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Abstract

Let H(B) denote the space of all holomorphic functions on the unit ball
B of Cn and ℜh(z) = ∑

n
j=1 zj

∂h
∂zj

(z) the radial derivative of h. Motivated by

recent results by S. Li and S. Stević (see [8] and [9]), in this paper we study
the boundedness and compactness of the following integral operator

Lg f (z) =
∫ 1

0
ℜ f (tz)g(tz)

dt

t
, z ∈ B,

between the Hardy space H2 and weighted Bergman spaces.

1 Introduction

Let B be the open unit ball of Cn and S be the boundary of B. We denote by H(B)
the space of all holomorphic functions in B. Let

ℜ f (z) =
n

∑
j=1

zj
∂ f

∂zj
(z)

stand for the radial derivative of f ∈ H(B). Let dν be the normalized Lebesgue
measure on B, i.e. ν(B) = 1, and dνα(z) = cα(1 − |z|)αdν(z), where

cα =
Γ(n + α + 1)

Γ(n + 1)Γ(α + 1)
.
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For any ζ ∈ S and r > 0, the nonisotropic metric ball Qr(ζ) is defined as follows
(see, e.g. [32])

Qr(ζ) = {z ∈ B : |1 − 〈z, ζ〉| < r}. (1)

Let µ be a positive Borel measure on B. For all ζ ∈ S and r > 0, we call µ the
α-Carleson measure if there exists a constant C > 0 such that

µ(Qr(ζ)) ≤ Crα. (2)

From [29], we see that µ is an α-Carleson measure if and only if

sup
a∈B

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

)α

dµ(z) < ∞. (3)

Let 0 < p < ∞. The Hardy space Hp = Hp(B) consists of all f ∈ H(B) such
that

|| f ||
p
Hp = sup

0<r<1

∫

S
| f (rζ)|pdσ(ζ) < ∞.

It is well known that f ∈ H2 if and only if (see, e.g. [32])

|| f ||2H2 ≍ | f (0)|2 +
∫

B

|ℜ f (z)|2(1 − |z|2)dν(z) < ∞. (4)

Let p ∈ (0, ∞) and α > −1. The weighted Bergman space A
p
α = A

p
α(B) is

defined to be the space of all f ∈ H(B) such that

‖ f‖
p

A
p
α
=

∫

B

| f (z)|pdνα(z) < ∞.

It is well known that f ∈ A
p
α if and only if (see, e.g. [3])

‖ f‖
p

A
p
α
≍ | f (0)|p +

∫

B

|ℜ f (z)|p(1 − |z|2)pdνα(z) < ∞. (5)

When α = 0, A
p
0 is denoted by Ap, which is the classical Bergman space. See

[31, 32] for some basic facts on weighted Bergman spaces.
Suppose that g ∈ H(B). We consider the integral-type operator Lg as follows

Lg f (z) =
∫ 1

0
ℜ f (tz)g(tz)

dt

t
, f ∈ H(B), z ∈ B.

This operator is called the Riemann-Stieltjes operator, which was introduced in
[5], and was studied in [1, 2, 5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 23, 25, 27, 33, 34]. See
[12, 13, 16, 19] for closely related operators in the case of the unit disk, as well as
[20, 21, 22, 24, 26, 28, 30] for another related closely integral-type operator on the
unit ball.

In [8, 9], S. Li and S. Stević studied the boundedness and compactness of the
operator Lg on Hardy spaces and weighted Bergman spaces respectively. The
purpose of this paper is to study the boundedness and compactness of the oper-
ator Lg between Hardy spaces and weighted Bergman spaces.

Throughout this paper, C will stand for a positive constant, whose value may
differ from one occurrence to the other. The expression a ≍ b means that there is
a positive constant C such that C−1a ≤ b ≤ Ca.
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2 Main results and proofs

In this section we formulate and prove the main results of this paper. For this
purpose, we need some auxiliary results which are incorporated in the following
lemmas. The following criterion for compactness follows from standard argu-
ments (see, e.g. Proposition 3.11 of [4] or Lemma 3 of [7]).

Lemma 1. Assume that g ∈ H(B), α > −1 and 0 < p < ∞. Then the operator
Lg : H2 → A

p
α is compact if and only if Lg : H2 → A

p
α is bounded and for any bounded

sequence ( fk)k∈N in H2 which converges to zero uniformly on compact subsets of B, we
have ‖Lg fk‖A

p
α
→ 0 as k → ∞.

Similarly to the proof of Lemmas 3 and 4 of [9], we have the following two
results. We omit the proofs.

Lemma 2. Assume that g ∈ H(B), α > −1 and 2 ≤ p ≤ 2(n+1+α)
n . Then the following

two conditions are equivalent.
(a)

sup
z∈B

|g(z)|(1 − |z|2)
n+1+α

p − n
2 < ∞; (6)

(b)

sup
a∈B

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

) (n+2)p
2

|g(z)|p(1 − |z|2)pdνα(z) < ∞. (7)

Lemma 3. Assume that g ∈ H(B), α > −1 and 2 ≤ p ≤ 2(n+1+α)
n . Then the following

two conditions are equivalent.
(a)

lim
|z|→1

|g(z)|(1 − |z|2)
n+1+α

p − n
2 = 0; (8)

(b)

lim
|a|→1

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

) (n+2)p
2

|g(z)|p(1 − |z|2)pdνα(z) = 0. (9)

Now we are in a position to state and prove the main results of this paper.

Theorem 1. Suppose that g ∈ H(B), α > −1, 2 ≤ p ≤ 2(n+1+α)
n . Then Lg : H2 → A

p
α

is bounded if and only if (6) holds.

Proof. It is easy to see that Lg f (0) = 0 and

ℜ[Lg( f )](z) = ℜ f (z)g(z).

By (5), we have

‖Lg f‖
p

A
p
α

≍
∫

B

|ℜ(Lg f )(z)|p(1 − |z|2)pdνα(z)

=
∫

B

|g(z)|p |ℜ f (z)|p(1 − |z|2)pdνα(z)

=
∫

B

|ℜ f (z)|pdµ1(z), (10)
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where

dµ1(z) = |g(z)|p(1 − |z|2)pdνα(z). (11)

By using the result of [31], we see that Lg : H2 → A
p
α is bounded if and only if

µ1(Qr(ζ)) ≤ Cr
(n+2)p

2 .

From this and (3), we have that Lg : H2 → A
p
α is bounded if and only if

sup
a∈B

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

) (n+2)p
2

|g(z)|p(1 − |z|2)pdνα(z) < ∞.

The desired result follows from Lemma 2. The proof is completed.

Theorem 2. Suppose that g ∈ H(B), α > −1, 2 ≤ p ≤ 2(n+1+α)
n . Then Lg : H2 → A

p
α

is compact if and only if (8) holds.

Proof. Suppose that Lg : H2 → A
p
α is compact. Assume that (ak)k∈N is a

sequence in B such that limk→∞ |ak| = 1. Set

hk(z) = (1 − |ak|
2)

n+2
2

∫ 1

0

(
1

(1 − 〈tz, ak〉)(n+2)
− 1

)
dt

t
. (12)

By using (4), the fact that hk(0) = 0, and Theorem 1.12 of [32], we obtain

‖hk‖
2
H2 ≍

∫

B

|ℜhk(z)|
2(1 − |z|2)dν(z)

≍
∫

B

(1 − |ak|
2)n+2

|1 − 〈z, ak〉|2(n+2)
(1 − |z|2)dν(z) ≤ C. (13)

Moreover, it is clear that hk → 0 uniformly on compact subsets of B. Therefore,
by Lemma 1 we have that ‖Lghk‖A

p
α
→ 0 as k → ∞. Hence

lim
k→∞

∫

B

(
1 − |ak|

2

|1 − 〈z, ak〉|2

) (n+2)p
2

|g(z)|p(1 − |z|2)pdνα(z)

= lim
k→∞

∫

B

|ℜ(Lghk)(z)|
p(1 − |z|2)pdνα(z)

≍ lim
k→∞

‖Lghk‖
p

A
p
α
= 0. (14)

From (14) we see that (9) holds. Then the result follows from Lemma 3.
Conversely, assume that (8) holds, that is, (9) holds. Then for any fixed ε > 0,

there exists η0 ∈ (0, 1) such that

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

) p(n+2)
2

dµ1(z) < ε (15)
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for all a ∈ B with η0 < |a| < 1, where µ1 is defined in (11). Let r0 = 1 − η0. For
ζ ∈ S and r ∈ (0, r0), let a = (1 − r)ζ. Then a ∈ B, η0 < |a| < 1,

|1 − 〈z, a〉| < 2r and 1 − |a|2 ≥ r,

for each z ∈ Qr(ζ). Hence

(
1 − |a|2

|1 − 〈z, a〉|2

) p(n+2)
2

≥
( r

(2r)2

) p(n+2)
2

=
1

(4r)
p(n+2)

2

(16)

for each z ∈ Qr(ζ). From (15) and (16), we obtain

µ1(Qr(ζ))

4
p(n+2)

2 r
p(n+2)

2

≤
∫

Qr(ζ)

(
1 − |a|2

|1 − 〈z, a〉|2

) p(n+2)
2

dµ1(z)

≤
∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

) p(n+2)
2

dµ1(z)

< ε

for all r ∈ (0, r0) and ζ ∈ S. Let ε > 0 be fixed and µ̃1 ≡ µ1 |
B\(1−r0)B

. As in the

proof of [9] or [18, Theorem 1.1], we obtain that there exists a constant C > 0 such
that

µ̃1(Qr(ζ)) ≤ Cεr
p(n+2)

2 , (17)

for every r > 0. Suppose that ( fk)k∈N is a sequence in H2 which converges to 0
uniformly on compact subsets of B and satisfies supk∈N

‖ fk‖H2 ≤ L. We have

‖Lg fk‖
p

A
p
α

≍
∫

B

|ℜg(z)|p | fk(z)|
p(1 − |z|2)pdνα(z)

=
∫

B

| fk(z)|
pdµ̃1(z) +

∫

(1−r0)B
| fk(z)|

pdµ1(z). (18)

By (17) and using the method of Theorem 1.1 of [18], we see that there exists a
positive constant C such that

∫

B

| fk(z)|
pdµ̃1 ≤ Cε‖ fk‖

p

H2 ≤ CLqε, (19)

for each k ∈ N. Moreover, fk → 0 uniformly on (1 − δ0)B, which implies that the
second term in (18) can be made small enough for sufficiently large k. From this
and since µ1 is finite, it follows that

lim
k→∞

∫

(1−δ0)B
| fk(z)|

pdµ1(z) = 0. (20)

From (18), (19) and (20), we get that

lim
k→∞

‖Lg fk‖A
p
α
= 0.
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Employing Lemma 1, the result follows.

Theorem 3. Suppose that g ∈ H(B), 0 < p < 2, α > −1. Then the following
statements are equivalent.

(a) Lg : H2 → A
p
α is bounded;

(b) Lg : H2 → A
p
α is compact;

(c) g ∈ A
2p

2−p
p+2α
2−p

.

Proof. From the proof of Theorem 1 we know that

‖Lg f‖
p

A
p
α
≍

∫

B

|ℜ f (z)|pdµ1(z),

where dµ1 is defined by (11). By Theorem 54 of [31], we know that (a) and (b) are
equivalent and both are equivalent to the following condition

∫

E(a,r)

(1 − |a|2)n+2

|1 − 〈z, a〉|2(n+2)
dµ1(z) ∈ L2/(2−p)(ν1),

which is the same as
∫

E(a,r)
|g(z)|p(1 − |z|2)p (1 − |a|2)n+2

|1 − 〈z, a〉|2(n+2)
dνα(z) ∈ L2/(2−p)(ν1), (21)

where
E(z, r) = {w ∈ B : β(z, w) < r}

and β(z, w) is the distance between z and w in the Bergman metric of B. By the
subharmonicity of |g|p, using Lemma 2.24 of [32], we have

∫

E(a,r)
|g(z)|p(1 − |z|2)p (1 − |a|2)n+2

|1 − 〈z, a〉|2(n+2)
dνα(z)

≥ C(1 − |a|2)p+α−1|g(a)|p . (22)

Therefore (21) implies that

(1 − |a|2)p+α−1|g(a)|p ∈ L2/(2−p)(ν1),

which is the same as
∫

B

|g(a)|
2p

2−p (1 − |a|2)
p+2α
2−p dν < ∞,

i.e. g ∈ A
2p

2−p
p+2α
2−p

.

Conversely, if g ∈ A
2p

2−p
p+2α
2−p

, then by Hölder’s inequality, we get

‖Lg f‖
p

A
p
α

≍
∫

B

|ℜ f (z)|p |g(z)|p(1 − |z|2)pdνα(z)

≤

( ∫

B

|g(z)|
2p

2−p (1 − |z|2)
p+2α
2−p dν(z)

)1−
p
2
( ∫

B

|ℜ f (z)|2(1 − |z|2)dν(z)

) p
2

.
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From this, and by using the following well-known inequality

∫

B

|ℜ f (z)|2(1 − |z|2)dν(z) ≤ C‖ f‖2
H2 ,

it follows that

‖Lg f‖
p

A
p
α
≤ C‖ f‖

p

H2‖g‖
p

A

2p
2−p
p+2α
2−p

,

which means that the operator Lg : H2 → A
p
α is bounded. The proof of the

theorem is completed.
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[23] S. Stević, Integral-type operators from the mixed-norm space to the Bloch-
type space on the unit ball, Siberian J. Math. 50 (6) (2009), 1098-1105.
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[26] S. Stević, On an integral-type operator from logarithmic Bloch-type and
mixed-norm spaces to Bloch-type spaces, Nonlinear Anal. TMA 71 (2009),
6323-6342.
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