Theorem 1.1. Let f(s) be nonnegative, bounded and continuously differentiable,
and ug(x) be nonnegative and Holder continuous with compact support. Assume that
ug(x) € WYP(R). Then there exists a finite T* > 0, such that the Cauchy problem
(1.1)—~(1.2) admits a generalized solution in Qr=.

Since p > 2, the appearance of the diffusion term makes the theory of Green’s
function used in [6] inapplicable. In addition, by noticing that both §(x) and
f(u) appear in the source term, some estimates we needed cannot be obtained
by using the methods in [11]-[13]. In our paper, just as done in [10], we should
tirst make an approximation of the Dirac measure. Owing to the degeneracy of
Eq. (1.1), we should also use parabolic regularization to approach the equation.
Then we establish the existence of local solutions by some suitable estimates on
the approximate solutions.
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2 Proof of the Main Result

In this section, we give the proof of our main result. In order to prove the exis-
tence of generalized solutions, we first consider the following approximate prob-
lem

ou 1\ (P—2)/2
% _p ((|Du|2 +3) Du) —a(fW),  (nh) QD)
u(x,0) = uo(x), xe€(-RR), (22)
u(£R, 1) =0, te (0,T), (2.3)

where Qr 7 = (—R,R) % (0, T), R is a properly large positive constant, and

1. x
de(x) = E](E)’ 0<e<],
L oa/(x-1)
) —e , x| <1,
j(x)=14 a
0/ |x| 2 1’

A= /1 et/ (D gy,
-1
Obviously, we have

/ Se(x)dx =1, 0 <d(x) € CX(R),
R

suppde(x) = {x € R, |x| < e},
and

lim [ 6¢(x)p(x)dx = ¢(0), V¢ € C(R).

e—0t JR

By classical theories for parabolic equations, the problem (2.1)-(2.3) admits a
unique nonnegative solution u g ;.
Next we make some estimates on g ;.

Lemma 2.1. There exists T' € [0, T|, such that
||u€'R'”||L°°(QR,T/) <G,

where Cy is a positive constant depending on € and T'.

Proof. Let w(t) be the solution of the ordinary differential equation

‘;—Z’ = Mf(w), (2.4)
w(0) = [[uo(x) |~ (r), (2.5)

where M, = max J¢(x). Then there exists Ty € (0, T) such that the problem (2.4)-
xe
(2.5) has a solution w(t) on [0, To] and Ty depends only on [|ug(x)[r=(r), see [14].
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Set ¢ = u,r,, — w. Then ¢ satisfies

a(P 5 1 (p—2)/2
=D <(|D¢| “7) D¢

:5s(x)f(us,R,n) - Msf(w)
§Ms(f(usRn) _f(w))

— M. (e g — W )/ F(Ouepn + (1 0)w)de
=M; sRn(x t)(usR,ﬂ_w)

—MgCg R n (x t)(P
Thus ¢ satisfies

(p—2)/2
%—f - D <<|D(])|2 + %) D(])) — McCernp <0,

and ¢(£R,f) < O0ont € [0,Tp], ¢(x,0) < 0on x € (—R,R). By the maximum
principle, ¢ < 0 on Qg 1,. Hence, there exists T’ € (0, Tp), such that

u o < Dax w(i).
[vte,R nl1 (Qrrr) = te(0,T) "

Taking T' = Ty/2 and C; = w(T"), we obtain
[tte,Rnll (g 1) < C1-
The proof is complete. n

Lemma 2.2. There exists a positive constant Cy depending on € and T', such that

// |DuS,R,n|Pdth < C2.

R,T!

Proof. Multiplying (2.1) by u, g », and integrating it over Qg 77, we get

1 (R
5/ e g (¥, T') dx—_/ o (x
1\ (P=2)/2
! // ( E) |Dug g ,|*dxdt
RT/
B //Q ug/R/n)ue,R,ndth.

R,T!

By virtue of Lemma 2.1, we further obtain

// |Dug g n|Pdxdt
Q T

“f,, (v

§§/ dx——/ ul g o (x, T )dx
+C // f(ue Ry )dxdt.

RT’

1 (p—2)/2
E) |Du€lRln|2dxdt
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According to the assumption on f and u, there exists a positive constant C,, such
that

// ’DuE,R,n’pdxdt S Cz.

QR,T’

The proof is complete. n

Lemma 2.3. There exists a positive constant Cz depending on € and T', such that

T,

ou Ue,Rn
ot

2
e | prdt < Cs.

Proof. Multiplying (2.1) by —*~ and integrating on Qg 17, we have

Moy, |5
(p=2)/2
Q , ANy n ANy at

R,T

i aus,R,n
_[émf4@ﬂ%ﬂg SR .

Qe | dxdt

Since

(p—2)/2
// ( 1) Due gD (LME’R’H) dxdt
Qg 1/ n Y ot

1 |Dte g u|? 1\ (P—2)/2

:E/ / / (S—i— E) ds | dtdx
0

1 R ‘DuE,R,n(er/”z 1 (p—Z) /2
:_/ / s+ — ds | dx

2/-r\Jo n

1 (R |Dug(x)[? 1\ (P=2)/2
) / <S + E) ds | dx
—R 0

1 (R 1 p/2

— [ (Dreatx TP )

p J—-R
/2

1 (pur+ 1)
v )k 0 - ,

and

du Ue,Rn
/ngT/&(x)f(u&Rm) S g

// uERn}dxdt—i— //
QRT’ 2 QRT’

SR” dxdh




262 Y. Ke —]. Yin - S. Wang

it follows that

M, |5
=y <|Du0( R

According to Lemma 2.1-2.2, there exists a positive constant C3, such that

T,

The proof is complete. n

Qe |’ dxdt

p/2 )
dx +2C; // | f (e,r )| dxdt.
QR,T/

2
aus,R,n

ot dxdt < C3.

Utilizing the results in [15], we can easily obtain the uniform Hélder norm
estimates on u, g ,. From Lemma 2.1-2.3, we conclude that there exists a subse-
quence of u, g ,, denoted by u, g , itself, and a function u, g in Qg 17, such that

uelR,n — uglR, a.e. in QR’T/,
aus R.n aus R
: 2
7Ny N\ ’ in L y
ot at (Qrr).

2
D 2, 1 2/ D N in LP/(p=1)
| ”s,R,n| + » Ue,R,n # m (QR,T’ ).

Using the methods in [16], we can get
// |Duer|P™ 2Du, RD@dxdt = // {Dgdxdt,
R T/ R T/

where ¢ € C*(Qg 1), which vanishes for t = T/, x = £R.
Consider the following problem

e~ D(IDucl D) = &()f (v 1), () E€Qur, (26
ueg(x,0) = up(x), x € (—R,R), (2.7)
Uue(£R,t) = 0, te (0,T). (2.8)

Due to the degeneracy of Eq.(2.6), we should give the definition of generalized
solutions of the problem (2.6)—(2.8).

Definition 2.1. A nonnegative function ue : Qg v — [0, +00) is called a general-
ized solution of problem (2.6)—(2.8) on Qg 1, if ue € C(0, T"; L°(—R,R)) N LF(0, T';

0
Wé’p(—R,R)), % € L2(0,T'; L*(—R,R)), and for all 0 < t; < tp < T', u, satisfies

R

/R ueg(x, tp) @(x, tp)dx — /_ ue(x, t1)@(x, t1)dx —/ / U @rdxdt

t
/2/ |Du|P~ ZDuquodxdt—e—/ / fue(x, t)p(x, t)dxdt, (2.9)
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and
R R

lim ug(x,t)tp(x)dx:/ up(x)p(x)dx, (2.10)

t—0T J—R —-R
where ¢ € C®(Qp 1), which vanishes for t = T',x = R, and (x) € CF°(—R, R).

Similarly, to define a lower(super) solution u (x,t)(#:(x,t)), we need only to
ask @(x,t) > 0,¢(x) > 0,u,(£R,t) <O0(fe(£R,t) > 0)in (0, T’) and the equality
in (2.9) and (2.10) is replaced by < (>).

Utilizing the methods in [15], we can derive the following result.

Lemma 2.4. Suppose that u, and u. are lower and super solutions of (2.6)—(2.8)
respectively, then u, < U a.e. in Qg 1.

By using a standard limiting process and Lemma 2.4, it is easy to see that 1, g
is a unique generalized solution of the problem (2.6)—(2.8).

Lemma 2.5. There exist positive constants Ay and Ay depending on R, such that

1/(p—1)

ur(x, 1) <Ay — /_XR (Az /]RH(S = y)ég(y)dy) ds, V(x,t) € Qr 1,

where H(x) is the Heaviside function.

Proof. Let

X 1/(p-1)
Ter(x,1) = Ay — /_ ) (Az /IR H(s —y)ég(y)dy) ds,  (x,t) € Qr,

where A1 and A; are two positive constants to be determined. Then

t
/2/ SRgodxdt // (| Dt r|P~2Diig r) pdxdt = ///\7_5 x)pdxdt,

where 0 < t < tp < T, ¢(x,t) > 0, ¢ € C®(Qg ), which vanishes for
t=T,x==+R.
It is easy to see that

x 1/(p-1)
/R <A2 /]RH(S — y)ég(y)dy) ds =0, for x < —¢,

and for x > —¢, we have

/—xR (AZ /]R H(s — We(y)dy) R

—E&

x 1/(p—1)
<
< /_8 (/\Z/R(Sg(y)dy) ds

< AP (x4 1),
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According to the assumption on f, there exists a positive constant My, such that

f(S) < My, Vs € R.

Choosing a positive constant A, > My and Ay — A;/(p_l) (R+1) > [Juo(x)|| o= (r)-
Thus we can obtain

/tZ/ /\2(5 (x)qodxdt > /tZ/ 1) (x)f(u R)(dedt
t1 J—R ‘ t1 J—R ‘ “ ’
v(x, i') € (—R,R) X (tl,tz).

Noticing that

o(x) < [fuo(¥) || poqr) < M — AP (R+1) <Ter(x,0),  Vxe (—RR),

and
u.r(£R,t) >0, Vte(0,T),

thus 1, g is a super solution of the problem (2.6)—(2.8). By Lemma 2.4, we get

x 1/(p-1)
w0 <n- [ (0 [ He-paway) b v € Qe

The proof is complete. n
Now, we prove the property of finite propagation of disturbances of u; r.

Lemma 2.6. Let suppug C I, < 0 < rp, where I = [r1,12] C (—R, R) is a closed
set in R. Then there exists 0 < T* < T’, such that

supp U r(+, t) C [Ry, R2], ae. t e (0,TY),

where
Ry =11 — G4 T, Ry =ry+ C5T,

with the positive constants Cy4, Cs, y depending on p and R.

Proof. Set
gnl) = [[ (=) DucrlPdxdr, =12,y 2r0<t<T
Qrt

Using the techniques in [11], we can obtain
$ily) < —Ct- M [gy (y)] /O,
where

~ 1—a o _ Py 1
S o(2p+1) T c(2p+1)2 2p+ 17
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with the positive constants

111
_2 p+2 p ,_,_ptl _ p
a—1+ 21 c=1- 2P—|—1% 'y—a—i—(l—a)i

2 p+2 p

If ¢1(r2) = 0, then Du, r(x, t) = 0 for x € [ry, R], and hence from the boundary
value condition, we see that u,g(x,t) = 0 for x € [rp, R], i.e., supp uer(-,t) C
[—R, 12]. If g1(r2) # 0, then there exists an interval (12, R*), such that g1(y) > 0in
(r2, R*), but g1(R*) = 0. Therefore, for y € (ry, R*), we have

' 0 1(y) _
0/(60+1)\ _ 81\Y A/ (641
(g1(y) ( )) SCES PR OIICE < MO+,

Integrating the above inequality on (rp, R*), we obtain
g1 (R*)9/(9+1) _ (1,2)9/(9—1-1) < _CtM(6+1) (R* . 7’2)-

Therefore

According to Lemma 2.2, we have

// |Dute g |Pdxdt < - / ug(x)dx + // f(te R ) Ue R ndxdt.
Qr,t - Qr,t

Letting n — oo and using Lemma 2.5, we further obtain

// |Dug g |Pdxdt
Rt

< —/ up(x dx—i—// f(ue g )ue rAdxdt
2/~ ORr,t

< 1/ uo dx—l—)LlMo // dxdt
2 - Rt

< My + Mat,

which implies that
gi0) = | /Q (x — 12)+ | Dute g |PdxdT < (R — 12) (Mg + Mat),
Rt

and hence
R* < 1y + (Ms + Myt)tV/ (0+1),

Obviously, there exists 0 < T, < T’, such that
ry+ (Ms + MyTH) TV O — ) 4 G < R,
which implies

supp uer (-, 1) C [=R, 12 + CsT,"], a.e.t € (0,T7).
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Similarly, there exists 0 < T5 < T’, such that
supp e r(-,t) C [r1 — C4T,", R], ae.t€(0,Ty).
Taking T* = min{ T}, T; }, we obtain
supp U r(+,t) C [r1 — CaT*, 1y + CsT*] = [Ry, Ra), a.e.t € (0,T").
The proof is complete. m

Considering the Cauchy problem

e _ D(|Dug|P~2Dug) = 6¢(x) f (e (x, 1)), (x,t) € Qr+, (2.11)

ot
ue(x,0) = up(x), x € R, (2.12)

we can also give the definition of generalized solution of the problem (2.11)-
(2.12).

Definition 2.2. A nonnegative function ue : Qr- — [0, +00) is called a general-
ized solution of the problem (2.11)—(2.12) in Qr+, if ue € C(0, T*; L*(R)) N LP(0, T*;

WLP(R)), 8aug € L2(0, T*; L*(R)), and u, satisfies

/ up(x)@(x,0)dx+ // Ue Pt — |Du€|p_2Du€Dgo>dxdt
]R T*
-+ // flue(x,t))p(x, t)dxdt =0,
Qr*

for any ¢ € C*®(Qr+), which vanishes for large |x| and t = T*.
Let

_ Juer(xt),  x€[-RR],
ue(x,t) = {0, x € R\[-R,R].

Then by Lemma 2.6, we can see that u(x, t) is a generalized solution of problem
(2.11)—(2.12) on Q7.

We want to use Moser iteration to estimate the local boundedness on 1. Firstly,
we need the following result.

Lemma 2.7. Let xg # 0, (xo — 2p, xo +20) C R\(—¢,¢). Forany p > 0, it has
Xo+p
/ /° uB20 g <
X0

where Cg is a positive constant depending on B, p, p, T* and [|ug(x) ||~ (R)
Proof. Letn(x) € C°(R), and

0<7(x) <L n(x)=1 Vxe(xo—px+p);

n(x) =0, VxeR\(xo—20,x+20); [7'(x)| <

=0



One Dimensional p-Laplacian with a Concentrated Nonlinear Source 267

Multiplying (2.1) by ¢ = 1% uf and integrating on (xg — 2p, x0 + 2p) x (0,t), itis

easy to obtain

X0+2p 9 Xo+2p
/ / 0 Ug une dxda+/ / 0 |Du€|P—2Du€D(;72‘7uE)dxd0' =0,
Xo— Zp aO' X0— Zp

where 0 <t < T*, g > p/2is a constant to be determined. Then

x+20 1 2 Bl t prxo+20 p-1
—— Tl dx + / / 29y Du.|Pdxdo
/xo 20 ,3 ‘|‘ 1;7 ‘ 0 Jxp—2p0 ﬁ” ‘ ’ £|

T xo+20 1 1
< 7| (57) " p—1 / Ly
C/ / 7 ()| - ug - [Due|P~ dxdt + v ﬁ+1’7 T(uo(x))"" dx

Taking the supremum with respect to t and utilizing Young’s inequality, we have

xo+2p 1 T  rxo+2p _
sup / —nzqu5+1dx+/ / Br21uP | Dug|Pdxdt
te(0,T*) /X0—2p p+1 0 Jxg—2p

T rxo+2p
<C/ /0 7| (")'| - uf - |Due|P = dxdt + Ms
X0—2p
X0+ 0 . x0+ 0
SC/ / 2Py [Puf Y 1dth+'B/ / 729uP Y Dug|Pdxdt + Ms,
xO_ZP X0— 2p

where M5 is a positive constant depending on f, p and [[ug(x) || ~(r)- Hence

X0+2p xp+20
sup / unﬁﬂdx—l—/ / zqu |DuE|dedt
) X X

te(0,T*) /X020 020
T rxo+20
<c/ /° 2P 1Puf P dxdt + M. (2.13)
xp—2p

For any t € (0, T*), using Holder’s inequality and Lemma 2.5, we have

x0+2p _
/ ’72qu§+2(l’ 1)dx
xX0—2p

Xo+2p (p=1)/p x9+20 _ 1/p
< ( / ’ ufdx) ( / ’ (721" 1)de)
x0—20 xX0—2p
<C (/xo+2P (Uzq/r,u(ﬁ—i-p 1) /p )
x

0—2p

<C sup (71 Pug (Frp=1)/ ))
x€(xg—2p,x0+20)

Utilizing the embedding theorem, it has

B xp+2p 3 1/p
sup  (pP/ruPTVPY < ¢ (/ ’ }D(ﬂzwpugﬁw 1)/”)‘pdx) .
xe(xp—2p,x0+2p) Xp—2p
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Thus

/x0+2p Uzquﬁﬂ(r’—l)dx <C Yo+20 ’D(UZq/pu(ﬁJrP—l)/P)’pdx.
X0—2p ‘ o X0—2p ¢

Integrating the above inequality with respect to ¢ on (0, T*), and utilizing (2.13),
we have

/ / R gy
X0—2p0

T"  rxo+2p B _
<C/ / ( 29, 1|Dug|p+172‘7_p|17’|puf+p 1)dxdif
X0— ZP

T +2p _
SC/ / 17|y |Pub TP dxdt + My,
xX0—2p

Applying Young’s inequality, it follows that

T*  rxo+2p _
C/ / O qu‘pln’lpuf” Ydxdt
xX0—20

x +2p x0+2 P B+2(p—1)
xX0— 2p xX0—20
2(p—1
Let (29 — )% = 2q. Theng = p[ﬁz—tp (_Pl) ) > g Hence, there

exists a positive constant Cg, such that

+2

/ /xo ’ unﬁ+2 P~ dxdt < Ce.
xX0—20 N

Therefore —

XoTp -

/ / u§+2(p 1)dxdt < Cs.
0 p

The proof is complete. n

Next, we consider the local boundedness of u, by using the technique of
Moser’s iteration.

Lemma 2.8. For 0 < T < 1, there exists a positive constant C; depending on
T, p,0, T and [[ug(x)|| = (r), Such that

us(x/t) < Cy, V(x,t) € QTp/

where Qp = Qp(xo0,to) = (X0 — p, X0 +p) X (to — P, to +p7), 0 < ty < T*, and
(to — pP, to +pP) C (0, T%).

Proof. Forany tp < h < h' < p, take 7(x) € C{(R), and

0<n(x)<1; n(x) =1, Vxe& (xg—hxo+h);

C
n(x) =0, VxeR\(xo—H, xo+H); 17’ (x)| < P
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And for any s € (t9 — h?,ty + h”), we choose a function {(t) € C®(—o9,s], such
that

g(t) = 1/ vt € [tO - hP’S]’- (;"(t) — O, vVt S (—OO, to - h/p];
C

and extend it to be zero for t > s. Let ve(x,t) = max{u.(x,t),1}. Multiplying
(2.11) by ¢ = &*7v! and integrating on Q,, we can obtain

/ / 90 gquvg dxdt + / / |Dve|P~2Doe D (5% vl )dxdt = 0.
Q 9

Thus

_ 1 d (2 2
_ p y+1 s / 1y 41
Y + 1 // Z, ot (C 17 Oe )dth 0% + 1 QZ, 55 77 (oF dxdt

T / /Qs ¢yPol " |DoelPdxdt + p / /Qs &P~y |Doel P Doedxdt = 0,
n n

where Q%, = (xo — I, xo + ') x (to — h'",5).
Note that for t = ty — h’z, ithas ¢(t) = 0. Hence

2p7+1 /x 2, p, 7+
//Satéiyvg )dxdt xowénv

Using Young's inequality, we have

dx.

t=s

p [ @ tfoli Do Do

g% / EnPol Y Dog|Pdxdt + C / /Q &y ol vt
h/ h/

Therefore

1 XO-i-h/ n
&nho!

— dx+’y// EnPol Do, |Pdxdt
r)/+1 XO—]/Z/ QZ, ;7 ¢ ’ €|

t=s

S%// gznpvg—1|pvgjpdxdt+c//@ 2|y’ |Pod P dxdt
hl

= p, Y+l
+7+1 / &' nPol ™ dxdt,

it follows that

xo+h to+hP xo+h .
sup / npvgﬂdx—l— / ol | Dog|Pdxdt
(to WP tg+hp) 7 Xo—H xo—H'

/ / o P gt (2.14)
Qu
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Let x(t) be the characteristic function of the interval [ty — h”,ty + hP]. Utilizing
the embedding theorem, we have

2 1/q
X(t)ﬂﬁ/zv£7+1)/2’ qudt)

Xo+p
§E< sup /O ‘ (H)nP/ 20! (v+1) /2‘ dx—I—//
P\ to—pP<t<to+pP /X0—p
¢
0

XQ+h
sup / nPol M dx
Xo—h/

17p/2 (7+1)/2) ‘ dxdt)

—hP<t<to+hP

to-H/lp xo+h'
Jow oo

xo+h' 1 to+hP  pxo+H _
sup / nPol Mdx + L (7+ / / nPol | Do |2dxdt
—n /
—hP<t<to+hp /Xo—h xo—h

to+h?  pxg+h
/ ,7p—2;;7’|203+1dxdt)
X0— n

C xo+h to+h?  pxg+h _
<— sup / nPod dx + Mg / nPod ldxdt
P \ty—hr<t<to+hr /xo—H xXo—h

to+h?  pxg+h 1
+M9/ / nPod | Doe|Pdxdt
to xo—H

l’o-‘rhp xo+h'
+ Mo / / nP =207 dxdt
to X0— n

t0—|—hp xo+h
+Mi / / 17p_2|17'|p03+1dxdt) .
X0— n

nP/2D( (7+1)/2) + EW(P 2)/2 1D /2‘ dxdt)

<

=0 4

Using (2.14), it gives

1/q

2
<—pP1+1 // v£7+1)/z’ qudt)
( // ()% v+1)/2} )l/q
// o P gt
Qu

In fact, since the dimension is 1, according to the embedding theorem, we have

5
g = —. Hence

3
5/3
’Y+1 C // 'y+p 1
< |———— .



One Dimensional p-Laplacian with a Concentrated Nonlinear Source 271

Let
1-7
hk:Tp<1+T2k 1)/ h_hk+11 h _hk/
5
H=3 P‘k:’Y—EP‘i“l
Then
I3
p+1 // k+1+ (p— Z)dxdt < [% // z‘ +5( )dxdt] ,
Qth P Q
namely,
1/“1/lk+1 1/]/lk
/ / K302 gy <c|-L / / AP |
pril Qhk+1 | ertt g,
Utilizing Moser iteration, we have
2) Vi
sup ve < C Lﬂ’ — / / 202 dt] . (2.15)
QTp

8
According to Lemma 2.7 and the definition of v, for p > 3 we can choose 8 > 0,
such that

B+2(p—1)=pu+; (p 2),

1 4
namely, B = SP— 3 Then there exists a constant M1y, such that
5(p—
// U?+2(P z)dxdt < MlZ'
Qo

8
For2 < p < 3 and g > 0,ithas f+2(p—1) > u+ = (p 2). Then there exists
a constant M3, such that

// ’”ddt<c// P20 grdr < My,
Q

According to (2.15), there exists a constant C, such that
ue < Co, V(x,t) € Qrp.
The proof is complete. n
Utilizing the results in [15], we can obtain the Holder estimate on 1.

Lemma 2.9. For 0 < 0 < T, there exist positive constants A and o € (0,1), such
that

|ue(x1, 1) — ue(x2, 1) | < Gy (|21 — 2o + Ay — 12|P)7, V(xi,t;) € Qop, i=1,2,

where Cy is a positive constant depending on p, 0, T, p, T* and Cx.
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In addition, it is easy to obtain the following estimate.

Lemma 2.10. There exists a positive constant Cg independent of €, such that

// |Dug|Pdxdt < Cg.
Q'rp

Now, we are in the position to prove the main result.

Proof of Theorem 1.1. According to Lemma 2.8-2.10, there are a subsequence
of {ug} (without loss of generality, we denote it by {u,} itself) and a function u,
such that for any compact set K C (R\{0}) x (0, T*), we have

Ug = U, a.e.in K,
(IDue)P~2Due =, in LM/ P (K),

and we can also prove that the following equality

// |Du|P"2DuD¢dxdt = // wD @dxdt
K K

holds for any ¢ € C®(Qr+), which vanishes for large |x| and t = T*.
In addition, according to Lemma 2.5, Lemma 2.8-2.10, we have
u € L0, T L. (R)) N C((R\{0}) x (0, T*)) N BVx(Qr+).

loc

Then for almost all t € (0, T*), u*(0,t) and u" (0, t) both exist.
Now we show that u satisfies the integral equation in Definition 1.1. For any
¢(x,t) given as before, we have

/ up(x)(x,0)dx + // U @edxdt — // |Due|P~2DucDpdxdt
R Qr* Qr*
+ / / Se(x) (e (x, 1)) (%, t)dxdt = 0. (2.16)
Qr*
The second term of (2.16) can be rewritten as

T* T r1
d dt:/ / d dt+/ / dxdt, 2.17
//QT* Ue@rdx A — Ue@rdx ) teudx (2.17)

where T > 0. According to Lemma 2.5, we have

T ,1 T ,1 T ,T
/ / ug@dxdt < / / Ue|@¢|dxdt < / / A1l@ldxdt < CTAT™.
0 —T 0 —T 0 —-T

Thus letting ¢ — 07,7 — 07 in (2.17), we obtain

u dxdt—>// uedxdt.
//QT* ¥ Qr* o

Similarly, we can prove that

lim // |Due|P~2Du.Depdxdt = // |Du|P~2DuD pdxdt.
Qr+ Qr=

e—0*
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In addition,

/ / 9, 1)0 () f (1 (x, 1))l

—/ / (x, )0 (x) f(ue(x, t))dxdt
—&

:/ / @(x,1)0e(x) f(ue(x, t) dxdt+/ / (x, )0 (x) f (ue(x, t))dxdt.
0 —€

Next we show the following equality holds
0 1
lim @(x,1)0¢(x) f(ue(x,1))dx = Ef(ul(O,t))go(O, t), (2.18)
€

e—0t J—

for any t € (0, T*). In fact,

() ) e (e ) — 1 F(0,0)9(0,1
[ s (9 0f (e, 0) — 9(0,00f (4 0,1)) )
# ([ atr = 3) 90,0564 0,0)

<wl(e) /0 5:(x)dx + (0, £) £ (1 (0, £)) /_OE 5 (x)dx — % ,

—E&

<

where w(e) = sup |@(x,t)f(ue(x,t)) — @(0,)f(u'(0,))|, and
—e<x<0
li 0 li ! Oe(x)d L
Ape =0 I ] b=y

we see that (2.18) holds. We can use the similar method to prove that

€

lim Oe(x)p(x,t) f(ue(x, t))dx = %f(ur(O,t))go(O, t).

e—0*T Jo

Hence we obtain

lim //QT (x, £)0¢ (x) f(ue(x, t))dxdt

s——>0+
[ + £ (0,1))) (0, £y, 219)

Thus letting ¢ — 07 in (2.16), we get

/ up(x)p(x,0)dx + // (ugr — |Du|P~2DuD¢)dxdt
R Qrx

s [1 (60,1 + £6(0,0)) 90, )it =0

The proof of Theorem 1.1 is complete. ]
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