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Abstract

In the note we give an uniform bound for the multiple point Seshadri
constants on P1 × P1

1 Introduction

Let X be a projective algebraic surface (over C) with an ample line bundle L.
Let P1, ..., Pr be r different points on X. Let us recall the definition introduced by
Demailly in [4].

Definition 1. The Seshadri constant of L in P1, ..., Pr is defined as the number

ε(L, P1, ..., Pr) := inf { LC

multP1
C + ... + multPr C

| C is a curve on X},

or, equivalently

ε(L, P1, ..., Pr) := sup {ε | π∗L − ε(E1 + ... + Er) is numerically effective},

where π : X̃ −→ X is the blow-up of X in P1, ..., Pr.

Remark 2. It follows from the definition that for an ample line bundle L on X

0 < ε(L, P1, ..., Pr) ≤
√

L2

r
.
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Notation:
For P1, ..., Pr generic on X we will write ε(L, r) instead of ε(L, P1, ..., Pr).

Finding the exact value of these constants is in general a difficult problem. For
example, for P2 with L = OP2(1) the exact values of ε(L, r) are known only if
r ≤ 9 or r = k2, k ∈ N. The famous Nagata Conjecture (cf [11]) states that

ε(OP2(1), r) =
√

1
r for r ≥ 10. This problem is still open (see [7] for more about

the subject). Moreover, all known values of Seshadri constants on algebraic sur-
faces are rational. In general, it is hard to find the value of a Seshadri constant
even in one point. The interested reader may look for example in [1], [2], [5], [10],
[14] and the references therein.

In his recent paper, [6], Fuentes Garcia investigated the Seshadri constants in one
point on geometrically ruled surfaces, in case of ruled surfaces with the invariant
e > 0 he computes ε(A, x) explicitly, whereas for surfaces with e ≤ 0 he either
gives the exact value of ε or bounds for its value, depending on the position of
the point on the surface.
On the other hand Syzdek in [13] studied the existence of so called Seshadri sub-
maximal curves on P1 × P1 with different polarizations L.

Definition 3. 1. A Seshadri submaximal curve is a curve C on X, such that

LC

multP1
C + ... + multPr C

<

√
L2

r
.

2. A curve C in a linear system |L| on a surface, passing through r points with multiplic-
ities m1, ..., mr is Riemann-Roch expected if

h0(L) −
r

∑
i=1

(
mi + 1

2

)
≥ 1.

Of course, when the Riemann-Roch theorem implies the existence of a sub-

maximal curve, then the Seshadri constant is rational and less then
√

L2

r . This

follows from the fact that there is a finite number of Seshadri submaximal curves
on a surface, see for example [12].

Syzdek in [13] gave a list of the Riemann-Roch expected submaximal curves
on P1 × P1. She also proved that there exists a number R0 (depending on the
type of the polarization), such that for r ≥ R0, there are no Riemann-Roch ex-
pected submaximal curves on P1 × P1. In particular, she shows that for r ≤ 8, a
Riemann-Roch expected submaximal curve always exists.

In this note we give a uniform lower bound for the Seshadri constant on P1 ×
P1, in case r is such, that there are no Riemann-Roch expected submaximal curves

on P1 × P1, so ε(L, r) is ”expected” to be maximal (ie equal to
√

L2

r ). We prove

the following theorem.
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Theorem 4. Let L be a line bundle in P
1 × P

1, of type (α, β). Let r be such, that there
exist no Riemann-Roch expected submaximal curves on (P1 × P1, L). Then

ε(L, r) ≥
√

2αβ

r + 1
2

.

2 Useful facts

Lemma 5. (See [3]). Let L be a line bundle on P1 × P1, of type (a, b). Assume that
there exists C ∈ |L|, a reduced and irreducible curve on P1 ×P1, passing through points
P1, ..., Pr with multiplicities m1, ..., mr, where mj > 0, j = 1, ..., r. Then, for any chosen

mj, there exists a reduced and irreducible curve on P
2 of degree d = a + b − mj, passing

through r + 1 points on P
2 with multiplicities a − mj, b − mj, m1, ..., mj−1, mj+1, ..., mr.

Definition 6. A curve D on a surface X, passing through points P1, ..., Pr with multi-
plicities m1, ..., mr, is called almost homogeneous if all but at most one mj are equal.

Lemma 7. (See [13], Proposition 2.10.). Let (X, L) be a polarized surface with Picard
number ̺. Let P1, ..., Pr be general points on X. If ̺ = 1 or ̺ = 2, then any reduced and
irreducible Seshadri submaximal curve on X is almost homogeneous.

Lemma 8. (See [15], Lemma 1). Let C be a reduced and irreducible curve on a surface
X, passing through a general point P ∈ X with multiplicity m ≥ 2. Then

C2 ≥ m2 − m + 1.

Lemma 9. (See [16]). Let C be a reduced and irreducible curve of degree d on P2, passing
through the general points P1, ..., Pr with multiplicities m1, ..., mr. Then

d2 ≥
r

∑
j=1

m2
j − mq,

for any q such that mq > 0.

3 Proof

To prove Theorem 4 we have to exclude the existence of (reduced and irreducible)
Seshadri submaximal curves C on P1 ×P1, passing through r general points with
multiplicities m1, ..., mr and satisfying

LC

m1 + ... + mr
<

√
2αβ

r + 1
2

. (1)

Suppose, that such a curve C exists (and is not Riemann-Roch expected). Let
C be of type (a, b).

First, observe that we may exclude the situation a = 0 or b = 0. Indeed,
suppose for example that b = 0. Then, as the curve is reduced and irreducible, it
must be a = 1, so m = 1, and such a curve is always Riemann-Roch expected.
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Then, observe that Lemma 7 implies that it is enough to exclude the existence
of almost homogeneous curves, satisfying inequality (1). So, let us assume that
C is of type (a, b) on P1 × P1, with a > 0, b > 0, passing through general points
P1, ..., Pr with multiplicity m in P1, ..., Pr−1 and with multiplicity µ in Pr. We will

denote such a curve by ((a, b); m×(r−1), µ) and we will write a + b =: c.

From Lemma 5 it follows that we may move our considerations to P2, consid-
ering instead of C the curve on P2 (in what follows also denoted by C), of degree

c − m and with multiplicities a − m, b − m, m×(r−2), µ in r + 1 general points. We

will denote such a curve by ((c − m); a − m, b − m, m×(r−2), µ).

Let us assume L is of type (α, β). We have to exclude the existence of an almost
homogeneous submaximal curve on P1 × P1, such that

C = ((a, b); mr−1, µ),

so we have to exclude the existence of a curve C, such that:
1. On P2: C is numerically equivalent to ((c − m); a − m, b − m, m×(r−2), µ)

2. On P
1 × P

1:
LC

(r − 1)m + µ
<

√
2αβ

r + 0.5
.

Then, if

LC <

√
2αβ

r + 0.5

(
(r − 1)m + µ

)
, (2)

we have

2
√

abαβ ≤ αb + βa ≤
√

2αβ

r + 0.5

(
(r − 1)m + µ

)
= 2

√
αβ

2r + 1

(
(r − 1)m + µ

)
, (3)

which gives
√

ab <

√
1

2r + 1
((r − 1)m + µ) . (4)

Thus, our aim is to prove that there are no curves on P
2, satisfying

C ≡ ((c − m); a − m, b − m, m×(r−2), µ) and
√

ab <
1√

2r+1
((r − 1)m + µ) .

Let us now assume that m ≥ 2. Consider the curve

C̃ = (c − m)H − (a − m)E1 − (b − m)E2 − mE3 − ... − mEr−1 − µEr+1

on the blow up of P
2 in P1, ..., Pr−1, Pr+1, passing with multiplicity m through Pr.

To this curve we may apply Lemma 8. We get

(C̃)2 = (a + b − m)2 − (a − m)2 − (b − m)2 − (r − 3)m2 − µ2 ≥ m2 − m + 1,

which gives
2ab − (r − 1)m2 − µ2 + m − 1 ≥ 0. (5)

Together with the inequality (4), we get

2

2r + 1
((r − 1)m + µ)2 − (r − 1)m2 − µ2 + m − 1 ≥ 0. (6)
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Assuming first, that m = 2, from the above inequality we obtain

−(2r − 1)µ2 + 8(r − 1)µ − 10r + 13 ≥ 0. (7)

This is a quadratic inequality with respect to µ, with a negative leading term
coefficient. It is easy to check that the discriminant of the quadratic function is
negative for all r > 2, so there are no solutions for the above inequality.

Assume now, that m ≥ 3, so m ≤ m2

3 . From inequality (6) after multiplying by
(2r + 1) we get

2(r − 1)2m2 + 4(r − 1)mµ + 2µ2 − (2r + 1)(r − 1)m2−
(2r + 1)µ2 + (2r + 1)(m − 1) ≥ 0, (8)

so, writing m2

3 instead of m − 1 we get

(−7

3
r +

10

3

)
m2 + 4(r − 1)mµ − (2r − 1)µ2 ≥ 0. (9)

Treating this as a quadratic inequality with m as a variable and r, µ as parameters,
we see that the m2-coefficient is negative and the discriminant equals

4

3
µ2(−2r2 + 3r + 2), (10)

so the inequality has no solutions for r ≥ 3.

Now assume that m = 1 and µ ≥ 2. Then inequality (4) becomes

√
ab <

1√
2r + 1

(r − 1 + µ). (11)

Apply Lemma 8 to the curve ((c − 1); a − 1, b − 1, 1×(r−2)) passing through the
last point with multiplicity µ. We get

(a + b − 1)2 − (a − 1)2 + (b − 1)2 − (r − 2)− µ2 + µ − 1 ≥ 0, (12)

equivalent to
2ab − r − µ2 + µ ≥ 0. (13)

Using inequality (11) we get

µ2(1 − 2r) + µ(4r − 1)− 5r + 2 ≥ 0, (14)

this gives a contradiction.
Assume now that m = µ = 1. Consider the linear system of curves of degree

c − 1 passing through two points with multiplicities a − 1, b − 1. In [11], Nagata
proved that the dimension of such a system is either expected or every curve in
the system contains a line. However, our curve C is reduced and irreducible and
passes through at least seven more points in general position. Thus, the dimen-
sion of the system ((c − 1); a − 1, b − 1) is expected. Moreover, the conditions on
the system to pass through points in general position with multiplicity one are
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independent, so each such point causes the dimension of the system to become
one less. So, in our case we have a curve ((c − 1); a − 1, b − 1) passing through
r − 1 points with multiplicity one. This means that

(a + b − 1)(a + b + 2)

2
− (a − 1)a

2
− (b − 1)b

2
− (r − 1) ≥ 0. (15)

This implies that
ab + a + b − r ≥ 0, (16)

and this would mean that our curve C on P1 × P1 is Riemann-Roch expected,
contrary to our assumptions.

Remark 10. Harbourne and Roé showed us that from their Theorem I.2.1.(a) in [9], it

follows easily that for r ≥ 3
(α+β)2

αβ

ε(L, r) ≥
√

2αβ

r + r
2r−5

.

They suggested as well, that using their method one might be able to improve the result,

to get the bound asymptotically

√
2αβ

r+ 1
3

. This will be the aim of our future project.

Harbourne also pointed out that from his paper [8] applied to our situation, it follows,
that if L2r = 2αβr is a square of a natural number and r ≥ L2, then the Seshadri constant

ε(L, r) has maximal possible value, ε(L, r) =
√

L2

r .
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