Absolutely summing linear operators into spaces with no finite cotype

Geraldo Botelho* Daniel Pellegrino ${ }^{\dagger}$

Abstract

Given an infinite-dimensional Banach space X and a Banach space Y with no finite cotype, we determine whether or not every continuous linear operator from X to Y is absolutely $(q ; p)$-summing for various choices of p and q, including the case $p=q$. If X assumes its cotype, the problem is solved for all choices of p and q. Applications to the theory of dominated multilinear mappings are also provided.

Introduction

Given Banach spaces X and Y, the question of whether or not every continuous linear operator from X to Y is absolutely $(q ; p)$-summing has been the subject of several classical works, such as Bennet [2], Carl [6], Dubinsky, Pełczyński and Rosenthal [8], Garling [9], Kwapień [11], Lindenstrauss and Pełczyński [12] and many others. In this note we address this question for range spaces Y having no finite cotype (such spaces are abundant in Banach space theory). For arbitrary domain spaces X the results we prove settle the question for several choices of p and q (Theorem 2.3), including the case $p=q$ (Corollary 2.2). For domain spaces X having cotype $\inf \{q: X$ has cotype $q\}$ (several Banach spaces enjoy this property) our results settle the question for all choices of p and q (Corollary 2.4).

[^0]Applications of these results to the theory of dominated multilinear mappings are given in a final section.

1 Background and notation

Throughout this note, n will be a positive integer, X, X_{1}, \ldots, X_{n} and Y will represent Banach spaces over $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. The symbol X^{\prime} represents the topological dual of X and B_{X} the closed unit ball of X. The Banach space of all continuous linear operators from X to Y, endowed with the usual sup norm, will be denoted by $\mathcal{L}(X ; Y)$.

Given $1 \leq p<+\infty$ and a Banach space X, the linear space of all sequences $\left(x_{j}\right)_{j=1}^{\infty}$ in X such that $\left\|\left(x_{j}\right)_{j=1}^{\infty}\right\|_{p}:=\left(\sum_{j=1}^{\infty}\left\|x_{j}\right\|^{p}\right)^{\frac{1}{p}}<\infty$ will be denoted by $\ell_{p}(X)$. By $\ell_{p}^{w}(X)$ we represent the linear space composed by the sequences $\left(x_{j}\right)_{j=1}^{\infty}$ in X such that $\left(\varphi\left(x_{j}\right)\right)_{j=1}^{\infty} \in \ell_{p}$ for every $\varphi \in X^{\prime}$. A norm $\|\cdot\|_{w, p}$ on $\ell_{p}^{w}(X)$ is defined by $\left\|\left(x_{j}\right)_{j=1}^{\infty}\right\|_{w, p}:=\sup _{\varphi \in B_{X^{\prime}}}\left(\sum_{j=1}^{\infty}\left|\varphi\left(x_{j}\right)\right|^{p}\right)^{\frac{1}{p}}$. A linear operator $u: X \longrightarrow Y$ is said to be absolutely ($q ; p$)-summing (or simply $(q ; p)$-summing), $1 \leq p \leq q<+\infty$, if $\left(u\left(x_{j}\right)\right)_{j=1}^{\infty} \in \ell_{q}(Y)$ whenever $\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p}^{w}(X)$. By $\Pi_{q ; p}(X ; Y)$ we denote the subspace of $\mathcal{L}(X ; Y)$ of all absolutely $(q ; p)$-summing operators, which becomes a Banach space with the norm $\pi_{q ; p}(u):=\sup \left\{\left\|\left(u\left(x_{j}\right)\right)_{j=1}^{\infty}\right\|_{q}:\left(x_{j}\right)_{j=1}^{\infty} \in B_{\ell_{p}^{v}(X)}\right\}$. If $p=q$ we simply say that u is absolutely p-summing (or p-summing) and simply write $\Pi_{p}(X ; Y)$ for the corresponding space.

Given a Banach space X, we put $r_{X}:=\inf \{q: X$ has cotype $q\}$. Clearly $2 \leq r_{X} \leq+\infty$.

For $1 \leq p<+\infty, p^{*}$ denotes its conjugate index, i.e., $\frac{1}{p}+\frac{1}{p^{*}}=1$ ($p^{*}=1$ if $p=+\infty)$.

For the theory of absolutely summing operators and for any unexplained concepts we refer to Diestel, Jarchow and Tonge [7].

2 Main results

Henceforth p, q and r will be "real numbers" with $1 \leq p \leq q<+\infty$ and $1 \leq r \leq$ $+\infty$.
Theorem 2.1. Let Y be a Banach space with no finite cotype and suppose that ℓ_{r} is finitely representable in X. Then there exists a continuous linear operator from X to Y which fails to be $(q ; p)$-summing if $1 \leq q<r$ or $p \geq r^{*}$.
Proof. Assume first that $r<+\infty$. By $\left(e_{j}\right)_{j=1}^{\infty}$ we mean the canonical unit vectors of ℓ_{r}. If $1 \leq q<r$, then $\left(\frac{e_{j}}{j^{\frac{1}{q}}}\right)_{j=1}^{\infty} \in \ell_{1}^{w}\left(\ell_{r}\right) \subseteq \ell_{p}^{w}\left(\ell_{r}\right)$ because $q<r$ and $\left(\frac{e_{j}}{j^{\frac{1}{q}}}\right)_{j=1}^{\infty} \notin$ $\ell_{q}\left(\ell_{\infty}\right)$ (obvious). Moreover, for every $n \in \mathbb{N}$,

$$
\sup _{n}\left\|\left(\frac{e_{j}}{j^{\frac{1}{q}}}\right)_{j=1}^{n}\right\|_{\ell_{p}^{2 w}\left(\ell_{r}\right)}<+\infty \text { and } \sup _{n}\left\|\left(\frac{e_{j}}{j^{\frac{1}{q}}}\right)_{j=1}^{n}\right\|_{\ell_{q}\left(\ell_{\infty}\right)}=+\infty .
$$

So, for every positive integer n, if $u_{n}: \ell_{r}^{n} \longrightarrow \ell_{\infty}^{n}$ denotes the formal inclusion, then

$$
\sup _{n} \pi_{q ; p}\left(u_{n}\right)=+\infty \text { and }\left\|u_{n}\right\|=1 .
$$

The same is true if $p \geq r^{*}$ as $\left(e_{j}\right)_{j=1}^{\infty} \in \ell_{r^{*}}^{w}\left(\ell_{r}\right) \subset \ell_{p}^{w}\left(\ell_{r}\right)$ and $\left(e_{j}\right)_{j=1}^{\infty} \notin \ell_{q}\left(\ell_{\infty}\right)$.
We know that ℓ_{∞} is finitely representable in Y from the celebrated MaureyPisier Theorem [1, Theorem 11.1.14 (ii)] and that ℓ_{r} is finitely representable in X by assumption. So, for each $n \in \mathbb{N}$, there exist a subspace Y_{n} of Y, a subspace X_{n} of X and linear isomorphisms T and R

$$
\ell_{\infty}^{n} \xrightarrow{T} Y_{n} \xrightarrow{T^{-1}} \ell_{\infty}^{n} \text { and } \ell_{r}^{n} \xrightarrow{R} X_{n} \xrightarrow{R^{-1}} \ell_{r}^{n}
$$

so that $\|T\|=\|R\|=1,\left\|T^{-1}\right\|<2$ and $\left\|R^{-1}\right\|<2$. Now consider the chain

$$
\ell_{r}^{n} \xrightarrow{R} X_{n} \xrightarrow{R^{-1}} \ell_{r}^{n} \xrightarrow{u_{n}} \ell_{\infty}^{n} \xrightarrow{T} Y_{n} \xrightarrow{T^{-1}} \ell_{\infty}^{n} .
$$

Since $\|R\|=1$, we conclude that the operator $u_{n} \circ R^{-1}: X_{n} \longrightarrow l_{\infty}^{n}$ is so that

$$
\sup _{n} \pi_{q ; p}\left(u_{n} \circ R^{-1}\right)=+\infty \text { and } \sup _{n}\left\|u_{n} \circ R^{-1}\right\|<+\infty .
$$

Since ℓ_{∞}^{n} is an injective Banach space, there is a norm preserving extension $v_{n}: X \longrightarrow \ell_{\infty}^{n}$ of $u_{n} \circ R^{-1}$. It is immediate that

$$
\begin{equation*}
\sup _{n} \pi_{q ; p}\left(v_{n}\right)=+\infty \text { and } \sup _{n}\left\|v_{n}\right\|<+\infty . \tag{1}
\end{equation*}
$$

Consider now the operator $T \circ v_{n}: X \longrightarrow Y_{n}$. Since $\left\|T^{-1}\right\|<2$ and $\|T\|=1$, from (1) we get

$$
\begin{equation*}
\sup _{n} \pi_{q ; p}\left(T \circ v_{n}\right)=\infty \text { and } \sup _{n}\left\|T \circ v_{n}\right\|<+\infty \tag{2}
\end{equation*}
$$

By composing $T \circ v_{n}$ with the formal inclusion $i: Y_{n} \longrightarrow Y$ we obtain the operator $i \circ T \circ v_{n}: X \longrightarrow Y$. Combining the injectivity of $\Pi_{q ; p}$ [7, Proposition 10.2] with (2) we have

$$
\sup _{n}\left\|i \circ T \circ v_{n}\right\|_{a s(q ; p)}=\infty \text { and } \sup _{n}\left\|i \circ T \circ v_{n}\right\|<\infty .
$$

Calling on the Open Mapping Theorem we conclude that $\Pi_{q ; p}(X, Y) \neq \mathcal{L}(X, Y)$.
The case $r=\infty$ is simple. In fact, if ℓ_{∞} is finitely representable in X, then ℓ_{r} is finitely representable in X for every $1 \leq r<+\infty$ and the result follows.

Corollary 2.2. Regardless of the infinite-dimensional Banach space X, the Banach space Y with no finite cotype and $p \geq 1$, there exists a continuous linear operator from X to Y which fails to be p-summing.

Proof. By Maurey-Pisier Theorem [1, Theorem 11.3.14] we know that $\ell_{r_{X}}$ is finitely representable in X, so Theorem 2.1 provides a continuous linear operator $u: X \longrightarrow Y$ which fails to be p-summing for a given $p \geq r_{X}^{*}$. Since $\Pi_{r} \subseteq \Pi_{s}$ if $r \leq s$ [7, Theorem 2.8], the result follows.

The next result settles the question $\Pi_{q ; p}(X ; Y) \stackrel{? ?}{=} \mathcal{L}(X ; Y)$ for Y with no finite cotype for several choices of p and q :

Theorem 2.3. Let Y be a Banach space with no finite cotype and X be an infinitedimensional Banach space. Then:
(a) $\Pi_{q ; p}(X ; Y) \neq \mathcal{L}(X ; Y)$ if either $1 \leq q<r_{X}$ or $p \geq r_{X}^{*}$ or $1<p<r_{X}^{*}$ and $q<\left(\frac{1}{p}-\frac{1}{r_{X}^{*}}\right)^{-1}$.
(b) $\Pi_{q ; p}(X ; Y)=\mathcal{L}(X ; Y)$ if either $p=1$ and $q>r_{X}$ or $1<p<r_{X}^{*}$ and $q>\left(\frac{1}{p}-\frac{1}{r_{X}^{*}}\right)^{-1}$.

Proof. (a) Since $\ell_{r_{X}}$ is finitely representable in X (Maurey-Pisier Theorem), the case $1 \leq q<r_{X}$ and the case $p \geq r_{X}^{*}$ follow from Theorem 2.1. Suppose $1<p<r_{X}^{*}$ and $q<\left(\frac{1}{p}-\frac{1}{r_{X}^{*}}\right)^{-1}$. From the previous cases we know that $\Pi_{s, r_{X}^{*}}(X ; Y) \neq \mathcal{L}(X ; Y)$ for every $s \geq 1$. So the proof will be complete if we show that $\Pi_{q ; p}(X ; Y) \subseteq \Pi_{s ; r_{X}^{*}}(X ; Y)$ for sufficiently large s. By [7, Theorem 10.4] it suffices to show that there exists a sufficiently large s so that $q \leq s, r_{X}^{*} \leq s$ and $\frac{1}{p}-\frac{1}{q} \leq \frac{1}{r_{X}^{*}}-\frac{1}{s}$. From

$$
\frac{1}{p}-\frac{1}{q}<\frac{1}{p}-\left(\frac{1}{p}-\frac{1}{r_{X}^{*}}\right)=\frac{1}{r_{X}^{*}}
$$

we can choose $s \geq \max \left\{q, r_{X}^{*}\right\}$ such that $\frac{1}{p}-\frac{1}{q} \leq \frac{1}{r_{X}^{*}}-\frac{1}{s}$, completing the proof of (a).
(b) If $q>r_{X}$, then X has cotype q, hence the identity operator on X is $(q ; 1)$ summing, so $\Pi_{q ; 1}(X ; Y)=\mathcal{L}(X ; Y)$. Suppose $1<p<r_{X}^{*}$ and $q>\left(\frac{1}{p}-\frac{1}{r_{X}^{*}}\right)^{-1}$. Calling on [7, Theorem 10.4] once again we have that $\Pi_{r_{X}+\varepsilon ; 1}(X ; Y) \subset \Pi_{q ; p}(X ; Y)$ for a sufficiently small $\varepsilon>0$. From the previous case we know that $\Pi_{r_{X}+\varepsilon ; 1}(X ; Y)$ $=\mathcal{L}(X ; Y)$, so $\Pi_{q ; p}(X ; Y)=\mathcal{L}(X ; Y)$ as well.

The only cases left open are (i) $p=1$ and $q=r_{X}$, (ii) $1<p<r_{X}^{*}$ and $q=\left(\frac{1}{p}-\frac{1}{r_{X}^{*}}\right)^{-1}$. For spaces X having cotype r_{X} the problem is completely settled:

Corollary 2.4. Suppose that Y has no finite cotype and that X is infinite-dimensional and has cotype r_{X}. Then $\Pi_{q ; p}(X ; Y)=\mathcal{L}(X ; Y)$ if and only if either $p=1$ and $q \geq r_{X}$ or $1<p<r_{X}^{*}$ and $q \geq\left(\frac{1}{p}-\frac{1}{r_{X}^{*}}\right)^{-1}$.

Proof. As mentioned above, by Theorem 2.3 it suffices to consider the cases (i) $p=1$ and $q=r_{X}$, (ii) $1<p<r_{X}^{*}$ and $q=\left(\frac{1}{p}-\frac{1}{r_{X}^{*}}\right)^{-1}$. Since X has cotype r_{X}, the identity operator on X is $\left(r_{X} ; 1\right)$-summing, so (i) is done. By [7, Theorem 10.4] we have that $\Pi_{r_{X} ; 1}(X ; Y) \subset \Pi_{\left(\frac{1}{p}-\frac{1}{r_{X}^{*}}\right)^{-1} ; p}(X ; Y)$ whenever $1<p<r_{X}^{*}$, so (ii) follows from (i).

Note that Corollary 2.4 improves the linear case of [15, Corollary 6].
The next consequence of Theorem 2.3, which is closely related to a classical result of Maurey-Pisier [14, Remarque 1.4] and to [5, Example 2.1], shows that for any infinite-dimensional Banach space X, the number $\inf \left\{q: \Pi_{q ; 1}(X ; Y)=\right.$ $\mathcal{L}(X ; Y)\}$ does not depend on the Banach space with no finite cotype Y.

Corollary 2.5. Let X be an infinite-dimensional Banach space. Then $r_{X}=\inf \{q$: $\left.\Pi_{q ; 1}(X ; Y)=\mathcal{L}(X ; Y)\right\}$ regardless of the Banach space Y with no finite cotype.

3 Applications to the multilinear theory

Among the most interesting and most studied multilinear relatives of p-summing operators are the p-dominated multilinear mappings. A continuous n linear mapping $A: X_{1} \times \cdots \times X_{n} \longrightarrow Y$ is $\left(p_{1}, \ldots, p_{n}\right)$-dominated, $1 \leq p_{1}, \ldots, p_{n}$ $<+\infty$, if $\left(A\left(x_{j}^{1}, \ldots, x_{j}^{n}\right)\right)_{j=1}^{\infty} \in \ell_{q}(Y)$ whenever $\left(x_{j}^{k}\right)_{j=1}^{\infty} \in \ell_{p_{k}}^{w}\left(X_{k}\right), k=1, \ldots, n$, where $\frac{1}{q}=\frac{1}{p_{1}}+\cdots+\frac{1}{p_{n}}$. If $p_{1}=\cdots=p_{n}=p$ we simply say that A is p-dominated. For details we refer to [4, 13].

Continuous bilinear forms on an \mathcal{L}_{∞}-space, or the disc algebra \mathcal{A} or the Hardy space H^{∞} are 2-dominated [4, Proposition 2.1]. On the other hand, partially solving a problem posed in [4], in [10, Lemma 5.4] it was recently shown that for every $n \geq 3$, every infinite-dimensional Banach space X and any $p \geq 1$, there is a continuous n-linear form on X^{n} which fails to be p-dominated. As to vector-valued bilinear mappings, all that is known, as far as we know, is that for all \mathcal{L}_{∞}-spaces X_{1}, X_{2}, every infinite-dimensional space Y and any $p \geq 1$, there is a continuous bilinear mapping $A: X_{1} \times X_{2} \rightarrow Y$ which fails to be p-dominated [3, Theorem 3.5]. Besides of giving an alternative proof of [10, Lemma 5.4], we fill in this gap concerning vector-valued bilinear mappings by generalizing [3, Theorem 3.5] to arbitrary infinite-dimensional spaces X_{1}, X_{2}, Y.

Proposition 3.1. Let X_{1}, X_{2} and Y be infinite-dimensional Banach spaces and let $p_{1}, p_{2} \geq 1$. Then there exists a continuous bilinear mapping $A: X_{1} \times X_{2} \longrightarrow Y$ which fails to be (p_{1}, p_{2})-dominated.

Proof. Suppose, by contradiction, that every continuous bilinear mapping from $X_{1} \times X_{2}$ to Y is $\left(p_{1}, p_{2}\right)$-dominated. A straightforward adaptation of the proof of [3, Lemma 3.4] gives that every continuous linear operator from X_{1} to $\mathcal{L}\left(X_{2} ; Y\right)$ is p_{1}-summing. From [7, Proposition 19.17] we know that $\mathcal{L}\left(X_{2} ; Y\right)$ has no finite cotype, so Corollary 2.2 assures that there is a continuous linear operator from X_{1} to $\mathcal{L}\left(X_{2} ; Y\right)$ which fails to be p_{1}-summing. This contradiction completes the proof.

The same reasoning extends [10, Lemma 5.4] to $\left(p_{1}, \ldots, p_{n}\right)$-dominated n linear mappings (even for different p_{1}, \ldots, p_{n}) on $X_{1} \times \cdots \times X_{n}$ (even for different spaces X_{1}, \ldots, X_{n}):

Proposition 3.2. Let $n \geq 3, X_{1}, \ldots, X_{n}$ be Banach spaces at least three of them infinitedimensional and let $p_{1}, \ldots, p_{n} \geq 1$. Then there exists a continuous n-linear form A: $X_{1} \times \cdots \times X_{n} \longrightarrow \mathbb{K}$ which fails to be $\left(p_{1}, \ldots, p_{n}\right)$-dominated.

Acknowledgements. The authors thank Joe Diestel for helpful conversations on the subject of this paper. The authors also thank the referee for his/her helpful suggestions.

References

[1] F. Albiac and N. Kalton, Topics in Banach Space Theory, Springer Verlag, 2006.
[2] G. Bennet, Schur multipliers, Duke Math. Journal 44 (1977), 603-639.
[3] G. Botelho, Cotype and absolutely summing multilinear mappings and homogeneous polynomials, Proc. Roy. Irish Acad. 97 (1997), 145-153.
[4] G. Botelho and D. Pellegrino, Scalar-valued dominated polynomials on Banach spaces, Proc. Amer. Math. Soc. 134 (2006), 1743-1751.
[5] G. Botelho and D. Pellegrino, Absolutely summing polynomials on Banach spaces with unconditional basis, J. Math. Anal. Appl. 321 (2006), 50-58.
[6] B. Carl, Absolut ($p, 1$)-summierende identische Operatoren von ℓ_{u} nach ℓ_{v}, Math. Nachr. 63 (1974), 353-360.
[7] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge University Press, Cambridge, 1995.
[8] E. Dubinsky, A. Pełczyński and H. P. Rosenthal, On Banach spaces X for which $\Pi_{2}\left(L_{\infty}, X\right)=B\left(L_{\infty}, X\right)$, Studia Math. 44 (1972), 617-648.
[9] D. J. H. Garling, Diagonal mappings between sequence spaces, Studia Math. 51 (1974), 129-138.
[10] H. Jarchow, C. Palazuelos, D. Pérez-García and I. Villanueva, Hahn-Banach extension of multilinear forms and summability, J. Math. Anal. Appl., 336 (2007), 1161-1177.
[11] S. Kwapień, On a theorem of L. Schwarz and its applications to absolutely summing operators, Studia Math. 38 (1970), 193-201.
[12] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathcal{L}_{p} spaces and their applications, Studia Math. 29 (1968), 275-326.
[13] M.C. Matos, Absolutely summing holomorphic mappings, An. Acad. Bras. Ci., 68 (1996), 1-13.
[14] B. Maurey and G. Pisier, Séries de variables alatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90.
[15] D. Pellegrino, Cotype and absolutely summing homogeneous polynomials in L_{p} spaces, Studia Math. 157 (2003), 121-131.

Faculdade de Matemática, Universidade Federal de Uberlândia, 38.400-902 - Uberlândia, Brazil, e-mail: botelho@ufu.br.

Departamento de Matemática, Universidade Federal da Paraíba, 58.051-900 - João Pessoa, Brazil, e-mail: dmpellegrino@gmail.com.

[^0]: *Supported by CNPq Project 202162/2006-0.
 ${ }^{\dagger}$ Supported by CNPq Projects 471054/2006-2 and 308084/2006-3.
 Received by the editors January 2008 - In revised form in March 2008. Communicated by F. Bastin.
 2000 Mathematics Subject Classification : Primary 47B10; Secondary 46G25.
 Key words and phrases : Banach spaces, summing linear operators, dominated multilinear mappings.

