Multiple periodic solutions of some Liénard
equations with p-Laplacian

Cristian Bereanu

Abstract

The existence, non-existence and multiplicity of solutions to periodic bound-
ary value problems of Liénard type

(Je'[P=2) + flup’ + g(u) = e(t) +5,  u(0) —u(T) =0 =u'(0) —u'(T),

is discussed, where p > 1, f is arbitrary and g is assumed to be bounded,
positive and g(+oo) = 0. The function e is continuous on [0,7] with mean
value 0 and s is a parameter.

1 Introduction and the main result

Consider periodic boundary value problems of the form
(6(u) + g(u) = e(t) +s, u(0) —u(T) =0=u'(0) —u'(T), (1)

where ¢ : (—a,a) — R is an increasing homeomorphism such that ¢(0) = 0 and
0<a<+4o00,g:R—R e:[0,7] — R are continuous functions and s € R is a
parameter. Assume that the following assumptions are satisfied.

(H1) [T e(t)dt = 0.
(H2) g(u) > 0 for all u € R.
(HB) g(:l:OO) = limy 100 g(u) =0.
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By solution of (1) we mean a function u € C*'([0,7T]) such that ¢ o v’ € C*([0,T])
and which verifies (1). The main result in [1] is the following one.

Theorem 1. If ¢ : (—a,a) — R with 0 < a < 400 and conditions (H1)-(H3) hold,
there exists s*(e) € (0,supg g] such that problem (1) has zero, at least one or at least
two solutions according to s ¢ (0,s*(e)], s = s*(e) or s € (0,s*(e)).

This type of result has been initiated by Ward [6] without multiplicity conclusion
and ¢(v) = v. In the case ¢(v) = |v[P"2v for some p > 1, we generalize the result
above as follows.

Consider periodic boundary value problems of Liénard type

(o' P72 + fu)d + g(u) = e(t) +5, u(0) —u(T) =0=1u'(0) —u(T), (2)
where p > 1, f : R — R is a continuous function and g, e and s are as above. The
main result of this paper is the following one.

Theorem 2. If conditions (H1)-(H3) hold, there ezists s*(e) € (0,supg g] such that
problem (2) has zero, at least one or at least two solutions according to s ¢ (0, s*(e)],
s = s*(e) or s € (0,s*(e)).

To prove our main result, we use an approach similar to that in [1], but with
technical differences due to the presence of f(u)u'. In what follows ¢ : R — R
denotes the increasing homeomorphism defined by

$(v) = [ v,

If Q C X is an open set of a normed space X and if S : Q@ — X is completely
continuous and such that 0 ¢ (I — 5)(09), then dpg[I — S, Q, 0] denotes the Leray-
Schauder degree with respect to €2 and 0. For the definition and properties of the
Leray-Schauder degree see [3].

2 Notation and auxiliary results

Let C denote the Banach space of continuous functions on [0,7] endowed with the
uniform norm || - ||, C* denotes the Banach space of continuously differentiable
functions on [0, 7], equipped with the norm |[u]| = ||u||c + ||t//]|oo. We consider its
closed subspace

Cl = {ueC" :u(0)=u(T),u0) =u(T)}

and denote corresponding open balls of center 0 and radius r by B,. We denote by
P, Q) : C' — C the continuous projectors defined by

T
P.Q:C—C, Pult)=u(0), Quit)= [ u(r)dr (1€[0.7)),
0
and define the continuous linear operator H : C' — C* by
t
Hu(t) = / u(r)dr (€ 0,77).
0

A technical result from [4] is needed for the construction of the equivalent fixed
point problems.
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Proposition 1. For each h € C, there ezists a unique o := Q(h) € Range h such
that

T
/ ¢~ (h(t) — a) dt = 0.
0
Moreover, the function Qg : C' — R is continuous.

The following fixed point reformulation of periodic boundary value problems like
(2) is taken from [4].

Proposition 2. Assume that F' : C' — C is continuous and takes bounded sets into
bounded sets. Then u is a solution of the abstract periodic problem

(6(u) = F(u), u(0)—u(T)=0=u'(0)—u'(T)
if and only if u € C’# s a fized point of the operator Mi defined on C;ﬁ by
M (u) = Pu+ QF(u) + Ho ¢ o (I —Qy) o [H(I — Q)F|(u).
Furthermore, M is completely continuous on C.

The following result is a continuation theorem due to Mandsevich and Mawhin
[4].

Proposition 3. Let h: [0,T] x R* — R be a continuous function and assume that
there exists R > 0 such that the following conditions hold.

(1) For each X € (0, 1] the problem
(p(u)) = Ah(t,u,u'),  u(0) —u(T) =0=1u'(0) —u'(T),
has no solution on 0Bp.

(i) The continuous functionn: R — R

n(d) = /T h(t,d, 0)dt = 0,
T Jo
is such that n(—R)n(R) < 0.
Then problem
(0(u) = h(t,u,v'),  w(0) —u(T) =0 =u'(0) —u'(T), (3)
has a least one solution in Bg, and
|dps[l — MY, B, 0]| =1,
where MY, denotes the fized point operator associated to (3).
Let us decompose any u € C’# in the form
u=u+u (u=u(0), u(0)=0),
and let
CL = {u e CL : u(0) = 0}.
The following inequality will be very useful in the sequel:
@)oo < TV, Yu € C, (Sobolev),
where 1/p+1/¢ =1 and ||ul|, = (Ji u(t)dt)"/ for all u € C.
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3 Proof of the main result

For s € R, we define the continuous nonlinear operator N, : C' — C by

No(u)(t) = e(t) + 5 — g(u(t)) — f(u®)'(t) (€ [0,T]).

Using Proposition 2, it follows that u € C}, is a solution of (2) if and only if
u=Pu+QN,(u)+Hog¢ ' o(l—Qy) o[H(I—Q)N,|(u)=:G(s,u),

and the nonlinear operator G(s, -) : C;# — C;# is completely continuous.

A strict lower solution o (resp. strict upper solution [3) of (2) is a function o € C*
such that ¢(a’) € Ct, a(0) = a(T), o/(0) > o/(T) (resp. B € C, ¢(B') € C*,
p(0) = B(T), 5'(0) < F(T)) and

(B('(1)) + fla(t)a'(t) + g(a(t) > e(t) + s
(resp.

(@) + F(B®))B' () + 9(B(®)) < e(t) + )
for all t € [0,7).

Lemma 1. If f,g : R — R are continuous functions, e € C and if (2) has a strict
lower solution o and a strict upper solution 3 such that a(t) < B(t) for allt € [0,T],
then problem (2) has a solution u such that a(t) < u(t) < ((t) for all t € [0,T].
Moreover,

‘dLS[I - 9(87 ')7 Q;,ﬁu OH =1,
where
Vs={ue C’;E cat) <u(t) < B(t) forall tel0,T], |u]ew<r},
and r is sufficiently large.

Proof. I. A modified problem.
Let v : [0, 7] x R — R be the continuous function defined by

BY), u>pB(t)
y(t,u) = { u, alt) <u < B(t)
a(t), u<alt).

We consider the modified problem

(Jo/ ") = [u =yt w)] + f(y(tu)d + g(y(t,w) = e(t) + 5,
uw(0) — uw(T) =0=u'(0) —u(T). (4)

It is not difficult to show that if u is a solution of (4), then a(t) < wu(t) < B(t) for
all t € [0,7T] and hence u is a solution of (2) (see [5], [2]).
II. A priori estimations.
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In order to apply Mandsevich-Mawhin continuation theorem to problem (4), we
consider the family of problems

(' PP72u') = Alu =yt w)] + A f(y(t )’ + Ag(v(t,u)) = Ae(t) + s),
w(0) —u(T) =0 =u'(0) —u/(T), (5)

where A € (0,1]. Let u be a possible solution of (5). Let 7 € [ ,T) be such that
u(T) = maxo rj u. This implies that (¢(u'(7)))" < 0 and /() = 0. Hence, using (5),
it follows that

Au(T) < Ay(T, u(T)) + 9(7(7, u(7))) — e(7) = s,

and there exists a constant C; > 0 which not depends upon A and u such that
u(T) < Cy. Analogously, we can prove that there exists a constant Cy which not
depends upon A and u such that minjy 7 u > Cy. So, there exists Cs > 0 such that

||ufloe < Cs. (6)

Multiplying both members of (5) by u, integrating over [0,7] and using (6), we
deduce that there exists Cy, C5 > 0 such that

W]} < Ca+ Cslu]|p,
which implies that there exists a constant Cy > 0 such that
[[u'[[p < Cé. (7)

Using (5), (6) and (7) it follows easily that there exists R > 0 such that ||u|| < R,
and because, in this case, the function 7 is given by

n(d):d—%/oT[ (t,d) + g(7(t, d))]dt + — / Dt + s,

we deduce that R can be chosen such that n(—R)n(R) < 0.
III. End of the proof.
Using IT and Man&sevich-Mawhin continuation theorem, we deduce that

|dusll = H(s, "), B, 0]| = 1,

where H(s, -) is the fixed point operator associated to (4). On the other hand, using
I, IT and Proposition 2, it follows that every fixed point of the nonlinear operator
H(s, ) belongs to €, 5 for r sufficiently large, and by excision property of the Leray-
Schauder degree, we deduce that

|drs[I —H(s,-), 2, 5, 0] = 1.
Because G(s, ) = H(s,-) on €2 5, it follows that
|dLS[I - 9(87 ')7 Qg,ﬁu OH =1,

and by existence property of the Leray-Schauder degree, G(s, ) has a fixed point in
), 5, which is a solution of (2). ]
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Let M : C' — C be the continuous nonlinear operator defined by
M(u)(t) = e(t) — g(u(t)) — fu(®)u'(t) (t€[0,77),
and M : R x 5; — 5; be the completely continuous operator defined by
M@, 1) = Ho¢ " o (I — Q)0 [H(I — Q)M](T + 7).

If w is a solution of (2), then

7 [ otuldr=s, (8)

and U = ]\7(@, w). Reciprocally, if (u,u) € R x 5; is such that u = ]\7[(ﬂ, @), then
u =W+ is a solution of (2) with s = % [ g(u(t))dt. In other words, (7, %) € R x Ch
satisfies @ = M (w, @) if and only if

(|@' P2 + f(@+ w)d + g(@+u) = e(t T/ (T+a(t

Lemma 2. If f,g : R — R are continuous functions such that g is bounded and if
e € C satisfies (H1), then the set S of solutions (W, u) € R x Cy, of problem

u= M(u,u)

contains a subset C whose projection on R is R. Moreover, there exists py > 0 such
that

[i]loo < p1 V(@,u) €S (9)
and for all e > 0, there exists r. > 0 such that
U] < 7e V(u,u) €S, ul <e. (10)

Proof. For each A € [0, 1] consider the problem
(1@7-27) + M (@ + @) + Ag(T + ) = el T/ @+ a()d, (1)

and assume that (u,u) € R x 6’; is a solution of (11). Integrating (11) over [0, 7]
after multiplication by @, we get, after integration by parts

2 = A /OT[g(a a(t)) — e(t)]adt — % /OTg(U +a(t))dt /OT a(t)dt

Hence, using Sobolev inequality it follows that

lalls, < TP|a'|fp < T”/"[2T81ﬂl{p |91+ [lel ][] oc,

and hence

[lalloe < {T”/q[QTsﬁp gl + llel 3774 = py (12)



Multiple periodic solutions of some Liénard equations with p-Laplacian 283

and
1]l, < {2T'sup|g] + lell)pi}'72. (13)
Let € > 0 be fixed and assume that |[z| < e. Using (11), (12) and (13) it follows that
(@ P2yl < C,

where C. depends only on e, supg |g| and sup;_(,, .
ishes at one point, this gives

oitq | f|- As @ necessarily van-

17| < ¢7H(C) =t 7. (14)

Taking A =1 in (11) and using (12) and (14) we deduce (9) and (10).
Let @ € R be fixed and My : [0,1] x C} — CJ, be the completely continuous
operator defined by

Ma(\ @) = Hod™ o (I = Qy) o \NH(I — Q)M)(u+ ).

For (A, @) € [0,1] x 5;, we have that Mz(\, @) = u if and only if (@, u) is a solution
of (11). Hence, using (12), (14) and the homotopy invariance property of the Leray-
Schauder degree, it follows that

dLS[I_MU(]-a')aBTaO] = dLS[[_MU(Oa')aBmo]
= dLS[]v B?‘vo] = 17

for some r sufficiently large. This, together with the existence property of the Leray-

Schauder degree give the existence of some % € C}, such that M (@, @) = Mg(1,1) =
. This completes the proof. [ |

In what follows we assume that (H1)-(H3) hold.
Let us define

S; ={s € R: (2) has at least j solutions } (j > 1).

Lemma 3. If s € Sy, then 0 < s <supg|g|.

Proof. Assumptions (H2) and (H3) imply that g is bounded and 0 < g(u) < supg |9|
for all u € R. Hence, if u is a solution of (2) then, using (H1), it follows that (8)
holds and 0 < s < supg |g|. ]

Let v : R x C, — R be the continuous function defined by

V(@ u) = % /OT g(@+u(t)) dt.

Lemma 4. 5 # @.

Proof. Let (u,u) € C, where C is given in Lemma 2. Then u = @+ @ is a solution of
(2) with s = (@, u). L]
Let us consider
s*(e) = sup ;.
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Lemma 5. We have that 0 < s*(e) < supg |g| and s*(e) € S;.

Proof. The first assertion follows from Lemma 3. Let {s,} be a sequence belonging
to Si which converges to s*(e). Let u, = U, + u, be a solution of (2) with s =
Sp = Y(Up, Uy,). It follows that u, = M(w,,u,). Hence, if up to a subsequence
U, — oo, then using (9) and (H3), it follows that ~(,, u,) — 0, which means
that s*(e) = 0, contradiction. We have proved that {@,} is a bounded sequence in
R and using (9) and (10) it follows that {(Ty, u,)} is a bounded sequence in R x C,.

Because M is completely continuous, we can assume, passing to a subsequence, that
M (T, ti,) — @ and W, — u. We deduce that @ = M(w,a), v(u, @) = s*(e) and u is
a solution of (2) with s = s*(e). [

Arguing as in the proof of Lemma 5 we deduce the following a priori estimate
result.

Lemma 6. Let 0 < s; < s*(e). Then, there is p' > 0 such that any possible solution
u of (2) with s € [s1,s*(e)] belongs to B,y.

Lemma 7. We have (0,s*(e)) C Ss.

Proof. Let s1,s9 € R such that 0 < s; < s*(e) < s2. Using Lemma 3, Lemma 6 and
the invariance property of the Leray-Schauder degree, it follows that there is p’ > 0
sufficiently large such that dps[l — G(s, ), By, 0] is well defined and independent of
s € [s1, 55]. However, using Lemma 3 we deduce that u—G(s,,u) # 0 for all u € C}.
This implies that ds[/ —G(s2, ), By, 0] = 0, so that ds[I —G(s1,), By, 0] = 0 and,
by excision property of the Leray-Schauder degree,

dLS[[ - g(sb ')aBp”>0] =0 if p// > p/' (15)

Let u, be a solution of (2) with s = s*(e) given by Lemma 5. Then, u, is a strict
lower solution of (2) with s = s;. Using Lemma 2 and (H3), there is (u*,u*) € C
such that v* =w*+a* > u, on [0, 7] and ~(T*, u*) < s;. It follows that u* is a strict
upper solution of (2) with s = s;. So, using Lemma 1, we have that

|dLS[I - g(sla ')a QZ*,U*70]| = 1a (]-6)

for some 7 > 0, and (1) has a solution in €2, ,.. Taking p” sufficiently large and
using (15) and (16), we deduce from the additivity property of the Leray-Schauder
degree that

|dLS[I - g(sla ')’ BP"\WU*M*a OH = |dLS[I - g(sla ')’ BP"’ O]
—dps[l = G(s1,-), 2, s Ol = Jdis[l = G(s1,-), 8, 0, 0 = 1,
and (2) with s = s; has a second solution in B, \ Q7. . ]

End of the proof of Theorem 2. The conclusion of Theorem 2 follows from
Lemmas 3, 5 and 7. u
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