On a certain generalization of the Carathéodory-Julia-Wolff theorem

Vladimir Bolotnikov*

Abstract

Given an analytic self-mapping *s* of the open unit disk \mathbb{D} and given a Blaschke product *b* of degree *k*, we present necessary and sufficient conditions for *s* – *b* to have exactly *k* zeros inside \mathbb{D} . As a corollary, we obtain a Carathéodory-Julia-Wolff type theorem for meromorphic functions of the form *s*/*b*.

1 Introduction

Let \mathbb{D} be the open unit disk of the complex plane and let \mathbb{T} be the unit circle. The class of all functions *s* analytic on \mathbb{D} and mapping \mathbb{D} into itself will be denoted by S. The values of *s* and *s'* at $t_0 \in \mathbb{T}$ will be understood in the sense of nontangential limits

$$s(t_0) := \lim_{z \to t_0} s(z) \text{ and } s'(t_0) := \lim_{z \to t_0} s'(z),$$
 (1.1)

provided the latter limits exist. In (1.1) and in what follows, we write $z \widehat{\rightarrow} t_0$ if a point $z \in \mathbb{D}$ tends to a boundary point $t_0 \in \mathbb{T}$ nontangentially, i.e., so that $|z - t_0| < \alpha(1 - |z|)$ for some $\alpha > 1$. We will write $z \rightarrow t_0$ if z tends to t_0 unrestrictedly (in \mathbb{D} or in \mathbb{C} which will be clear from the context).

If $s \in S$ and $\lambda \in \mathbb{T}$, the function $\Re\left(\frac{\lambda+s(z)}{\lambda-s(z)}\right)$ is positive and harmonic in \mathbb{D} and therefore, there exists a non-negative Borel measure $\mu_{s,\lambda}$ (called the *Aleksandrov*-

Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 311-319

^{*}The author was partially supported by National Science Foundation Grant DMS 0901124 Received by the editors November 2009.

Communicated by F. Brackx.

²⁰⁰⁰ Mathematics Subject Classification : 30C15, 30D50.

Key words and phrases : Angular derivative, fixed point.

Clark measure of *s* at λ) on \mathbb{T} such that

$$\Re\left(\frac{\lambda+s(z)}{\lambda-s(z)}\right) = \int_{\mathbb{T}} \frac{1-|z|^2}{|z-\zeta|^2} d\mu_{s,\lambda}(\zeta).$$
(1.2)

In particular, one can define the measure $\mu_{s,s(t_0)}$ if the limit $s(t_0)$ exists and $|s(t_0)| = 1$. On the other hand, if this is the case, then the limit

$$d_s(t_0) = \lim_{z \to t_0} \frac{1 - |s(z)|^2}{1 - |z|^2}$$
(1.3)

also exists (finite or infinite). The following theorem due to G. Julia [7], C. Carathéodory [6] and R. Nevanlinna [9] (see also [10, Chapter 6]) relates the characters from (1.1)–(1.3).

Theorem 1.1. For $s \in S$ and $t_0 \in \mathbb{T}$, the following are equivalent:

- (1) $d := \liminf_{z \to t_0} \frac{1 |s(z)|^2}{1 |z|^2} < \infty;$ (2) $d_s(t_0) < \infty;$
- (3) The limits (1.1) exist and satisfy $|s(t_0)| = 1$ and $t_0 s'(t_0) \overline{s(t_0)} \in \mathbb{R}$.
- (4) The limit $s(t_0)$ exists, $|s(t_0)| = 1$, and the corresponding Aleksandrov-Clark measure $\mu_{s,s(t_0)}$ has an atom at t_0 .

Moreover, if these conditions hold, then

$$d = d_s(t_0) = t_0 s'(t_0) \overline{s(t_0)} = \frac{1}{\mu_{s,s(t_0)}(\{t_0\})} > 0.$$
(1.4)

We will denote by \mathcal{B}_k the set of all Blaschke products of degree k. Since every $b \in \mathcal{B}_k$ is analytic on \mathbb{T} , it is defined everywhere on \mathbb{T} along with all its derivatives. Furthermore, the existence of the finite limit $d_b(t_0)$ is obvious and the equalities (1.4) are verified directly using the Taylor expansion of b at t_0 and the symmetry relation $b(z) = 1/\overline{b(1/\overline{z})}$. The following proposition follows immediately from Theorem 1.1.

Lemma 1.2. Let $s \in S$, $b \in B_k$, $t_0 \in \mathbb{T}$ and let us assume that the boundary limit $s(t_0)$ exists and equals $b(t_0)$. Then the following are equivalent:

- 1. The limit $s'(t_0)$ exist and satisfies $t_0\overline{b(t_0)}(b'(t_0) s'(t_0)) \ge 0$.
- 2. The limit $d_s(t_0)$ exists and satisfies $d_s(t_0) \le d_b(t_0)$.
- 3. The Aleksandrov-Clark measures $\mu_{s,b(t_0)}$ and $\mu_{b,b(t_0)}$ have atoms at t_0 which satisfy $\mu_{s,b(t_0)}(\{t_0\}) \ge \mu_{b,b(t_0)}(\{t_0\})$.

Let us consider the function f of the form f = s - b where $s \in S$, $b \in \mathcal{B}_k$ and let us denote by $N_{\mathbb{D}}(f)$ the number of zeros of f (counted with multiplicities) in \mathbb{D} . It follows from the Schwarz-Pick lemma that if $s \not\equiv b$, then $N_{\mathbb{D}}(s - b) \leq k$. The following theorem is the main result of this note. **Theorem 1.3.** Let $s \in S$ and $b \in B_k$ and let us assume that $s \not\equiv b$. Then $N_{\mathbb{D}}(s-b) < k$ if and only if there exists a point $t_0 \in \mathbb{T}$ such that the boundary limits $s(t_0)$ and $d_s(t_0)$ exist and satisfy

$$s(t_0) = b(t_0)$$
 and $d_s(t_0) \le d_b(t_0)$. (1.5)

Moreover, if $N_{\mathbb{D}}(s-b) = n < k$, then there are at most k - n points $t_0 \in \mathbb{T}$ subject to (1.5).

Observe that by Lemma 1.2, the second condition in (1.5) can be equivalently replaced by inequality $t_0\overline{b(t_0)}$ ($b'(t_0) - s'(t_0)$) ≥ 0 or by inequality $\mu_{s,b(t_0)}(\{t_0\}) \geq \mu_{b,b(t_0)}(\{t_0\})$.

Theorem 1.3 clarifies how distinct *s* and *b* must be on \mathbb{T} in order to guarantee $N_{\mathbb{D}}(s-b) = k$. Using the boundary interpolation results from [5] it can be shown that for each $b \in \mathcal{B}_k$ and any sequence $\{t_i\}_{i>1} \subset \mathbb{T}$, there exists $s \in S$ such that

$$s(z) - b(z) = O(z - t_i)$$
 as $z \widehat{\rightarrow} t_i$ for $i = 1, 2, \dots$ (1.6)

and still $N_{\mathbb{D}}(s-b) = k$. Theorem 1.3 shows that in this case we have necessarily $d_s(t_i) > d_b(t_i)$ for every $i \ge 1$.

To conclude the introduction we remark that in case $b(z) \equiv z$, Theorem 1.3 amounts to the Carathéodory-Julia-Wolff theorem: If $s \in S$ ($s \neq id$) has no fixed points in \mathbb{D} , then there exists a unique point $t_0 \in \mathbb{T}$ such that $s(t_0) = t_0$ and $d_s(t_0) =$ $s'(t_0) \leq 1$. In Section 3 we will extend this theorem to the class of meromorphic functions of the form s/b where $s \in S$ and b is a finite Blaschke product.

2 Proof of Theorem 1.3

To prove Theorem 1.3 we will use the following auxiliary construction. Let us assume that $N_{\mathbb{D}}(s-b) = n \leq k = \deg b$ and let z_1, \ldots, z_ℓ be the zeros of the function s - b of respective multiplicities n_1, \ldots, n_ℓ so that $n_1 + \ldots + n_\ell = n$. Then s and b have the same n_i first Taylor coefficients at z_i for $i = 1, \ldots, \ell$. Let us denote these Taylor coefficients by c_{ij} :

$$\frac{s^{(j)}(z_i)}{j!} = \frac{b^{(j)}(z_i)}{j!} = c_{ij} \quad \text{for} \quad j = 0, \dots, n_i - 1; \ i = 1, \dots, \ell.$$
(2.1)

Let $T = \text{diag}\{T_1, \ldots, T_\ell\}$ be the diagonal block matrix with the diagonal block T_i equal the upper triangular $n_i \times n_i$ Jordan block with the number $\overline{z}_i \in \mathbb{D}$ on the main diagonal, let *E* be the row vector

 $E = \begin{bmatrix} E_1 & \dots & E_\ell \end{bmatrix}$, where $E_i = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix} \in \mathbb{C}^{1 \times n_i}$

and let $C \in \mathbb{C}^n$ be defined from the numbers c_{ij} as follows:

 $C = \begin{bmatrix} C_1 & \dots & C_\ell \end{bmatrix}$, where $C_i = \begin{bmatrix} \overline{c}_{i,0} & \dots & \overline{c}_{i,n_i-1} \end{bmatrix} \in \mathbb{C}^{1 \times n_i}$.

We next let $P \in \mathbb{C}^{n \times n}$ to denote the Schwarz-Pick matrix

$$P = \left[\left[\frac{1}{m!r!} \frac{\partial^{m+r}}{\partial z^m \partial \bar{\zeta}^r} \frac{1 - b(z)\overline{b(\zeta)}}{1 - z\bar{\zeta}} \Big|_{\substack{z = z_i \\ \zeta = z_j}} \right]_{m=0,\dots,n_i-1}^{r=0,\dots,n_j-1} \right]_{i,j=1}^{\ell}$$
(2.2)

which is known to be positive definite whenever $n := n_1 + ... + n_\ell \leq k := \deg b$. This matrix can be alternatively defined as the unique solution of the Stein equation

$$P - T^* P T = E^* E - C^* C (2.3)$$

where *T*, *E* and *C* are defined as above. The verification of (2.3) for *P* of the form (2.2) is straightforward and the uniqueness follows from the fact that all the eigenvalues of *T* are in \mathbb{D} . We next define the 2 × 2 matrix function

$$\Theta(z) = I_2 - (1 - z\bar{\mu})K(z,\mu)J, \quad \text{where} \quad J = \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}, \quad (2.4)$$

 μ is an arbitrary point in **T** and

$$K(z,\mu) = \begin{bmatrix} E \\ C \end{bmatrix} (I_n - zT)^{-1} P^{-1} (I_n - \bar{\mu}T^*)^{-1} \begin{bmatrix} E^* & C^* \end{bmatrix}.$$

An easy computation based solely on the Stein identity (2.3) shows that

$$J - \Theta(z)J\Theta(z)^* = (1 - |z|^2)K(z, z)$$
(2.5)

which implies in particular that Θ is *J*-inner in \mathbb{D} :

$$\Theta(z)J\Theta(z)^* \le J \text{ if } z \in \mathbb{D}, \quad \Theta(t)J\Theta(t)^* = J \text{ if } t \in \mathbb{T}.$$
(2.6)

Another calculation based on (2.3) gives

$$\det \Theta(z) = \prod_{i=1}^{\ell} \left(\frac{(z - z_i)(\bar{\mu} - \bar{z}_i)}{(1 - z\bar{z}_i)(1 - \bar{\mu}z_i)} \right)^{n_i}.$$
(2.7)

The role of the function Θ in interpolation theory is justified by the following well-known result. In its formulation, we use the symbol $\mathcal{B}H^{\infty}$ to denote the closed unit ball of the Hardy space H^{∞} of the unit disk.

Theorem 2.1. Let
$$\Theta = \begin{bmatrix} \theta_{11} & \theta_{21} \\ \theta_{12} & \theta_{22} \end{bmatrix}$$
 be defined as in (2.4). Then the linear fractional formula

$$g = \mathbf{T}_{\Theta}[\sigma] := \frac{\theta_{11}\sigma + \theta_{12}}{\theta_{21}\sigma + \theta_{22}}, \quad \sigma \in \mathcal{B}H^{\infty},$$
(2.8)

establishes a one-to-one correspondence between $\mathcal{B}H^{\infty}$ and the set of all functions $g \in \mathcal{B}H^{\infty}$ such that

$$g^{(j)}(z_i) = j!c_{ij}$$
 for $j = 0, ..., n_i - 1; i = 1, ..., \ell.$ (2.9)

Furthermore, if $\sigma \in \mathcal{B}_q$ *, then* $\mathbf{T}_{\Theta}[\sigma] \in \mathcal{B}_{n+q}$ *.*

The set $\mathcal{B}H^{\infty}$ (sometimes called the *Schur class*) consists of all analytic functions mapping \mathbb{D} into the closed unit disk $\overline{\mathbb{D}}$ so that the inclusion $\mathcal{S} \subset \mathcal{B}H^{\infty}$ is clear. On the other hand, if a function $f \in \mathcal{B}H^{\infty}$ does not belong to \mathcal{S} , it follows from the maximum modulus principle that f is a unimodular constant function (that is, $f \in \mathcal{B}_0$). Thus, $\mathcal{B}H^{\infty} = \mathcal{S} \cup \mathcal{B}_0$. We supplement Theorem 2.1 by several simple observations. We first observe that for g and σ related as in (2.8),

$$\begin{bmatrix} 1 & -g \end{bmatrix} \Theta = u_g \begin{bmatrix} 1 & -\sigma \end{bmatrix}, \text{ where } u_g := \theta_{11} - \theta_{21}g. \tag{2.10}$$

It follows from (2.10) that if $u_g(\zeta) = 0$, then $\Theta(\zeta)$ is not invertible so that $\det \Theta(\zeta) = 0$. Thus we conclude from (2.7) that $u_g(z) \neq 0$ for every $z \notin \{z_1, \ldots, z_\ell\}$.

Lemma 2.2. Let g and σ be related as in (2.8) and let $t_0 \in \mathbb{T}$. Then

- 1. The limit $g(t_0)$ exists if and only if $\sigma(t_0)$ exists.
- 2. $|g(t_0)| = 1$ if and only if $|\sigma(t_0)| = 1$.
- 3. In the latter case, the limits $d_g(t_0)$ and $d_{\sigma}(t_0)$ are related by

$$d_g(t_0) = \begin{bmatrix} 1 & -g(t_0) \end{bmatrix} K(t_0, t_0) \begin{bmatrix} \frac{1}{-g(t_0)} \end{bmatrix} + |u_g(t_0)|^2 d_\sigma(t_0).$$
(2.11)

Proof: The first statement follows directly from (2.8). The second statement follows from (2.10) since $\Theta(t_0)$ is *J*-unitary (see the second formula in (2.6)). To complete the proof we multiply both parts of (2.5) by the row-vector $\begin{bmatrix} 1 & -g(z) \end{bmatrix}$ on the left, by its adjoint on the right, divide the resulting equality by $1 - |z|^2$ and take into account formula (2.4) for *J* to get

$$\frac{1 - |g(z)|^2}{1 - |z|^2} = \begin{bmatrix} 1 & -g(z) \end{bmatrix} K(z, z) \begin{bmatrix} \frac{1}{-g(z)} \end{bmatrix} + |u_g(z)|^2 \frac{1 - |\sigma(z)|^2}{1 - |z|^2}.$$
 (2.12)

Upon passing to the limit as $z \rightarrow t_0$ in the latter equality we get (2.11). Since the first term on the right hand side of (2.12) tends to a finite limit and since $u(t_0) \neq 0$, the limits $d_g(t_0)$ and $d_\sigma(t_0)$ in (2.11) are finite or infinite simultaneously.

Lemma 2.3. Let $s \in S$ and $b \in B_k$ meet conditions (2.1). Then

$$s = \mathbf{T}_{\Theta}[\widetilde{s}]$$
 and $b = \mathbf{T}_{\Theta}[\widetilde{b}]$ for some $\widetilde{s} \in \mathcal{B}H^{\infty}$ and $\widetilde{b} \in \mathcal{B}_{k-n}$. (2.13)

Furthermore, the limits $s(t_0)$ *and* $d_s(t_0)$ *exist and satisfy* (1.5) *if and only if the limits* $\tilde{s}(t_0)$ *and* $d_{\tilde{s}}(t_0)$ *exist and satisfy*

$$\widetilde{s}(t_0) = \widetilde{b}(t_0) \quad and \quad d_{\widetilde{s}}(t_0) \le d_{\widetilde{b}}(t_0).$$
(2.14)

Proof: The first statement follows from Theorem 2.1. The existence part of the second statement follows from Lemma 2.2. The equivalence of the first equalities in (1.5) and (2.14) follows since Θ is analytic and invertible at t_0 . Now let us assume that all the limits in (1.5) and (2.14) exist and that $s(t_0) = b(t_0)$. By part (3) in Lemma 2.2,

$$d_s(t_0) = \begin{bmatrix} 1 & -s(t_0) \end{bmatrix} K(t_0, t_0) \begin{bmatrix} \frac{1}{-s(t_0)} \end{bmatrix} + |u_s(t_0)|^2 d_{\widetilde{s}}(t_0),$$
(2.15)

$$d_b(t_0) = \begin{bmatrix} 1 & -b(t_0) \end{bmatrix} K(t_0, t_0) \begin{bmatrix} \frac{1}{-b(t_0)} \end{bmatrix} + |u_b(t_0)|^2 d_{\widetilde{b}}(t_0),$$
(2.16)

where according to (2.10), $u_s = \theta_{11} - \theta_{21}s$ and $u_b = \theta_{11} - \theta_{21}b$. Due to the assumption $s(t_0) = b(t_0)$, the first terms on the right in (2.15) and (2.16) are equal and also $u_s(t_0) = u_b(t_0)$. Subtracting (2.16) from (2.15) we get

$$d_{s}(t_{0}) - d_{b}(t_{0}) = |u_{b}(t_{0})|^{2} \left(d_{\widetilde{s}}(t_{0}) - d_{\widetilde{b}}(t_{0}) \right)$$

and since $u(t_0) \neq 0$, the equivalence of inequalities in (1.5) and (2.14) follows.

Proof of Theorem 1.3: To prove the sufficiency part we will argue via contradiction. Let us assume that $N_{\mathbb{D}}(s-b) = k$ and that (1.5) holds for some $t_0 \in \mathbb{T}$. By Lemma 2.3, s and b are of the form (2.13) where $\tilde{b} \in \mathcal{B}_{k-k} = \mathcal{B}_0$. Thus $\tilde{b} \equiv \gamma \in \mathbb{T}$ and therefore, $d_{\tilde{b}}(t_0) = 0$. By Lemma 2.3, $\tilde{s}(t_0) = \gamma$ and $0 \leq d_{\tilde{s}}(t_0) \leq d_{\tilde{b}}(t_0) = 0$. Since $|s(t_0)| = 1$ and $d_{\tilde{s}}(t_0) = 0$, we conclude by the Julia lemma [7] that $\tilde{s} \equiv \gamma$ which implies that $s \equiv b$. This contradicts the assumption of the theorem and completes the proof of the sufficiency part.

The necessity part will be first proved for the case $N_{\mathbb{D}}(s-b) = 0$, that is, under the assumption that $s(z) \neq b(z)$ for every $z \in \mathbb{D}$. Define

$$f_r(z) = \frac{r-1}{r} s(z) - b(z)$$
 for $r \ge 1$.

By Rouche theorem, $N_{\mathbb{D}}(f_r) = k$ for every r. Let us denote by ζ_r one (any one) of the zeros of f_r . If the set $\{\zeta_r\}$ had an accumulation point $\zeta \in \mathbb{D}$, then we would have $s(\zeta) = b(\zeta)$ and $f(\zeta) = 0$ which contradicts the assumption $N_{\mathbb{D}}(s - b) = 0$. Thus, $\{\zeta_r\}$ has an accumulation point $t_0 \in \mathbb{T}$. Take a sequence $\{\zeta_{r_i}\}$ converging to t_0 . Thus,

$$\frac{r_i - 1}{r_i} s(\zeta_{r_i}) = b(\zeta_{r_i})$$
(2.17)

and therefore,

$$\frac{1 - |s(\zeta_{r_i})|^2}{1 - |\zeta_{r_i}|^2} = \frac{1 - \frac{r_i^2}{(r_i - 1)^2} |b(\zeta_{r_i})|^2}{1 - |\zeta_{r_i}|^2} \le \frac{1 - |b(\zeta_{r_i})|^2}{1 - |\zeta_{r_i}|^2}.$$
(2.18)

Since *b* is a finite Blaschke product, the limit of the rightmost ratio in (2.18) exists and equals $d_b(t_0)$. Now we conclude from (2.18) that

$$d := \liminf_{z \to t_0} \frac{1 - |s(z)|^2}{1 - |z|^2} \le d_b(t_0) < \infty.$$
(2.19)

Then by Theorem 1.1, the nontangential limits $s(t_0)$ and $d_s(t_0)$ exist and satisfy $s(t_0) = b(t_0)$ (due to (2.17)) and $d_s(t_0) = d \le d_b(t_0)$ (by (2.19)).

For the general case, let us assume that $N_{\mathbb{D}}(s-b) = n < k$ and let $z_1, \ldots, z_\ell \in \mathbb{D}$ be the zeros of the function s - b of respective multiplicities n_1, \ldots, n_ℓ so that $n_1 + \ldots + n_\ell = n$. By Lemma 2.3, s and b are of the form (2.13) where $\tilde{s} \in \mathcal{B}H^\infty$ and $\tilde{b} \in \mathcal{B}_{k-n}$. Since $s(\zeta) \neq b(\zeta)$ and det $\Theta(\zeta) \neq 0$ for every $\zeta \in \mathbb{D} \setminus \{z_1, \ldots, z_\ell\}$, it is readily seen that $\tilde{s}(\zeta) \neq \tilde{b}(\zeta)$ for every such point ζ . On the other hand, it is well known (see e.g., [3]) that the value $\sigma(z_i)$ of the parameter σ in (2.8) at the interpolation node z_i completely determines the $(n_i + 1)$ -th Taylor coefficient $g^{(n_i)}(z_i)/n_i!$ of $g = \mathbf{T}_{\Theta}(\sigma)$. Since we assumed that s - b has zero of multiplicity n_i at z_i , i.e., that $s^{(n_i)}(z_i) \neq s^{(n_i)}(z_i)$, it then follows that $\tilde{s}(z_i) \neq \tilde{b}(z_i)$ for $i = 1, \ldots, k$. Thus $N_{\mathbb{D}}(\tilde{s} - \tilde{b}) = 0$ and by the first part of the proof, there exists a point $t_0 \in \mathbb{T}$ such that the limits $\tilde{s}(t_0)$ and $d_{\tilde{s}}(t_0)$ exist and satisfy relations (2.14). But then it follows from Lemma 2.3 that the limits $s(t_0)$ and $d_s(t_0)$ exist and satisfy relations (1.5).

To prove the last statement of the theorem (again via contradiction), we assume that $N_{\mathbb{D}}(s-b) = n < k$ and that there exist r := k - n + 1 points $t_1, \ldots, t_r \in \mathbb{T}$ such that

$$s(t_i) = b(t_i)$$
 and $d_s(t_i) \le d_b(t_i)$ for $i = 1, \dots, r$.

Then the functions $\tilde{s} \in \mathcal{B}H^{\infty}$ and $\tilde{b} \in \mathcal{B}_{k-n}$ from representations (2.13) meet conditions

$$\widetilde{s}(t_i) = b(t_i)$$
 and $d_{\widetilde{s}}(t_i) \le d_{\widetilde{b}}(t_i)$ for $i = 1, \dots, r$, (2.20)

by Lemma 2.3. The $r \times r$ boundary Schwarz-Pick matrix

$$P = [p_{ij}]_{i,j=1}^r \text{ with entries } p_{ij} = \begin{cases} \frac{d_{\widetilde{b}}(t_i)}{\widetilde{b}(t_i)} & \text{if } i = j, \\ \frac{1 - \widetilde{b}(t_i)\overline{\widetilde{b}(t_j)}}{1 - t_i\overline{t_j}} & \text{if } i \neq j, \end{cases}$$

constructed from *b* is positive semidefinite. By Lemma 2.1 in [4],

$$\operatorname{rank} P = \min\{r, \deg b\}.$$
(2.21)

Let us think for a moment that b is given and we are looking for a function $\tilde{s} \in \mathcal{B}H^{\infty}$ satisfying interpolation conditions (2.20). Then we have a well-known boundary Nevanlinna-Pick problem [9] which has a unique solution if and only if the matrix P introduced just above is positive semidefinite and singular; see e.g., [2, 3, 5]. This is exactly what we have since by (2.21), rank $P = \deg b = n - k < r$. Thus, the only function $\tilde{s} \in \mathcal{B}H^{\infty}$ satisfying conditions (2.20) is the function \tilde{b} itself. Therefore, conditions (2.20) imply that $\tilde{s} \equiv \tilde{b}$ and therefore, that $s = \mathbf{T}_{\Theta}[\tilde{s}] \equiv \mathbf{T}_{\Theta}[\tilde{b}] = b$ which gives the desired contradiction.

3 The Carathéodory-Julia-Wolff theorem for generalized Schur functions

In this concluding section we demonstrate that a version of Theorem 1.3 can be formulated in terms of fixed points of meromorphic functions g of the form $g = s/\vartheta$ where $s \in \mathcal{B}H^{\infty}$ and a finite Blaschke product ϑ do not have common zeros in \mathbb{D} . These functions (commonly known as generalized Schur functions) appeared in [1, 11] in certain interpolation context and have been studied later in [8]. We denote by S_k the class of generalized Schur functions g with the denominator $\vartheta \in \mathcal{B}_k$ in the above representation. Let us say that a point $z_0 \in \mathbb{D}$ is a fixed point of g of multiplicity (fixed point index) m if the function $z \to g(z) - z$ has zero of multiplicity m at z_0 .

Theorem 3.1. Let $g \in S_k$. If g has less than k + 1 fixed points in \mathbb{D} counted with multiplicities, then there exists a boundary fixed point $t_0 \in \mathbb{T}$ such that the angular derivative $g'(t_0)$ exists and satisfies $g'(t_0) \leq 1$.

Proof: The statement trivially holds true if g is a unimodular constant (i.e., $g \in \mathcal{B}_0$). Also it is easily verified if g is of the form $g = \gamma/\vartheta$ for $\gamma \in \mathcal{B}_0$ and $\vartheta \in \mathcal{B}_k$ (k > 0). Indeed, every g of this form has no fixed points in $\mathbb{C} \setminus \mathbb{T}$ and it has at least one fixed point $t_0 \in \mathbb{T}$. Then $\vartheta(t_0) = \gamma \overline{t}_0$ and by (1.4),

$$d_{\vartheta}(t_0) = t_0 \vartheta'(t_0) \overline{\vartheta(t_0)} = \overline{\gamma} t_0^2 \vartheta'(t_0) > 0.$$
(3.1)

On the other hand, $g'(t_0) = -\frac{\gamma \vartheta'(t_0)}{\vartheta(t_0)^2} = -\frac{\gamma \vartheta'(t_0)}{\gamma^2 \overline{t}_0^2} = -\overline{\gamma} t_0^2 \vartheta'(t_0)$ which together with (3.1) implies $g'(t_0) < 0$, that is, even more than wanted.

Since $\mathcal{B}H^{\infty} = S \cup \mathcal{B}_0$, it remains to consider the case where g is of the form $g = s/\vartheta$ for some $s \in S$ and $\vartheta \in \mathcal{B}_k$ having no common zeros in \mathbb{D} . Let $b := z\vartheta \in \mathcal{B}_{k+1}$. Then every zero of the function s - b is a fixed point for g and vice versa. Then we have from the assumption of the theorem that $N_{\mathbb{D}}(s-b) < k+1$; so we conclude from Theorem 1.3 that there is a point $t_0 \in \mathbb{T}$ such that the limits (1.1) exist and satisfy

$$s(t_0) = b(t_0) = t_0 \vartheta(t_0)$$
 and $t_0 \overline{b(t_0)} (b'(t_0) - s'(t_0)) \ge 0.$ (3.2)

Therefore the boundary limits $g(t_0)$ and $g'(t_0)$ exist. It follows from the first equality in (3.2) that $g(t_0) = t_0$ so that t_0 is a fixed boundary point for g. We now use equalities $b = z\vartheta$ and $s = g\vartheta$ to write the second relation in (3.2) in terms of g and ϑ as

$$0 \le t_0 \overline{b(t_0)} (b'(t_0) - s'(t_0)) = t_0 \overline{t_0 \vartheta(t_0)} (t_0 \vartheta'(t_0) + \vartheta(t_0) - g'(t_0) \vartheta(t_0) - g(t_0) \vartheta'(t_0)) = 1 - g'(t_0)$$

where the last equality follows since $g(t_0) = t_0$ and $|t_0| = |\vartheta(t_0)| = 1$. Thus, $g'(t_0) \le 1$ as desired.

Note that in the classical case (k = 0), the boundary derivative $g'(t_0)$ is necessarily nonnegative at any boundary fixed point and thus, the bound $g'(t_0) \leq 1$ for $g \in \mathcal{B}H^{\infty}$ means that $|g'(t_0)| \leq 1$. On the other hand, if $g \in \mathcal{B}H^{\infty}$ has a (unique) fixed point z_0 in \mathbb{D} , then $|g'(z_0)| \leq 1$ by the Schwarz-Pick lemma. It therefore follows that every function $g \in \mathcal{B}H^{\infty}$ has a unique fixed point $z_0 \in \overline{\mathbb{D}}$ (the *Denjoy-Wolff point* of g) such that $|g'(z_0)| \leq 1$. From complex dynamics point of view, it might be of interest to characterize meromorphic (or at least rational) functions $g \in S_{\kappa}$ having a Denjoy-Wolff point (maybe not unique). The following example shows that in general, such a point may not exist. Indeed, the function

$$g(z) = \frac{z}{\frac{z-\frac{1}{2}}{1-\frac{1}{2}z}} = \frac{z(2-z)}{2z-1}$$

belongs to S_1 and has two fixed points $z_0 = 0$ and $t_0 = 1$. Furthermore, $g'(z) = \frac{-2z^2+2z-2}{(2z-1)^2}$ and thus g'(0) = g'(1) = -2 (which of course is consistent with Theorem 3.1).

References

- [1] N. I. Akhiezer, On a minimum problem in the theory of functions, and on the number of roots of an algebraic equation which lie inside the unit circle, Izv. Akad. Nauk 9 (1930), 1169-1189.
- [2] J. A. Ball, Interpolation problems of Pick-Nevanlinna and Loewner type for meromorphic matrix functions, Integral Equations Operator Theory 6 (1983), 804-840.
- [3] J. A. Ball and J. W. Helton, *Interpolation problems of Pick-Nevanlinna and Loewner types for meromorphic matrix functions: parameterization of the set of all solutions*, Integral Equations Operator Theory **9** (1986), 155-203.
- [4] V. Bolotnikov, *A uniqueness result on boundary interpolation*, Proc. Amer. Math. Soc. **136** (2008), no. 5, 1705–1715.
- [5] V. Bolotnikov and A. Kheifets, *The higher order Carathéodory–Julia theorem and related boundary interpolation problems*, Oper. Theory Adv. Appl. OT 179, Birkhäuser, 2007, pp. 63–102.
- [6] C. Carathéodory, Über die Winkelderivierten von beschränkten analytischen Funktionen, Sitz. Preuss. Akad. Phys.-Math., 4 (1929), 1–18.
- [7] G. Julia, Extension d'un lemma de Schwartz, Acta Math. 42 (1920), 349–355.
- [8] M. G. Kreĭn and H. Langer, Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Π_{κ} zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen Math. Nachr. 77 (1977), 187–236.
- [9] R. Nevanlinna, *Remarques sur le lemme de Schwarz*, C. R. Acad. Sci. Paris **188** (1929), 1027-1029.
- [10] D. Sarason, Sub–Hardy Hilbert Spaces in the Unit Disk, Wiley, New York, 1994.
- [11] T. Takagi, On an algebraic problem related to an analytic theorem of Carathéodory and Fejér, Japan J. of Math. 1 (1924), 83–93.
- [12] J. Wolff, Sur une generalisation d'un theoreme de Schwarz, C.R. Acad. Sci., 182 (1926), 918920

Department of Mathematics The College of William and Mary Williamsburg, VA 23187-8795, USA email:vladi@math.wm.edu