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Abstract

In this article we present core theorems for double sequences whose en-
tries are complex numbers. These results extend work of Miller and Patter-
son [9] dealing with double sequences of real numbers. The proofs in this
paper are much more involved then the proofs in the article just mentioned
as the convex sets in the plane are, in general, much more involved then
the trivial convex sets in the line. We give an answer to the following ques-
tion. If w is a bounded double sequence with complex entries and A is a 4-
dimensional matrix summability method, under what conditions on A does
there exist z, a subsequence (rearrangement), of w such that each complex
number t, in the core of w, is a limit point of Az?

1 Introduction

In [9], Miller and Patterson proved a theorem, that answers the question men-
tioned in the abstract, for double sequences whose entries are real numbers. In
the introduction of that paper results for single sequences of reals are presented
as motivation (see [9]) ). In this paper we answer the question asked for dou-
ble complex sequences mentioned in our abstract. All double sequences, in the
remainder of this paper, will be assumed to have complex entries.
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2 Definitions and Preliminaries

Definition 2.1. A double sequence w = (wu,v) has Pringsheim limit L (denoted by P −
lim w = L) provided that given any ǫ > 0 there exists N ∈ N such that |wu,v − L| < ǫ
whenever u, v > N. We shall describe such a w more briefly as ”P-convergent”.

Definition 2.2. A double sequence w is called definitely divergent, if for every G > 0
there exist two natural numbers n1 and n2 such that |wu,v| > G for u ≥ n1, v ≥ n2.

Definition 2.3. The double sequence z is called a double subsequence of the sequence w
provided that there exist two strictly increasing index sequences (nj) and (kj) such that
zj = wnj,kj

, and z is formed by

z =









z1 z2 z5 z10 .
z4 z3 z6 . .
z9 z8 z7 . .
. . . . .









That is: z1,1 = z1, z1,2 = z2, z1,3 = z5, z2,1 = z4, z2,2 = z3, etc.

Definition 2.4. A number β is called a Pringsheim limit point of the double sequence
w = (wu,v) provided that there exists a subsequence z = (zu,v) of w = (wu,v) that has
Pringsheim limit β, i.e. P − lim z = β.

The double sequence w is bounded if there exists a positive number M such
that |wu,v| < M for all u and v. A two dimensional matrix transformation is said
to be regular if it maps every convergent sequence onto a convergent sequence
with the same limit. The Silverman-Toeplitz theorem [15], [16], characterizes the
regularity of two dimensional matrix transformations.

Let A = (am,n,u,v) denote a four dimensional real matrix. We obtain a summa-
bility method that maps the double complex sequence w into the double complex
sequence Aw where the mnth term of Aw is as follows:

z = (Aw)m,n =
∞,∞

∑
u,v=1,1

am,n,u,vwu,v,

provided that

lim
p,q

p

∑
u=1

q

∑
v=1

am,n,u,vwu,v = (Aw)m,n

in the sense of Pringsheim convergence, for all m, n = 1, 2, 3 . . .. In this case we
call the terms (Aw)m,n the A-means of w. For a reference on the above and what
follows see Moritz and Rhoades [13] . Moreover, we say that a sequence w is
A-summable to the limit t if the A-means exist for all m, n = 1, 2, 3 . . ., and

lim
m,n

(Aw)m,n = t

in the sense of Pringsheim convergence.
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Definition 2.5. The four dimensional real matrix A is said to be bounded regular if
every bounded P-convergent double complex sequence w with Pringsheim limit t, is also
A-summable to t and the A-means of w are bounded.

Theorem 2.6. ([6], [13], [14]) Necessary and sufficient conditions for A to be bounded
regular are:

(1) : limm,n am,n,u,v = 0 for each u and v;

(2) : limm,n ∑
∞,∞
u,v=1,1 am,n,u,v = 1;

(3) : limm,n ∑
∞
u=1 |am,n,u,v| = 0 for each v;

(4) : limm,n ∑
∞
v=1 |am,n,u,v| = 0 for each u;

(5) : ∑
∞,∞
u,v=1,1 |am,n,u,v| is P-convergent; and

(6): there exist positive integers A and B such that

∑u,v>B |am,n,u,v| < A for each m, n.

We now define the concept of a λ-rearrangement for double sequences (from
[9]).

Definition 2.7. A mapping φ : NxN −→ NxN is called a λ-rearrangement, λ > 1, of
NxN if it is a one to one, onto function such that φ(u, v) = (u, v) for (u, v) ∈ NxN \
(λ − wedge) where the (λ − wedge) = {(u, v) : 1

λ ≤ u
v ≤ λ}. A λ-rearrangement

of w , a double sequence is a double sequence of the form (wφ(u,v))u,v where φ is a λ-
rearrangement of NxN.

Definition 2.8. The double sequence z is called a rearrangement of the double sequence
w provided that there is a one-to-one, onto φ : NxN −→ NxN such that for each (u, v),
z(u,v) = wφ(u,v).

In [8] the following is proved.

Theorem 2.9. If w is a bounded sequence and A = (am,n) is a regular matrix summa-
bility method satisfying limm(supn|am,n|) = 0, then there exists a subsequence z of w
such that each t in the core of w is a limit point of (Az). Here the core of w equals
[lim inf w, lim sup w].

Definition 2.10. A = (am,n,u,v) is said to satisfy condition (S) if the double sequence
(supu,v |am,n,u,v|)m,n is Pringsheim convergent to zero.

Definition 2.11. If w is a double sequence, then we use the following notation:

(a) : C(w) denotes the smallest convex set containing all limit points of w. C(w)
is called the core of w;

(b) : L(w) denotes the set of all limit points of w;

(c) : D(w) denotes the set of all complex numbers of the form ∑
n
i=1 αiti; αi ≥ 0 for

all i, ∑
n
i=1 αi = 1, and ti ∈ L(w) for all i.

Remark 2.12. It is easy to show that C(w) = D(w) and it is a closed set.
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3 Results

We will prove analogues of Theorems 3.1 and 3.2 from [9], for double sequences
with complex entries.

Theorem 3.1. If A = (am,n,u,v) is a four dimensional bounded regular real summability
method satisfying condition (S) and w = (wu,v) is a bounded double complex sequence,
then there exists a double subsequence z of w such that each t ∈ C(w) is a Pringsheim
limit point of Az.

Proof: If w is Pringsheim convergent then the result is immediate by the reg-
ularity of A. If C(w) is a line segment in the complex plane then a minor modifi-
cation of the proof when w = (wu,v) is a bounded real double sequence, found in
[9], is applicable. Therefore we will only consider the case when C(w) contains
three non-linear points in the complex plane.

We note again that it is an easy exercise to show that C(w) = D(w). Now, if
C(w) contains three non-linear points, it is easy to see that there exists a complex
sequence (sn) that is dense in C(w) and such that each sn is an interior point of
C(w). Let (tn) denote the sequence s1, s1, s2, s1, s2, s3, s1, s2, s3,
s4, . . .. Let M > 1 be an upper bound of the double sequence (|wu,v|). Further, let
(ǫn) be a strictly monotonic null sequence.

Since C(w) = D(w), t1 can be written in the form t1 = q11l11 + q12l12 + . . . +

q1n(1)l1n(1) where q1i > 0 for all i, ∑
n(1)
i=1 q1i = 1, and l11, l12, . . . , l1n(1) ∈ L(w). By

(1) thru (5) and (S) there exist positive integers m1 and r1, both greater than 1
such that

(β) supu,v |am1 ,m1,u,v| < min{ ǫ1
M ,

q11

101n(1)M
, . . . ,

q1n(1)

101n(1)M
}

(γ) | ∑u,v≤r1−1 am1 ,m1,u,v − 1| < min{ ǫ1
M ,

q1n(1)

101n(1)M
}

(δ) ∑(u,v):(u≥r1)
∨

(v≥r1
)|am1 ,m1,u,v| <

ǫ1
M .

Next, there exist q21, q22, . . . q2n(2) where q2i > 0 for all i, ∑
n(2)
i=1 q2i = 1, and

l21, l22, . . . l2n(2) in L(w) such that t2 = ∑
n(2)
i=1 q2il2i. By (1) through (5) of Theo-

rem 2.6 and (S) there exist positive integers m2, r2 with m2 > m1 and r2 > r1 such
that

∑u,v≤r1−1 |am2,m2,u,v| <
ǫ2
M ,

supu,v |am2,m2,u,v| < min{ ǫ2
M ,

q21

102n(2)M
, . . . ,

q2n(2)

102n(2)M
}

| ∑(u,v)∈Lr1,r2−1
am2 ,m2,u,v − 1| < min{ ǫ2

M ,
q2n(2)

102n(2)M
}

∑(u,v):(u≥r2)
∨

(v≥r2) |am2,m2,u,v| <
ǫ2
M .

In the above and in what follows, if t and s are positive integers, with t > s let

Lst = (NxN) \ ({(u, v) : u > t or v > t}
⋃

{(u, v) : u, v < s}).

Continuing, as in the first two steps, we obtain two strictly increasing se-
quences (mk) and (rk) of positive integers satisfying:
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(A) ∑u,v≤rk−1−1 |amk ,mk,u,v| <
ǫk
M ,

(B) supu,v |amk ,mk,u,v| < min{ ǫk
M ,

qk1

10kn(k)M
, . . . ,

qkn(k)

10kn(k)M
}

(C) | ∑(u,v)∈Lrk−1,rk−1
amk ,mk,u,v − 1| < min{ ǫk

M ,
qkn(k)

10kn(k)M
}

(D) ∑(u,v):(u≥rk)
∨

(v≥rk)
|amk ,mk,u,v| <

ǫk
M ,

where tk = ∑
n(k)
i=1 qkilki, qki > 0 for all i, ∑

n(k)
i=1 qki = 1, and lk1, lk2, . . . lkn(k) in L(w).

We now construct the subsequence z of w eluded to in the statement of the
theorem. To achieve this consider the sequence of sets:
L1, Lr1,r2−1, Lr2,r3−1, Lr3,r4−1, . . . where L1 = {(u, v) : u, v ≤ r1 − 1}. Notice that
these sets are pairwise disjoint and their union is NxN. We now proceed to par-
tition these sets into n(1), n(2), n(3), . . . sets respectively using the linear ordering
in Definition 2.3, namely we consider z1 < z2 < z3 . . ..

Start with L1. We partition it into n(1) pairwise disjoint subsets having union
L1. Denote by < the linear ordering of NxN from Definition 2.3. Let x11 be the
first positive integer satisfying:

a) ∑[am1 ,m1,u,v : (u, v) is at most the x11 -st element in L1] ≤ q11

∑[am1 ,m1,u,v : (u, v) is at most the x11 + 1 -st element in L1] ≥ q11

Let x12, x12 > x11 be the first positive integer satisfying:

b) ∑[am1 ,m1,u,v : (u, v) ∈ L1, x11 < (u, v) ≤ x12] ≤ q12

∑[am1 ,m1u,v : (u, v) ∈ L1, x11 < (u, v) ≤ x12 + 1] ≥ q12.

Continue, in order, defining the strictly increasing sequence x11, x12, . . . ,
x1n(1) satisfying

c) ∑[am1 ,m1,u,v : (u, v) ∈ L1, x1i < (u, v) ≤ x1,i+1] ≤ q1,i+1

∑[am1 ,m1,u,v : (u, v) ∈ L1, x1i < (u, v) ≤ x1,i+1 + 1] ≥ q1,i+1.

for i = 1, 2, . . . , n(1)− 2 and

d) ∑[am1 ,m1,u,v : (u, v) ∈ L1, x1,n(1)−1 < (u, v) ≤ ω1] ∈

(0.8q1n(1), 1.2q1n(1))

where ω1 is the last element in L1 with the ordering again being the one
from Definition 2.3. For each k, k = 2, 3, . . . , in a similar way, we partition
Lrk−1,rk−1. Namely, there exist
xk1, xk2, . . . , xkn(k) in Lrk−1,rk−1 that are strictly increasing, such that

e) ∑[amk ,mk,u,v : (u, v) ∈ Lrk−1,rk−1, (u, v) ≤ xk1] ≤ qk1

∑[amk ,mk,u,v : (u, v) ∈ Lrk−1,rk−1, (u, v) ≤ xk1 + 1] ≥ qk1.

f) ∑[amk ,mk,u,v : (u, v) ∈ Lrk−1,rk−1, xki < (u, v) ≤ xk,i+1] ≤ qk,i+1

∑[amk ,mk,u,v : (u, v) ∈ Lrk−1,rk−1, xki < (u, v) ≤ xk,i+1 + 1] ≥ qk,i+1.

for i = 1, 2, . . . , n(k)− 2 and
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g) ∑[amk ,mk,u,v : (u, v) ∈ Lrk−1,rk−1, x1,n(k)−1 < (u, v) ≤ ωk] ∈ ((1 −
2

10k )qkn(k), (1 +
2

10k )qkn(k))

where ωk is the last element in Lrk−1,rk−1. Now a) through g) are easy conse-
quences of (β), (γ), (B) and (C). And now, finally, after having achieved the par-
titions of L1, Lr1,r2−1, Lr2,r3−1, . . . , we construct the required subsequence z of w.
We define in pieces, zuv for (u, v) in L1, Lr1,r2−1, Lr2,r3−1, . . . respectively. Namely
we can construct a subsequence z of w (see the definition of a subsequence) such
that:

|zuv − l11| <
ǫ1

C12j

where (u, v) is the j-th element in L1 such that (u, v) ≤ x11,

|zuv − l12| <
ǫ1

C12j

where (u, v) is the j-th element in L1 such that x11 < (u, v) ≤ x12, . . .

|zuv − l1,n(1)−1| <
ǫ1

C12j

where (u, v) is the j-th element in L1 such that x1,n(1)−2 < (u, v) ≤ x1,n(1)−1,

|zuv − l1,n(1)| <
ǫ1

C12j

where (u, v) is the j-th element in L1 such that x1,n(1)−1 < (u, v) ≤ ω1 where

C1 = ∑u,v |am1 ,m1,u,v| < ∞ (by (5) in Theorem 2.6).
Now also, for each k, k = 2, 3, . . . zuv is defined on Lrk−1,rk−1 so that:

|zuv − lk1| <
ǫk

Ck2j

where (u, v) is the j-th element in Lrk−1,rk−1 such that (u, v) ≤ xk1, . . .

|zuv − lki| <
ǫk

Ck2j

where (u, v) is the j-th element in Lrk−1,rk−1 such that xk,i−1 < (u, v) ≤ xk,1, (i =
2, 3, 4 . . . , n(i)− 1)

. . .

|zuv − lk,n(i)| <
ǫk

Ck2j

where (u, v) is the j-th element in Lrk−1,rk−1 such that xk,n(i)−1 < (u, v) ≤ ωk,

where Ck = ∑u,v |amkmkuv| < ∞ (as before). Let us simplify notation by setting
Lk = Lrk−1,rk−1.

By the definition of a subsequence and the fact that each lki is a limit point of
w, a subsequence satisfying all of the above inequalities exists.
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Now we show that such a subsequence z satisfies the required conditions,
namely each t ∈ C(w) is a limit point of Az. To see this, let k be a positive integer,
then we have

(xx)k = | ∑
(u,v)

amk ,mk,u,vzuv − tk| ≤ | ∑
(u,v)∈Lk

amk ,mk,u,vzuv − tk|

+ M ∑
(u,v)<rk−1

|amk ,mk,u,v|

+ | ∑
{(u,v):u>rk−1

∨

v>rk−1}

amk ,mk,u,vzuv|.

Note that the second term on the right hand side of (xx)k is taken to be zero in
case when k = 1. Let us examine the first term on the right hand side of (xx)k,
denote it (xxx)k. Then we have

(xxx)k = |(lk1 ∑
(u,v)∈Bk1

amk ,mk,u,v + lk2 ∑
(u,v)∈Bk2

amk ,mk,u,v + . . .

+ lkn(k) ∑
(u,v)∈Bkn(k)

amk ,mk,u,v − tk) + ( ∑
(u,v)∈Bk1

amk ,mk,u,vγuv

+ ∑
(u,v)∈Bk2

amk,mk,u,vγuv + . . . + ∑
(u,v)∈Bkn(k)

amk ,mk,u,vγuv)|

where here zuv = lki +γuv if (u, v) ∈ Bki, i = 1, 2, . . . , n(k) and Bki, i = 1, 2, . . . , n(k)
are the n(k) sets into which Lk has been partitioned. The first set of parentheses,
inside the absolute value signs, on the right side of (xxx)k has absolute value less
than 1

10k . The second set of parentheses, inside the absolute value signs, on the

right side of (xxx)k has absolute value less than ǫk.
Finally, the second and third terms on the right hand side of (xx)k satisfy

M ∑(u,v)<rk−1
|amk ,mk,u,v| < ǫk and | ∑{(u,v):u>rk−1

∨

v>rk−1} amk ,mk,u,vzuv| < ǫk, so

that (xx)k <
1

10k + 3ǫk for each k, which shows that each tk, and consequently

each sk is a limit point of Az. Since {sn : n ∈ N} is dense in C(w), each t ∈ C(w)
is a limit point of Az.

We finish, by stating a theorem that is the exact analogue of Theorem 3.2 in
[9], and whose proof follows that of the mentioned theorem .

Theorem 3.2. If A = (am,n,u,v) is a four dimensional bounded regular summability ma-
trix satisfying (S) and w is a bounded double sequence, then there exists a rearrangement
z of w such that each t in the Pringsheim core of w is a P-limit point of Az.
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