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Abstract

Given an analytic self-mapping s of the open unit disk D and given a
Blaschke product b of degree k, we present necessary and sufficient condi-
tions for s − b to have exactly k zeros inside D. As a corollary, we obtain
a Carathéodory-Julia-Wolff type theorem for meromorphic functions of the
form s/b.

1 Introduction

Let D be the open unit disk of the complex plane and let T be the unit circle. The
class of all functions s analytic on D and mapping D into itself will be denoted by
S . The values of s and s′ at t0 ∈ T will be understood in the sense of nontangential
limits

s(t0) := lim
z→̂t0

s(z) and s′(t0) := lim
z→̂t0

s′(z), (1.1)

provided the latter limits exist. In (1.1) and in what follows, we write z→̂t0 if
a point z ∈ D tends to a boundary point t0 ∈ T nontangentially, i.e., so that
|z − t0| < α(1 − |z|) for some α > 1. We will write z → t0 if z tends to t0 unre-
strictedly (in D or in C which will be clear from the context).

If s ∈ S and λ ∈ T, the function ℜ
(

λ+s(z)
λ−s(z)

)
is positive and harmonic in D and

therefore, there exists a non-negative Borel measure µs,λ (called the Aleksandrov-
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Clark measure of s at λ) on T such that

ℜ

(
λ + s(z)

λ − s(z)

)
=

∫

T

1 − |z|2

|z − ζ|2
dµs,λ(ζ). (1.2)

In particular, one can define the measure µs,s(t0) if the limit s(t0) exists and |s(t0)| =
1. On the other hand, if this is the case, then the limit

ds(t0) = lim
z→̂t0

1 − |s(z)|2

1 − |z|2
(1.3)

also exists (finite or infinite). The following theorem due to G. Julia [7], C. Cara-
théodory [6] and R. Nevanlinna [9] (see also [10, Chapter 6]) relates the characters
from (1.1)–(1.3).

Theorem 1.1. For s ∈ S and t0 ∈ T, the following are equivalent:

(1) d := lim inf
z→t0

1 − |s(z)|2

1 − |z|2
< ∞; (2) ds(t0) < ∞;

(3) The limits (1.1) exist and satisfy |s(t0)| = 1 and t0s′(t0)s(t0) ∈ R.

(4) The limit s(t0) exists, |s(t0)| = 1, and the corresponding Aleksandrov-

Clark measure µs,s(t0) has an atom at t0.

Moreover, if these conditions hold, then

d = ds(t0) = t0s′(t0)s(t0) =
1

µs,s(t0)({t0})
> 0. (1.4)

We will denote by Bk the set of all Blaschke products of degree k. Since ev-
ery b ∈ Bk is analytic on T, it is defined everywhere on T along with all its
derivatives. Furthermore, the existence of the finite limit db(t0) is obvious and
the equalities (1.4) are verified directly using the Taylor expansion of b at t0 and

the symmetry relation b(z) = 1/b(1/z̄). The following proposition follows im-
mediately from Theorem 1.1.

Lemma 1.2. Let s ∈ S , b ∈ Bk, t0 ∈ T and let us assume that the boundary limit s(t0)
exists and equals b(t0). Then the following are equivalent:

1. The limit s′(t0) exist and satisfies t0b(t0) (b
′(t0)− s′(t0)) ≥ 0.

2. The limit ds(t0) exists and satisfies ds(t0) ≤ db(t0).

3. The Aleksandrov-Clark measures µs,b(t0) and µb,b(t0) have atoms at t0 which satisfy

µs,b(t0)({t0}) ≥ µb,b(t0)({t0}).

Let us consider the function f of the form f = s − b where s ∈ S , b ∈ Bk and
let us denote by ND( f ) the number of zeros of f (counted with multiplicities) in
D. It follows from the Schwarz-Pick lemma that if s 6≡ b, then ND(s − b) ≤ k.
The following theorem is the main result of this note.
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Theorem 1.3. Let s ∈ S and b ∈ Bk and let us assume that s 6≡ b. Then ND(s− b) < k
if and only if there exists a point t0 ∈ T such that the boundary limits s(t0) and ds(t0)
exist and satisfy

s(t0) = b(t0) and ds(t0) ≤ db(t0). (1.5)

Moreover, if ND(s − b) = n < k, then there are at most k − n points t0 ∈ T subject to
(1.5).

Observe that by Lemma 1.2, the second condition in (1.5) can be equivalently

replaced by inequality t0b(t0) (b
′(t0)− s′(t0)) ≥ 0 or by inequality µs,b(t0)

({t0}) ≥

µb,b(t0)({t0}).

Theorem 1.3 clarifies how distinct s and b must be on T in order to guarantee
ND(s − b) = k. Using the boundary interpolation results from [5] it can be shown
that for each b ∈ Bk and any sequence {ti}i≥1 ⊂ T, there exists s ∈ S such that

s(z)− b(z) = O(z − ti) as z→̂ti for i = 1, 2, . . . (1.6)

and still ND(s − b) = k. Theorem 1.3 shows that in this case we have necessarily
ds(ti) > db(ti) for every i ≥ 1.

To conclude the introduction we remark that in case b(z) ≡ z, Theorem 1.3
amounts to the Carathéodory-Julia-Wolff theorem: If s ∈ S (s 6= id) has no fixed
points in D, then there exists a unique point t0 ∈ T such that s(t0) = t0 and ds(t0) =
s′(t0) ≤ 1. In Section 3 we will extend this theorem to the class of meromorphic
functions of the form s/b where s ∈ S and b is a finite Blaschke product.

2 Proof of Theorem 1.3

To prove Theorem 1.3 we will use the following auxiliary construction. Let us
assume that ND(s − b) = n ≤ k = deg b and let z1, . . . , zℓ be the zeros of the
function s − b of respective multiplicities n1, . . . , nℓ so that n1 + . . . + nℓ = n.
Then s and b have the same ni first Taylor coefficients at zi for i = 1, . . . , ℓ. Let us
denote these Taylor coefficients by cij:

s(j)(zi)

j!
=

b(j)(zi)

j!
= cij for j = 0, . . . , ni − 1; i = 1, . . . , ℓ. (2.1)

Let T = diag{T1, . . . , Tℓ} be the diagonal block matrix with the diagonal block Ti

equal the upper triangular ni × ni Jordan block with the number zi ∈ D on the
main diagonal, let E be the row vector

E =
[
E1 . . . Eℓ

]
, where Ei =

[
1 0 . . . 0

]
∈ C

1×ni

and let C ∈ Cn be defined from the numbers cij as follows:

C =
[
C1 . . . Cℓ

]
, where Ci =

[
ci,0 . . . ci,ni−1

]
∈ C

1×ni .

We next let P ∈ Cn×n to denote the Schwarz-Pick matrix

P =





 1

m!r!

∂m+r

∂zm∂ζ̄r

1 − b(z)b(ζ)

1 − zζ̄

∣∣∣∣∣ z = zi

ζ = zj




r=0,...,nj−1

m=0,...,ni−1




ℓ

i,j=1

(2.2)
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which is known to be positive definite whenever n := n1 + . . . + nℓ ≤ k :=
deg b. This matrix can be alternatively defined as the unique solution of the Stein
equation

P − T∗PT = E∗E − C∗C (2.3)

where T, E and C are defined as above. The verification of (2.3) for P of the
form (2.2) is straightforward and the uniqueness follows from the fact that all the
eigenvalues of T are in D. We next define the 2 × 2 matrix function

Θ(z) = I2 − (1 − zµ̄)K(z, µ)J, where J =

[
1 0
0 −1

]
, (2.4)

µ is an arbitrary point in T and

K(z, µ) =

[
E
C

]
(In − zT)−1P−1(In − µ̄T∗)−1

[
E∗ C∗

]
.

An easy computation based solely on the Stein identity (2.3) shows that

J − Θ(z)JΘ(z)∗ = (1 − |z|2)K(z, z) (2.5)

which implies in particular that Θ is J-inner in D:

Θ(z)JΘ(z)∗ ≤ J if z ∈ D, Θ(t)JΘ(t)∗ = J if t ∈ T. (2.6)

Another calculation based on (2.3) gives

det Θ(z) =
ℓ

∏
i=1

(
(z − zi)(µ̄ − z̄i)

(1 − zz̄i)(1 − µ̄zi)

)ni

. (2.7)

The role of the function Θ in interpolation theory is justified by the following
well-known result. In its formulation, we use the symbol BH∞ to denote the
closed unit ball of the Hardy space H∞ of the unit disk.

Theorem 2.1. Let Θ =
[

θ11 θ21
θ12 θ22

]
be defined as in (2.4). Then the linear fractional formula

g = TΘ[σ] :=
θ11σ + θ12

θ21σ + θ22
, σ ∈ BH∞, (2.8)

establishes a one-to-one correspondence between BH∞ and the set of all functions
g ∈ BH∞ such that

g(j)(zi) = j!cij for j = 0, . . . , ni − 1; i = 1, . . . , ℓ. (2.9)

Furthermore, if σ ∈ Bq, then TΘ[σ] ∈ Bn+q.

The set BH∞ (sometimes called the Schur class) consists of all analytic func-
tions mapping D into the closed unit disk D so that the inclusion S ⊂ BH∞ is
clear. On the other hand, if a function f ∈ BH∞ does not belong to S , it follows
from the maximum modulus principle that f is a unimodular constant function
(that is, f ∈ B0). Thus, BH∞ = S ∪ B0. We supplement Theorem 2.1 by several
simple observations. We first observe that for g and σ related as in (2.8),

[
1 −g

]
Θ = ug

[
1 −σ

]
, where ug := θ11 − θ21g. (2.10)

It follows from (2.10) that if ug(ζ) = 0, then Θ(ζ) is not invertible so that
det Θ(ζ) = 0. Thus we conclude from (2.7) that ug(z) 6= 0 for every z 6∈ {z1, . . . , zℓ}.
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Lemma 2.2. Let g and σ be related as in (2.8) and let t0 ∈ T. Then

1. The limit g(t0) exists if and only if σ(t0) exists.

2. |g(t0)| = 1 if and only if |σ(t0)| = 1.

3. In the latter case, the limits dg(t0) and dσ(t0) are related by

dg(t0) =
[
1 −g(t0)

]
K(t0, t0)

[
1

−g(t0)

]
+ |ug(t0)|

2dσ(t0). (2.11)

Proof: The first statement follows directly from (2.8). The second statement
follows from (2.10) since Θ(t0) is J-unitary (see the second formula in (2.6)). To
complete the proof we multiply both parts of (2.5) by the row-vector

[
1 −g(z)

]

on the left, by its adjoint on the right, divide the resulting equality by 1− |z|2 and
take into account formula (2.4) for J to get

1 − |g(z)|2

1 − |z|2
=

[
1 −g(z)

]
K(z, z)

[
1

−g(z)

]
+ |ug(z)|

2 1 − |σ(z)|2

1 − |z|2
. (2.12)

Upon passing to the limit as z→̂t0 in the latter equality we get (2.11). Since the
first term on the right hand side of (2.12) tends to a finite limit and since u(t0) 6= 0,
the limits dg(t0) and dσ(t0) in (2.11) are finite or infinite simultaneously.

Lemma 2.3. Let s ∈ S and b ∈ Bk meet conditions (2.1). Then

s = TΘ[s̃] and b = TΘ[b̃] for some s̃ ∈ BH∞ and b̃ ∈ Bk−n. (2.13)

Furthermore, the limits s(t0) and ds(t0) exist and satisfy (1.5) if and only if the limits
s̃(t0) and ds̃(t0) exist and satisfy

s̃(t0) = b̃(t0) and ds̃(t0) ≤ d
b̃
(t0). (2.14)

Proof: The first statement follows from Theorem 2.1. The existence part of the
second statement follows from Lemma 2.2. The equivalence of the first equalities
in (1.5) and (2.14) follows since Θ is analytic and invertible at t0. Now let us
assume that all the limits in (1.5) and (2.14) exist and that s(t0) = b(t0). By part
(3) in Lemma 2.2,

ds(t0) =
[
1 −s(t0)

]
K(t0, t0)

[
1

−s(t0)

]
+ |us(t0)|

2ds̃(t0), (2.15)

db(t0) =
[
1 −b(t0)

]
K(t0, t0)

[
1

−b(t0)

]
+ |ub(t0)|

2d
b̃
(t0), (2.16)

where according to (2.10), us = θ11 − θ21s and ub = θ11 − θ21b. Due to the as-
sumption s(t0) = b(t0), the first terms on the right in (2.15) and (2.16) are equal
and also us(t0) = ub(t0). Subtracting (2.16) from (2.15) we get

ds(t0)− db(t0) = |ub(t0)|
2
(
ds̃(t0)− d

b̃
(t0)

)
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and since u(t0) 6= 0, the equivalence of inequalities in (1.5) and (2.14) follows.

Proof of Theorem 1.3: To prove the sufficiency part we will argue via contradic-
tion. Let us assume that ND(s − b) = k and that (1.5) holds for some t0 ∈ T. By

Lemma 2.3, s and b are of the form (2.13) where b̃ ∈ Bk−k = B0. Thus b̃ ≡ γ ∈ T

and therefore, d
b̃
(t0) = 0. By Lemma 2.3, s̃(t0) = γ and 0 ≤ ds̃(t0) ≤ d

b̃
(t0) = 0.

Since |s(t0)| = 1 and ds̃(t0) = 0, we conclude by the Julia lemma [7] that s̃ ≡ γ
which implies that s ≡ b. This contradicts the assumption of the theorem and
completes the proof of the sufficiency part.

The necessity part will be first proved for the case ND(s − b) = 0, that is,
under the assumption that s(z) 6= b(z) for every z ∈ D. Define

fr(z) =
r − 1

r
s(z)− b(z) for r ≥ 1.

By Rouche theorem, ND( fr) = k for every r. Let us denote by ζr one (any one) of
the zeros of fr. If the set {ζr} had an accumulation point ζ ∈ D, then we would
have s(ζ) = b(ζ) and f (ζ) = 0 which contradicts the assumption ND(s − b) = 0.
Thus, {ζr} has an accumulation point t0 ∈ T. Take a sequence {ζri

} converging
to t0. Thus,

ri − 1

ri
s(ζri

) = b(ζri
) (2.17)

and therefore,

1 − |s(ζri
)|2

1 − |ζri
|2

=
1 −

r2
i

(ri−1)2 |b(ζri
)|2

1 − |ζri
|2

≤
1 − |b(ζri

)|2

1 − |ζri
|2

. (2.18)

Since b is a finite Blaschke product, the limit of the rightmost ratio in (2.18) exists
and equals db(t0). Now we conclude from (2.18) that

d := lim inf
z→t0

1 − |s(z)|2

1 − |z|2
≤ db(t0) < ∞. (2.19)

Then by Theorem 1.1, the nontangential limits s(t0) and ds(t0) exist and satisfy
s(t0) = b(t0) (due to (2.17)) and ds(t0) = d ≤ db(t0) (by (2.19)).

For the general case, let us assume that ND(s − b) = n < k and let z1, . . . , zℓ ∈
D be the zeros of the function s − b of respective multiplicities n1, . . . , nℓ so that
n1 + . . . + nℓ = n. By Lemma 2.3, s and b are of the form (2.13) where s̃ ∈ BH∞

and b̃ ∈ Bk−n. Since s(ζ) 6= b(ζ) and det Θ(ζ) 6= 0 for every ζ ∈ D \ {z1, . . . , zℓ},

it is readily seen that s̃(ζ) 6= b̃(ζ) for every such point ζ. On the other hand,
it is well known (see e.g., [3]) that the value σ(zi) of the parameter σ in (2.8) at
the interpolation node zi completely determines the (ni + 1)-th Taylor coefficient

g(ni)(zi)/ni ! of g = TΘ(σ). Since we assumed that s − b has zero of multiplicity ni

at zi, i.e., that s(ni)(zi) 6= s(ni)(zi), it then follows that s̃(zi) 6= b̃(zi) for i = 1, . . . , k.

Thus ND(s̃ − b̃) = 0 and by the first part of the proof, there exists a point t0 ∈ T

such that the limits s̃(t0) and ds̃(t0) exist and satisfy relations (2.14). But then it
follows from Lemma 2.3 that the limits s(t0) and ds(t0) exist and satisfy relations
(1.5).
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To prove the last statement of the theorem (again via contradiction), we as-
sume that ND(s − b) = n < k and that there exist r := k− n + 1 points t1, . . . , tr ∈
T such that

s(ti) = b(ti) and ds(ti) ≤ db(ti) for i = 1, . . . , r.

Then the functions s̃ ∈ BH∞ and b̃ ∈ Bk−n from representations (2.13) meet
conditions

s̃(ti) = b̃(ti) and ds̃(ti) ≤ d
b̃
(ti) for i = 1, . . . , r, (2.20)

by Lemma 2.3. The r × r boundary Schwarz-Pick matrix

P = [pij]
r
i,j=1 with entries pij =





d
b̃
(ti) if i = j,

1 − b̃(ti)b̃(tj)

1 − titj
if i 6= j,

constructed from b is positive semidefinite. By Lemma 2.1 in [4],

rankP = min{r, deg b̃}. (2.21)

Let us think for a moment that b is given and we are looking for a function
s̃ ∈ BH∞ satisfying interpolation conditions (2.20). Then we have a well-known
boundary Nevanlinna-Pick problem [9] which has a unique solution if and only if
the matrix P introduced just above is positive semidefinite and singular; see e.g.,
[2, 3, 5]. This is exactly what we have since by (2.21), rankP = deg b = n − k < r.

Thus, the only function s̃ ∈ BH∞ satisfying conditions (2.20) is the function b̃ it-

self. Therefore, conditions (2.20) imply that s̃ ≡ b̃ and therefore, that s = TΘ[s̃] ≡

TΘ[b̃] = b which gives the desired contradiction.

3 The Carathéodory-Julia-Wolff theorem for generalized Schur

functions

In this concluding section we demonstrate that a version of Theorem 1.3 can
be formulated in terms of fixed points of meromorphic functions g of the form
g = s/ϑ where s ∈ BH∞ and a finite Blaschke product ϑ do not have common
zeros in D. These functions (commonly known as generalized Schur functions)
appeared in [1, 11] in certain interpolation context and have been studied later in
[8]. We denote by Sk the class of generalized Schur functions g with the denomi-
nator ϑ ∈ Bk in the above representation. Let us say that a point z0 ∈ D is a fixed
point of g of multiplicity (fixed point index) m if the function z → g(z) − z has
zero of multiplicity m at z0.

Theorem 3.1. Let g ∈ Sk. If g has less than k + 1 fixed points in D counted with
multiplicities, then there exists a boundary fixed point t0 ∈ T such that the angular
derivative g′(t0) exists and satisfies g′(t0) ≤ 1.
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Proof: The statement trivially holds true if g is a unimodular constant (i.e.,
g ∈ B0). Also it is easily verified if g is of the form g = γ/ϑ for γ ∈ B0 and ϑ ∈ Bk

(k > 0). Indeed, every g of this form has no fixed points in C \ T and it has at
least one fixed point t0 ∈ T. Then ϑ(t0) = γt0 and by (1.4),

dϑ(t0) = t0ϑ′(t0)ϑ(t0) = γt2
0ϑ′(t0) > 0. (3.1)

On the other hand, g′(t0) = −γϑ′(t0)
ϑ(t0)2 = −γϑ′(t0)

γ2t
2
0

= −γt2
0ϑ′(t0) which together

with (3.1) implies g′(t0) < 0, that is, even more than wanted.

Since BH∞ = S ∪ B0, it remains to consider the case where g is of the form
g = s/ϑ for some s ∈ S and ϑ ∈ Bk having no common zeros in D. Let b := zϑ ∈
Bk+1. Then every zero of the function s − b is a fixed point for g and vice versa.
Then we have from the assumption of the theorem that ND(s − b) < k + 1; so we
conclude from Theorem 1.3 that there is a point t0 ∈ T such that the limits (1.1)
exist and satisfy

s(t0) = b(t0) = t0ϑ(t0) and t0b(t0)
(
b′(t0)− s′(t0)

)
≥ 0. (3.2)

Therefore the boundary limits g(t0) and g′(t0) exist. It follows from the first
equality in (3.2) that g(t0) = t0 so that t0 is a fixed boundary point for g. We
now use equalities b = zϑ and s = gϑ to write the second relation in (3.2) in
terms of g and ϑ as

0 ≤ t0b(t0)
(
b′(t0)− s′(t0)

)

= t0t0ϑ(t0)
(
t0ϑ′(t0) + ϑ(t0)− g′(t0)ϑ(t0)− g(t0)ϑ

′(t0)
)
= 1 − g′(t0)

where the last equality follows since g(t0) = t0 and |t0| = |ϑ(t0)| = 1. Thus,
g′(t0) ≤ 1 as desired.

Note that in the classical case (k = 0), the boundary derivative g′(t0) is nec-
essarily nonnegative at any boundary fixed point and thus, the bound g′(t0) ≤ 1
for g ∈ BH∞ means that |g′(t0)| ≤ 1. On the other hand, if g ∈ BH∞ has a
(unique) fixed point z0 in D, then |g′(z0)| ≤ 1 by the Schwarz-Pick lemma. It
therefore follows that every function g ∈ BH∞ has a unique fixed point z0 ∈ D

(the Denjoy-Wolff point of g) such that |g′(z0)| ≤ 1. From complex dynamics point
of view, it might be of interest to characterize meromorphic (or at least rational)
functions g ∈ Sκ having a Denjoy-Wolff point (maybe not unique). The following
example shows that in general, such a point may not exist. Indeed, the function

g(z) =
z

z− 1
2

1− 1
2 z

=
z(2 − z)

2z − 1

belongs to S1 and has two fixed points z0 = 0 and t0 = 1. Furthermore, g′(z) =
−2z2+2z−2
(2z−1)2 and thus g′(0) = g′(1) = −2 (which of course is consistent with Theo-

rem 3.1).
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and Fejér, Japan J. of Math. 1 (1924), 83–93.

[12] J. Wolff, Sur une generalisation d’un theoreme de Schwarz, C.R. Acad. Sci. , 182

(1926), 918920

Department of Mathematics
The College of William and Mary
Williamsburg, VA 23187-8795, USA
email:vladi@math.wm.edu


