On a certain generalization of the Carathéodory-Julia-Wolff theorem

Vladimir Bolotnikov*

Abstract

Given an analytic self-mapping s of the open unit disk \mathbb{D} and given a Blaschke product b of degree k, we present necessary and sufficient conditions for $s-b$ to have exactly k zeros inside \mathbb{D}. As a corollary, we obtain a Carathéodory-Julia-Wolff type theorem for meromorphic functions of the form s / b.

1 Introduction

Let \mathbb{D} be the open unit disk of the complex plane and let \mathbb{T} be the unit circle. The class of all functions s analytic on \mathbb{D} and mapping \mathbb{D} into itself will be denoted by \mathcal{S}. The values of s and s^{\prime} at $t_{0} \in \mathbb{T}$ will be understood in the sense of nontangential limits

$$
\begin{equation*}
s\left(t_{0}\right):=\lim _{z \rightarrow t_{0}} s(z) \quad \text { and } \quad s^{\prime}\left(t_{0}\right):=\lim _{z \rightarrow t_{0}} s^{\prime}(z) \tag{1.1}
\end{equation*}
$$

provided the latter limits exist. In (1.1) and in what follows, we write $z \widehat{\rightarrow} t_{0}$ if a point $z \in \mathbb{D}$ tends to a boundary point $t_{0} \in \mathbb{T}$ nontangentially, i.e., so that $\left|z-t_{0}\right|<\alpha(1-|z|)$ for some $\alpha>1$. We will write $z \rightarrow t_{0}$ if z tends to t_{0} unrestrictedly (in \mathbb{D} or in \mathbb{C} which will be clear from the context).

If $s \in \mathcal{S}$ and $\lambda \in \mathbb{T}$, the function $\Re\left(\frac{\lambda+s(z)}{\lambda-s(z)}\right)$ is positive and harmonic in \mathbb{D} and therefore, there exists a non-negative Borel measure $\mu_{s, \lambda}$ (called the Aleksandrov-

[^0]Clark measure of s at λ) on \mathbb{T} such that

$$
\begin{equation*}
\Re\left(\frac{\lambda+s(z)}{\lambda-s(z)}\right)=\int_{\mathbb{T}} \frac{1-|z|^{2}}{|z-\zeta|^{2}} d \mu_{s, \lambda}(\zeta) \tag{1.2}
\end{equation*}
$$

In particular, one can define the measure $\mu_{s, s}\left(t_{0}\right)$ if the limit $s\left(t_{0}\right)$ exists and $\left|s\left(t_{0}\right)\right|=$ 1. On the other hand, if this is the case, then the limit

$$
\begin{equation*}
d_{s}\left(t_{0}\right)=\lim _{z \rightarrow t_{0}} \frac{1-|s(z)|^{2}}{1-|z|^{2}} \tag{1.3}
\end{equation*}
$$

also exists (finite or infinite). The following theorem due to G. Julia [7], C. Carathéodory [6] and R. Nevanlinna [9] (see also [10, Chapter 6]) relates the characters from (1.1)-(1.3).

Theorem 1.1. For $s \in \mathcal{S}$ and $t_{0} \in \mathbb{T}$, the following are equivalent:
(1) $d:=\liminf _{z \rightarrow t_{0}} \frac{1-|s(z)|^{2}}{1-|z|^{2}}<\infty ; \quad$ (2) $\quad d_{s}\left(t_{0}\right)<\infty ;$
(3) The limits (1.1) exist and satisfy $\left|s\left(t_{0}\right)\right|=1$ and $t_{0} s^{\prime}\left(t_{0}\right) \overline{s\left(t_{0}\right)} \in \mathbb{R}$.
(4) The limit $s\left(t_{0}\right)$ exists, $\left|s\left(t_{0}\right)\right|=1$, and the corresponding Aleksandrov-

Clark measure $\mu_{s, s\left(t_{0}\right)}$ has an atom at t_{0}.
Moreover, if these conditions hold, then

$$
\begin{equation*}
d=d_{s}\left(t_{0}\right)=t_{0} s^{\prime}\left(t_{0}\right) \overline{s\left(t_{0}\right)}=\frac{1}{\mu_{s, s\left(t_{0}\right)}\left(\left\{t_{0}\right\}\right)}>0 \tag{1.4}
\end{equation*}
$$

We will denote by \mathcal{B}_{k} the set of all Blaschke products of degree k. Since every $b \in \mathcal{B}_{k}$ is analytic on \mathbb{T}, it is defined everywhere on \mathbb{T} along with all its derivatives. Furthermore, the existence of the finite limit $d_{b}\left(t_{0}\right)$ is obvious and the equalities (1.4) are verified directly using the Taylor expansion of b at t_{0} and the symmetry relation $b(z)=1 / \overline{b(1 / \bar{z})}$. The following proposition follows immediately from Theorem 1.1.

Lemma 1.2. Let $s \in \mathcal{S}, b \in \mathcal{B}_{k}, t_{0} \in \mathbb{T}$ and let u s assume that the boundary limit $s\left(t_{0}\right)$ exists and equals $b\left(t_{0}\right)$. Then the following are equivalent:

1. The limit $s^{\prime}\left(t_{0}\right)$ exist and satisfies $t_{0} \overline{b\left(t_{0}\right)}\left(b^{\prime}\left(t_{0}\right)-s^{\prime}\left(t_{0}\right)\right) \geq 0$.
2. The limit $d_{s}\left(t_{0}\right)$ exists and satisfies $d_{s}\left(t_{0}\right) \leq d_{b}\left(t_{0}\right)$.
3. The Aleksandrov-Clark measures $\mu_{s, b\left(t_{0}\right)}$ and $\mu_{b, b\left(t_{0}\right)}$ have atoms at t_{0} which satisfy $\mu_{s, b\left(t_{0}\right)}\left(\left\{t_{0}\right\}\right) \geq \mu_{b, b\left(t_{0}\right)}\left(\left\{t_{0}\right\}\right)$.

Let us consider the function f of the form $f=s-b$ where $s \in \mathcal{S}, b \in \mathcal{B}_{k}$ and let us denote by $N_{\mathbb{D}}(f)$ the number of zeros of f (counted with multiplicities) in \mathbb{D}. It follows from the Schwarz-Pick lemma that if $s \not \equiv b$, then $N_{\mathbb{D}}(s-b) \leq k$. The following theorem is the main result of this note.

Theorem 1.3. Let $s \in \mathcal{S}$ and $b \in \mathcal{B}_{k}$ and let us assume that $s \not \equiv b$. Then $N_{\mathbb{D}}(s-b)<k$ if and only if there exists a point $t_{0} \in \mathbb{T}$ such that the boundary limits $s\left(t_{0}\right)$ and $d_{s}\left(t_{0}\right)$ exist and satisfy

$$
\begin{equation*}
s\left(t_{0}\right)=b\left(t_{0}\right) \quad \text { and } \quad d_{s}\left(t_{0}\right) \leq d_{b}\left(t_{0}\right) \tag{1.5}
\end{equation*}
$$

Moreover, if $N_{\mathbb{D}}(s-b)=n<k$, then there are at most $k-n$ points $t_{0} \in \mathbb{T}$ subject to (1.5).

Observe that by Lemma 1.2, the second condition in (1.5) can be equivalently replaced by inequality $t_{0} \overline{b\left(t_{0}\right)}\left(b^{\prime}\left(t_{0}\right)-s^{\prime}\left(t_{0}\right)\right) \geq 0$ or by inequality $\mu_{s, b\left(t_{0}\right)}\left(\left\{t_{0}\right\}\right) \geq$ $\mu_{b, b\left(t_{0}\right)}\left(\left\{t_{0}\right\}\right)$.

Theorem 1.3 clarifies how distinct s and b must be on \mathbb{T} in order to guarantee $N_{\mathbb{D}}(s-b)=k$. Using the boundary interpolation results from [5] it can be shown that for each $b \in \mathcal{B}_{k}$ and any sequence $\left\{t_{i}\right\}_{i \geq 1} \subset \mathbb{T}$, there exists $s \in \mathcal{S}$ such that

$$
\begin{equation*}
s(z)-b(z)=O\left(z-t_{i}\right) \quad \text { as } z \widehat{\rightarrow} t_{i} \text { for } i=1,2, \ldots \tag{1.6}
\end{equation*}
$$

and still $N_{\mathbb{D}}(s-b)=k$. Theorem 1.3 shows that in this case we have necessarily $d_{s}\left(t_{i}\right)>d_{b}\left(t_{i}\right)$ for every $i \geq 1$.

To conclude the introduction we remark that in case $b(z) \equiv z$, Theorem 1.3 amounts to the Carathéodory-Julia-Wolff theorem: If $s \in \mathcal{S}(s \neq i d)$ has no fixed points in \mathbb{D}, then there exists a unique point $t_{0} \in \mathbb{T}$ such that $s\left(t_{0}\right)=t_{0}$ and $d_{s}\left(t_{0}\right)=$ $s^{\prime}\left(t_{0}\right) \leq 1$. In Section 3 we will extend this theorem to the class of meromorphic functions of the form s / b where $s \in \mathcal{S}$ and b is a finite Blaschke product.

2 Proof of Theorem 1.3

To prove Theorem 1.3 we will use the following auxiliary construction. Let us assume that $N_{\mathbb{D}}(s-b)=n \leq k=\operatorname{deg} b$ and let z_{1}, \ldots, z_{ℓ} be the zeros of the function $s-b$ of respective multiplicities n_{1}, \ldots, n_{ℓ} so that $n_{1}+\ldots+n_{\ell}=n$. Then s and b have the same n_{i} first Taylor coefficients at z_{i} for $i=1, \ldots, \ell$. Let us denote these Taylor coefficients by $c_{i j}$:

$$
\begin{equation*}
\frac{s^{(j)}\left(z_{i}\right)}{j!}=\frac{b^{(j)}\left(z_{i}\right)}{j!}=c_{i j} \quad \text { for } \quad j=0, \ldots, n_{i}-1 ; i=1, \ldots, \ell . \tag{2.1}
\end{equation*}
$$

Let $T=\operatorname{diag}\left\{T_{1}, \ldots, T_{\ell}\right\}$ be the diagonal block matrix with the diagonal block T_{i} equal the upper triangular $n_{i} \times n_{i}$ Jordan block with the number $\bar{z}_{i} \in \mathbb{D}$ on the main diagonal, let E be the row vector

$$
E=\left[\begin{array}{lll}
E_{1} & \ldots & E_{\ell}
\end{array}\right], \quad \text { where } \quad E_{i}=\left[\begin{array}{lll}
1 & 0 & \ldots 0
\end{array}\right] \in \mathbb{C}^{1 \times n_{i}}
$$

and let $C \in \mathbb{C}^{n}$ be defined from the numbers $c_{i j}$ as follows:

$$
C=\left[\begin{array}{lll}
C_{1} & \ldots & C_{\ell}
\end{array}\right], \text { where } C_{i}=\left[\begin{array}{lll}
\bar{c}_{i, 0} & \ldots \bar{c}_{i, n_{i}-1}
\end{array}\right] \in \mathbb{C}^{1 \times n_{i}} .
$$

We next let $P \in \mathbb{C}^{n \times n}$ to denote the Schwarz-Pick matrix

$$
\begin{equation*}
P=\left[\left[\left.\frac{1}{m!r!} \frac{\partial^{m+r}}{\partial z^{m} \partial \bar{\zeta}^{r}} \frac{1-b(z) \overline{b(\zeta)}}{1-z \bar{\zeta}}\right|_{\substack{z=z_{i} \\ \zeta=z_{j}}}\right]_{m=0, \ldots, n_{i}-1}\right]_{i, j=1}^{r=0, \ldots, n_{j}-1} \tag{2.2}
\end{equation*}
$$

which is known to be positive definite whenever $n:=n_{1}+\ldots+n_{\ell} \leq k:=$ $\operatorname{deg} b$. This matrix can be alternatively defined as the unique solution of the Stein equation

$$
\begin{equation*}
P-T^{*} P T=E^{*} E-C^{*} C \tag{2.3}
\end{equation*}
$$

where T, E and C are defined as above. The verification of (2.3) for P of the form (2.2) is straightforward and the uniqueness follows from the fact that all the eigenvalues of T are in \mathbb{D}. We next define the 2×2 matrix function

$$
\Theta(z)=I_{2}-(1-z \bar{\mu}) K(z, \mu) J, \quad \text { where } \quad J=\left[\begin{array}{rr}
1 & 0 \tag{2.4}\\
0 & -1
\end{array}\right]
$$

μ is an arbitrary point in \mathbb{T} and

$$
K(z, \mu)=\left[\begin{array}{l}
E \\
C
\end{array}\right]\left(I_{n}-z T\right)^{-1} P^{-1}\left(I_{n}-\bar{\mu} T^{*}\right)^{-1}\left[\begin{array}{ll}
E^{*} & C^{*}
\end{array}\right] .
$$

An easy computation based solely on the Stein identity (2.3) shows that

$$
\begin{equation*}
J-\Theta(z) J \Theta(z)^{*}=\left(1-|z|^{2}\right) K(z, z) \tag{2.5}
\end{equation*}
$$

which implies in particular that Θ is J-inner in \mathbb{D} :

$$
\begin{equation*}
\Theta(z) J \Theta(z)^{*} \leq J \text { if } z \in \mathbb{D}, \quad \Theta(t) J \Theta(t)^{*}=J \text { if } t \in \mathbb{T} \tag{2.6}
\end{equation*}
$$

Another calculation based on (2.3) gives

$$
\begin{equation*}
\operatorname{det} \Theta(z)=\prod_{i=1}^{\ell}\left(\frac{\left(z-z_{i}\right)\left(\bar{\mu}-\bar{z}_{i}\right)}{\left(1-z \bar{z}_{i}\right)\left(1-\bar{\mu} z_{i}\right)}\right)^{n_{i}} . \tag{2.7}
\end{equation*}
$$

The role of the function Θ in interpolation theory is justified by the following well-known result. In its formulation, we use the symbol $\mathcal{B} H^{\infty}$ to denote the closed unit ball of the Hardy space H^{∞} of the unit disk.
Theorem 2.1. Let $\Theta=\left[\begin{array}{cc}\theta_{11} & \theta_{21} \\ \theta_{12} & \theta_{22}\end{array}\right]$ be defined as in (2.4). Then the linear fractional formula

$$
\begin{equation*}
g=\mathbf{T}_{\Theta}[\sigma]:=\frac{\theta_{11} \sigma+\theta_{12}}{\theta_{21} \sigma+\theta_{22}}, \quad \sigma \in \mathcal{B} H^{\infty} \tag{2.8}
\end{equation*}
$$

establishes a one-to-one correspondence between $\mathcal{B} H^{\infty}$ and the set of all functions $g \in \mathcal{B} H^{\infty}$ such that

$$
\begin{equation*}
g^{(j)}\left(z_{i}\right)=j!c_{i j} \quad \text { for } \quad j=0, \ldots, n_{i}-1 ; i=1, \ldots, \ell . \tag{2.9}
\end{equation*}
$$

Furthermore, if $\sigma \in \mathcal{B}_{q}$, then $\mathbf{T}_{\Theta}[\sigma] \in \mathcal{B}_{n+q}$.
The set $\mathcal{B} H^{\infty}$ (sometimes called the Schur class) consists of all analytic functions mapping \mathbb{D} into the closed unit disk $\overline{\mathbb{D}}$ so that the inclusion $\mathcal{S} \subset \mathcal{B} H^{\infty}$ is clear. On the other hand, if a function $f \in \mathcal{B} H^{\infty}$ does not belong to \mathcal{S}, it follows from the maximum modulus principle that f is a unimodular constant function (that is, $f \in \mathcal{B}_{0}$). Thus, $\mathcal{B} H^{\infty}=\mathcal{S} \cup \mathcal{B}_{0}$. We supplement Theorem 2.1 by several simple observations. We first observe that for g and σ related as in (2.8),

$$
\left[\begin{array}{ll}
1 & -g
\end{array}\right] \Theta=u_{g}\left[\begin{array}{ll}
1 & -\sigma \tag{2.10}
\end{array}\right], \quad \text { where } \quad u_{g}:=\theta_{11}-\theta_{21} g .
$$

It follows from (2.10) that if $u_{g}(\zeta)=0$, then $\Theta(\zeta)$ is not invertible so that $\operatorname{det} \Theta(\zeta)=0$. Thus we conclude from (2.7) that $u_{g}(z) \neq 0$ for every $z \notin\left\{z_{1}, \ldots, z_{\ell}\right\}$.

Lemma 2.2. Let g and σ be related as in (2.8) and let $t_{0} \in \mathbb{T}$. Then

1. The limit $g\left(t_{0}\right)$ exists if and only if $\sigma\left(t_{0}\right)$ exists.
2. $\left|g\left(t_{0}\right)\right|=1$ if and only if $\left|\sigma\left(t_{0}\right)\right|=1$.
3. In the latter case, the limits $d_{g}\left(t_{0}\right)$ and $d_{\sigma}\left(t_{0}\right)$ are related by

$$
d_{g}\left(t_{0}\right)=\left[\begin{array}{ll}
1 & \left.-g\left(t_{0}\right)\right] K\left(t_{0}, t_{0}\right)[\tag{2.11}
\end{array}-\frac{1}{g\left(t_{0}\right)}\right]+\left|u_{g}\left(t_{0}\right)\right|^{2} d_{\sigma}\left(t_{0}\right) .
$$

Proof: The first statement follows directly from (2.8). The second statement follows from (2.10) since $\Theta\left(t_{0}\right)$ is J-unitary (see the second formula in (2.6)). To complete the proof we multiply both parts of (2.5) by the row-vector $\left[\begin{array}{ll}1 & -g(z)\end{array}\right]$ on the left, by its adjoint on the right, divide the resulting equality by $1-|z|^{2}$ and take into account formula (2.4) for J to get

$$
\frac{1-|g(z)|^{2}}{1-|z|^{2}}=\left[\begin{array}{cc}
1 & -g(z)] K(z, z)\left[-\frac{1}{-g(z)}\right. \tag{2.12}
\end{array}\right]+\left|u_{g}(z)\right|^{2} \frac{1-|\sigma(z)|^{2}}{1-|z|^{2}}
$$

Upon passing to the limit as $z \widehat{\rightarrow} t_{0}$ in the latter equality we get (2.11). Since the first term on the right hand side of (2.12) tends to a finite limit and since $u\left(t_{0}\right) \neq 0$, the limits $d_{g}\left(t_{0}\right)$ and $d_{\sigma}\left(t_{0}\right)$ in (2.11) are finite or infinite simultaneously.
Lemma 2.3. Let $s \in \mathcal{S}$ and $b \in \mathcal{B}_{k}$ meet conditions (2.1). Then

$$
\begin{equation*}
s=\mathbf{T}_{\Theta}[\widetilde{s}] \text { and } b=\mathbf{T}_{\Theta}[\widetilde{b}] \text { for some } \widetilde{s} \in \mathcal{B} H^{\infty} \text { and } \widetilde{b} \in \mathcal{B}_{k-n} . \tag{2.13}
\end{equation*}
$$

Furthermore, the limits $s\left(t_{0}\right)$ and $d_{s}\left(t_{0}\right)$ exist and satisfy (1.5) if and only if the limits $\widetilde{s}\left(t_{0}\right)$ and $d_{\widetilde{s}}\left(t_{0}\right)$ exist and satisfy

$$
\begin{equation*}
\widetilde{s}\left(t_{0}\right)=\widetilde{b}\left(t_{0}\right) \quad \text { and } \quad d_{\widetilde{s}}\left(t_{0}\right) \leq d_{\widetilde{b}}\left(t_{0}\right) . \tag{2.14}
\end{equation*}
$$

Proof: The first statement follows from Theorem 2.1. The existence part of the second statement follows from Lemma 2.2. The equivalence of the first equalities in (1.5) and (2.14) follows since Θ is analytic and invertible at t_{0}. Now let us assume that all the limits in (1.5) and (2.14) exist and that $s\left(t_{0}\right)=b\left(t_{0}\right)$. By part (3) in Lemma 2.2,

$$
\begin{align*}
& d_{s}\left(t_{0}\right)=\left[\begin{array}{ll}
1 & \left.-s\left(t_{0}\right)\right] K\left(t_{0}, t_{0}\right)\left[\frac{1}{-s\left(t_{0}\right)}\right.
\end{array}\right]+\left|u_{s}\left(t_{0}\right)\right|^{2} d_{\widetilde{s}}\left(t_{0}\right), \tag{2.15}\\
& d_{b}\left(t_{0}\right)=\left[\begin{array}{ll}
1 & -b\left(t_{0}\right)
\end{array}\right] K\left(t_{0}, t_{0}\right)\left[\begin{array}{c}
1 \\
-\overline{b\left(t_{0}\right)}
\end{array}\right]+\left|u_{b}\left(t_{0}\right)\right|^{2} d_{\widetilde{b}}\left(t_{0}\right), \tag{2.16}
\end{align*}
$$

where according to (2.10), $u_{s}=\theta_{11}-\theta_{21} s$ and $u_{b}=\theta_{11}-\theta_{21} b$. Due to the assumption $s\left(t_{0}\right)=b\left(t_{0}\right)$, the first terms on the right in (2.15) and (2.16) are equal and also $u_{s}\left(t_{0}\right)=u_{b}\left(t_{0}\right)$. Subtracting (2.16) from (2.15) we get

$$
d_{s}\left(t_{0}\right)-d_{b}\left(t_{0}\right)=\left|u_{b}\left(t_{0}\right)\right|^{2}\left(d_{\widetilde{s}}\left(t_{0}\right)-d_{\widetilde{b}}\left(t_{0}\right)\right)
$$

and since $u\left(t_{0}\right) \neq 0$, the equivalence of inequalities in (1.5) and (2.14) follows.
Proof of Theorem 1.3: To prove the sufficiency part we will argue via contradiction. Let us assume that $N_{\mathbb{D}}(s-b)=k$ and that (1.5) holds for some $t_{0} \in \mathbb{T}$. By Lemma 2.3, s and b are of the form (2.13) where $\widetilde{b} \in \mathcal{B}_{k-k}=\mathcal{B}_{0}$. Thus $\widetilde{b} \equiv \gamma \in \mathbb{T}$ and therefore, $d_{\widetilde{b}}\left(t_{0}\right)=0$. By Lemma 2.3, $\widetilde{s}\left(t_{0}\right)=\gamma$ and $0 \leq d_{\widetilde{s}}\left(t_{0}\right) \leq d_{\widetilde{b}}\left(t_{0}\right)=0$. Since $\left|s\left(t_{0}\right)\right|=1$ and $d_{\widetilde{s}}\left(t_{0}\right)=0$, we conclude by the Julia lemma [7] that $\widetilde{s} \equiv \gamma$ which implies that $s \equiv b$. This contradicts the assumption of the theorem and completes the proof of the sufficiency part.

The necessity part will be first proved for the case $N_{\mathbb{D}}(s-b)=0$, that is, under the assumption that $s(z) \neq b(z)$ for every $z \in \mathbb{D}$. Define

$$
f_{r}(z)=\frac{r-1}{r} s(z)-b(z) \quad \text { for } \quad r \geq 1 .
$$

By Rouche theorem, $N_{\mathbb{D}}\left(f_{r}\right)=k$ for every r. Let us denote by ζ_{r} one (any one) of the zeros of f_{r}. If the set $\left\{\zeta_{r}\right\}$ had an accumulation point $\zeta \in \mathbb{D}$, then we would have $s(\zeta)=b(\zeta)$ and $f(\zeta)=0$ which contradicts the assumption $N_{\mathbb{D}}(s-b)=0$. Thus, $\left\{\zeta_{r}\right\}$ has an accumulation point $t_{0} \in \mathbb{T}$. Take a sequence $\left\{\zeta_{r_{i}}\right\}$ converging to t_{0}. Thus,

$$
\begin{equation*}
\frac{r_{i}-1}{r_{i}} s\left(\zeta_{r_{i}}\right)=b\left(\zeta_{r_{i}}\right) \tag{2.17}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
\frac{1-\left|s\left(\zeta_{r_{i}}\right)\right|^{2}}{1-\left|\zeta_{r_{i}}\right|^{2}}=\frac{1-\frac{r_{i}^{2}}{\left(r_{i}-1\right)^{2}}\left|b\left(\zeta_{r_{i}}\right)\right|^{2}}{1-\left|\zeta_{r_{i}}\right|^{2}} \leq \frac{1-\left|b\left(\zeta_{r_{i}}\right)\right|^{2}}{1-\left|\zeta_{r_{i}}\right|^{2}} . \tag{2.18}
\end{equation*}
$$

Since b is a finite Blaschke product, the limit of the rightmost ratio in (2.18) exists and equals $d_{b}\left(t_{0}\right)$. Now we conclude from (2.18) that

$$
\begin{equation*}
d:=\liminf _{z \rightarrow t_{0}} \frac{1-|s(z)|^{2}}{1-|z|^{2}} \leq d_{b}\left(t_{0}\right)<\infty \tag{2.19}
\end{equation*}
$$

Then by Theorem 1.1, the nontangential limits $s\left(t_{0}\right)$ and $d_{s}\left(t_{0}\right)$ exist and satisfy $s\left(t_{0}\right)=b\left(t_{0}\right)$ (due to (2.17)) and $d_{s}\left(t_{0}\right)=d \leq d_{b}\left(t_{0}\right)$ (by (2.19)).

For the general case, let us assume that $N_{\mathbb{D}}(s-b)=n<k$ and let $z_{1}, \ldots, z_{\ell} \in$ \mathbb{D} be the zeros of the function $s-b$ of respective multiplicities n_{1}, \ldots, n_{ℓ} so that $n_{1}+\ldots+n_{\ell}=n$. By Lemma 2.3, s and b are of the form (2.13) where $\widetilde{s} \in \mathcal{B} H^{\infty}$ and $\widetilde{b} \in \mathcal{B}_{k-n}$. Since $s(\zeta) \neq b(\zeta)$ and $\operatorname{det} \Theta(\zeta) \neq 0$ for every $\zeta \in \mathbb{D} \backslash\left\{z_{1}, \ldots, z_{\ell}\right\}$, it is readily seen that $\widetilde{s}(\zeta) \neq \widetilde{b}(\zeta)$ for every such point ζ. On the other hand, it is well known (see e.g., [3]) that the value $\sigma\left(z_{i}\right)$ of the parameter σ in (2.8) at the interpolation node z_{i} completely determines the ($n_{i}+1$)-th Taylor coefficient $g^{\left(n_{i}\right)}\left(z_{i}\right) / n_{i}$! of $g=\mathbf{T}_{\Theta}(\sigma)$. Since we assumed that $s-b$ has zero of multiplicity n_{i} at z_{i}, i.e., that $\widetilde{s}^{\left(n_{i}\right)}\left(z_{i}\right) \neq s^{\left(n_{i}\right)}\left(z_{i}\right)$, it then follows that $\widetilde{s}\left(z_{i}\right) \neq \widetilde{b}\left(z_{i}\right)$ for $i=1, \ldots, k$. Thus $N_{\mathbb{D}}(\widetilde{s}-\widetilde{b})=0$ and by the first part of the proof, there exists a point $t_{0} \in \mathbb{T}$ such that the limits $\widetilde{s}\left(t_{0}\right)$ and $d_{\widetilde{s}}\left(t_{0}\right)$ exist and satisfy relations (2.14). But then it follows from Lemma 2.3 that the limits $s\left(t_{0}\right)$ and $d_{s}\left(t_{0}\right)$ exist and satisfy relations (1.5).

To prove the last statement of the theorem (again via contradiction), we assume that $N_{\mathbb{D}}(s-b)=n<k$ and that there exist $r:=k-n+1$ points $t_{1}, \ldots, t_{r} \in$ \mathbb{T} such that

$$
s\left(t_{i}\right)=b\left(t_{i}\right) \quad \text { and } \quad d_{s}\left(t_{i}\right) \leq d_{b}\left(t_{i}\right) \quad \text { for } \quad i=1, \ldots, r .
$$

Then the functions $\widetilde{s} \in \mathcal{B} H^{\infty}$ and $\widetilde{b} \in \mathcal{B}_{k-n}$ from representations (2.13) meet conditions

$$
\begin{equation*}
\widetilde{s}\left(t_{i}\right)=\widetilde{b}\left(t_{i}\right) \quad \text { and } \quad d_{\widetilde{s}}\left(t_{i}\right) \leq d_{\widetilde{b}}\left(t_{i}\right) \quad \text { for } \quad i=1, \ldots, r, \tag{2.20}
\end{equation*}
$$

by Lemma 2.3. The $r \times r$ boundary Schwarz-Pick matrix

$$
P=\left[p_{i j}\right]_{i, j=1}^{r} \quad \text { with entries } \quad p_{i j}=\left\{\begin{array}{cll}
d_{\widetilde{b}}\left(t_{i}\right) & \text { if } & i=j \\
\frac{1-\widetilde{b}\left(t_{i}\right) \widetilde{b}\left(t_{j}\right)}{1-t_{i} \bar{t}_{j}} & \text { if } & i \neq j
\end{array}\right.
$$

constructed from b is positive semidefinite. By Lemma 2.1 in [4],

$$
\begin{equation*}
\operatorname{rank} P=\min \{r, \operatorname{deg} \widetilde{b}\} \tag{2.21}
\end{equation*}
$$

Let us think for a moment that b is given and we are looking for a function $\widetilde{s} \in \mathcal{B} H^{\infty}$ satisfying interpolation conditions (2.20). Then we have a well-known boundary Nevanlinna-Pick problem [9] which has a unique solution if and only if the matrix P introduced just above is positive semidefinite and singular; see e.g., $[2,3,5]$. This is exactly what we have since by (2.21), $\operatorname{rank} P=\operatorname{deg} b=n-k<r$. Thus, the only function $\widetilde{s} \in \mathcal{B} H^{\infty}$ satisfying conditions (2.20) is the function \widetilde{b} itself. Therefore, conditions (2.20) imply that $\widetilde{s} \equiv \widetilde{b}$ and therefore, that $s=\mathbf{T}_{\Theta}[\widetilde{s}] \equiv$ $\mathbf{T}_{\Theta}[\widetilde{b}]=b$ which gives the desired contradiction.

3 The Carathéodory-Julia-Wolff theorem for generalized Schur functions

In this concluding section we demonstrate that a version of Theorem 1.3 can be formulated in terms of fixed points of meromorphic functions g of the form $g=s / \vartheta$ where $s \in \mathcal{B} H^{\infty}$ and a finite Blaschke product ϑ do not have common zeros in \mathbb{D}. These functions (commonly known as generalized Schur functions) appeared in $[1,11]$ in certain interpolation context and have been studied later in [8]. We denote by \mathcal{S}_{k} the class of generalized Schur functions g with the denominator $\vartheta \in \mathcal{B}_{k}$ in the above representation. Let us say that a point $z_{0} \in \mathbb{D}$ is a fixed point of g of multiplicity (fixed point index) m if the function $z \rightarrow g(z)-z$ has zero of multiplicity m at z_{0}.

Theorem 3.1. Let $g \in \mathcal{S}_{k}$. If g has less than $k+1$ fixed points in \mathbb{D} counted with multiplicities, then there exists a boundary fixed point $t_{0} \in \mathbb{T}$ such that the angular derivative $g^{\prime}\left(t_{0}\right)$ exists and satisfies $g^{\prime}\left(t_{0}\right) \leq 1$.

Proof: The statement trivially holds true if g is a unimodular constant (i.e., $g \in \mathcal{B}_{0}$). Also it is easily verified if g is of the form $g=\gamma / \vartheta$ for $\gamma \in \mathcal{B}_{0}$ and $\vartheta \in \mathcal{B}_{k}$ $(k>0)$. Indeed, every g of this form has no fixed points in $\mathbb{C} \backslash \mathbb{T}$ and it has at least one fixed point $t_{0} \in \mathbb{T}$. Then $\vartheta\left(t_{0}\right)=\gamma \bar{t}_{0}$ and by (1.4),

$$
\begin{equation*}
d_{\vartheta}\left(t_{0}\right)=t_{0} \vartheta^{\prime}\left(t_{0}\right) \overline{\vartheta\left(t_{0}\right)}=\bar{\gamma} t_{0}^{2} \vartheta^{\prime}\left(t_{0}\right)>0 . \tag{3.1}
\end{equation*}
$$

On the other hand, $g^{\prime}\left(t_{0}\right)=-\frac{\gamma \vartheta^{\prime}\left(t_{0}\right)}{\vartheta\left(t_{0}\right)^{2}}=-\frac{\gamma \vartheta^{\prime}\left(t_{0}\right)}{\gamma^{2} \bar{t}_{0}^{2}}=-\bar{\gamma} t_{0}^{2} \vartheta^{\prime}\left(t_{0}\right)$ which together with (3.1) implies $g^{\prime}\left(t_{0}\right)<0$, that is, even more than wanted.

Since $\mathcal{B} H^{\infty}=\mathcal{S} \cup \mathcal{B}_{0}$, it remains to consider the case where g is of the form $g=s / \vartheta$ for some $s \in \mathcal{S}$ and $\vartheta \in \mathcal{B}_{k}$ having no common zeros in \mathbb{D}. Let $b:=z \vartheta \in$ \mathcal{B}_{k+1}. Then every zero of the function $s-b$ is a fixed point for g and vice versa. Then we have from the assumption of the theorem that $N_{\mathbb{D}}(s-b)<k+1$; so we conclude from Theorem 1.3 that there is a point $t_{0} \in \mathbb{T}$ such that the limits (1.1) exist and satisfy

$$
\begin{equation*}
s\left(t_{0}\right)=b\left(t_{0}\right)=t_{0} \vartheta\left(t_{0}\right) \quad \text { and } \quad t_{0} \overline{b\left(t_{0}\right)}\left(b^{\prime}\left(t_{0}\right)-s^{\prime}\left(t_{0}\right)\right) \geq 0 \tag{3.2}
\end{equation*}
$$

Therefore the boundary limits $g\left(t_{0}\right)$ and $g^{\prime}\left(t_{0}\right)$ exist. It follows from the first equality in (3.2) that $g\left(t_{0}\right)=t_{0}$ so that t_{0} is a fixed boundary point for g. We now use equalities $b=z \vartheta$ and $s=g \vartheta$ to write the second relation in (3.2) in terms of g and ϑ as

$$
\begin{aligned}
0 & \leq t_{0} \overline{b\left(t_{0}\right)}\left(b^{\prime}\left(t_{0}\right)-s^{\prime}\left(t_{0}\right)\right) \\
& =t_{0} \overline{t_{0} \vartheta\left(t_{0}\right)}\left(t_{0} \vartheta^{\prime}\left(t_{0}\right)+\vartheta\left(t_{0}\right)-g^{\prime}\left(t_{0}\right) \vartheta\left(t_{0}\right)-g\left(t_{0}\right) \vartheta^{\prime}\left(t_{0}\right)\right)=1-g^{\prime}\left(t_{0}\right)
\end{aligned}
$$

where the last equality follows since $g\left(t_{0}\right)=t_{0}$ and $\left|t_{0}\right|=\left|\vartheta\left(t_{0}\right)\right|=1$. Thus, $g^{\prime}\left(t_{0}\right) \leq 1$ as desired.

Note that in the classical case $(k=0)$, the boundary derivative $g^{\prime}\left(t_{0}\right)$ is necessarily nonnegative at any boundary fixed point and thus, the bound $g^{\prime}\left(t_{0}\right) \leq 1$ for $g \in \mathcal{B} H^{\infty}$ means that $\left|g^{\prime}\left(t_{0}\right)\right| \leq 1$. On the other hand, if $g \in \mathcal{B} H^{\infty}$ has a (unique) fixed point z_{0} in \mathbb{D}, then $\left|g^{\prime}\left(z_{0}\right)\right| \leq 1$ by the Schwarz-Pick lemma. It therefore follows that every function $g \in \mathcal{B} H^{\infty}$ has a unique fixed point $z_{0} \in \overline{\mathbb{D}}$ (the Denjoy-Wolff point of g) such that $\left|g^{\prime}\left(z_{0}\right)\right| \leq 1$. From complex dynamics point of view, it might be of interest to characterize meromorphic (or at least rational) functions $g \in \mathcal{S}_{\kappa}$ having a Denjoy-Wolff point (maybe not unique). The following example shows that in general, such a point may not exist. Indeed, the function

$$
g(z)=\frac{z}{\frac{z-\frac{1}{2}}{1-\frac{1}{2} z}}=\frac{z(2-z)}{2 z-1}
$$

belongs to \mathcal{S}_{1} and has two fixed points $z_{0}=0$ and $t_{0}=1$. Furthermore, $g^{\prime}(z)=$ $\frac{-2 z^{2}+2 z-2}{(2 z-1)^{2}}$ and thus $g^{\prime}(0)=g^{\prime}(1)=-2$ (which of course is consistent with Theorem 3.1).

References

[1] N. I. Akhiezer, On a minimum problem in the theory of functions, and on the number of roots of an algebraic equation which lie inside the unit circle, Izv. Akad. Nauk 9 (1930), 1169-1189.
[2] J. A. Ball, Interpolation problems of Pick-Nevanlinna and Loewner type for meromorphic matrix functions, Integral Equations Operator Theory 6 (1983), 804840.
[3] J. A. Ball and J. W. Helton, Interpolation problems of Pick-Nevanlinna and Loewner types for meromorphic matrix functions: parameterization of the set of all solutions, Integral Equations Operator Theory 9 (1986), 155-203.
[4] V. Bolotnikov, A uniqueness result on boundary interpolation, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1705-1715.
[5] V. Bolotnikov and A. Kheifets, The higher order Carathéodory-Julia theorem and related boundary interpolation problems, Oper. Theory Adv. Appl. OT 179, Birkhäuser, 2007, pp. 63-102.
[6] C. Carathéodory, Über die Winkelderivierten von beschränkten analytischen Funktionen, Sitz. Preuss. Akad. Phys.-Math., 4 (1929), 1-18.
[7] G. Julia, Extension d'un lemma de Schwartz, Acta Math. 42 (1920), 349-355.
[8] M. G. Kreĭn and H. Langer, Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Π_{κ} zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen Math. Nachr. 77 (1977), 187-236.
[9] R. Nevanlinna, Remarques sur le lemme de Schwarz, C. R. Acad. Sci. Paris 188 (1929), 1027-1029.
[10] D. Sarason, Sub-Hardy Hilbert Spaces in the Unit Disk, Wiley, New York, 1994.
[11] T. Takagi, On an algebraic problem related to an analytic theorem of Carathéodory and Fejér, Japan J. of Math. 1 (1924), 83-93.
[12] J. Wolff, Sur une generalisation d'un theoreme de Schwarz, C.R. Acad. Sci. , 182 (1926), 918920

Department of Mathematics
The College of William and Mary
Williamsburg, VA 23187-8795, USA
email:vladi@math.wm.edu

[^0]: *The author was partially supported by National Science Foundation Grant DMS 0901124
 Received by the editors November 2009.
 Communicated by F. Brackx.
 2000 Mathematics Subject Classification : 30C15,30D50.
 Key words and phrases : Angular derivative, fixed point.

