On maximal t—orthogonal sequences in ¢

Albert Kubzdela

Abstract

Let K be a non-Archimedean, complete, densely valued field. For a
given t € (0,1) we study a maximality of t—orthogonal sequences in ¢y over
K. In particular we prove that for every ¢ € (0,1) there exists a maximal
t—orthogonal sequence in ¢y which is not a base.

1 Introduction

Throughout this paper K denotes a non-Archimedean valued field which is complete
with respect to the metric induced by the non-trivial dense valuation |.| : K — [0, 00)
(recall that a valuation |.| is dense if the set of its values is dense in [0, 00)). Let E' be
a normed space over K; we assume that the norm defined on E is non-Archimedean
(i.e. it satisfies 'the strong triangle inequality’: ||z + y|| < max {||z]||,]||y||} for all

x,y € FE). By E’ we mean the topological dual of F which is a normed space with

the norm |[f|| = sup,ep 40 lﬂ(j\)'

For the basic notions and properties concerning normed spaces over K we refer
the reader to [1]. However we recall the following. We say that for a closed linear
subspace D of F and for x € E\D the distance dist(x, D) = infsep ||z — d|| is
not attained if ||z — d|| > dist(x, D) for all d € D. If there exists dy € D such that
||z — do|| = dist(x, D) we say that dist(z, D) is attained. Two linear subspaces
D,G C E are called orthocomplemented if ||x + y|| = max {||z||, ||y||} for all z € D
and y € G.

Let t € (0,1] and let M C N. We say that a sequence (finite or infinite) (x;),.,, of
nonzero elements of E is called t—orthogonal (orthogonal if t = 1) if for every finite
subset J C M and all scalars {A;}, ; we have szg )\ja:jH > t-maxjey {|| Nz} If,

additionally [(xz)zE M} = F, the sequence (z;),,, is called a base of E. By Theorem
3.16 of [1], every infinite-dimensional E contains an infinite ¢—orthogonal sequence
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if ¢ <1 and if K is spherically complete (i.e. every centered sequence of closed balls
in K has a non-empty intersection), then such E contains an infinite orthogonal
sequence. Clearly, every infinite t—orthogonal sequence is a basic sequence in F. We
say that a t—orthogonal sequence (z;),,, of E is mazimal if {z}U{x; : i € M} is not
t—orthogonal for any nonzero z € E. It is easy to observe that every t—orthogonal
sequence in E can be extended to a maximal one. Obviously, every t—orthogonal
sequence which is a base of F is maximal in E. But, it was noted (see Remark after
Theorem 3.16 of [1]) that ¢ contains a maximal orthogonal sequence which is not
a base. Hence, it is natural to formulate the following question.
problem Is for a given ¢ € (0,1) every maximal t—orthogonal sequence in ¢ a base
of CO?

This paper contains the answer to this question. In Theorem 1, for every ¢ € (0, 1)
we construct a maximal t—orthogonal sequence in ¢y which is not a base.

2 Results

We start with simple observations.

Lemma 1. Let D C F be a closed, proper, infinite-dimensional linear subspace of E.
If there exists ag € E\D such that dist(ag, D) is not attained, then dist(ag, F') >
dist(ag, D) for every F, a finite-dimensional linear subspace of D.

proof: Assume that there exists /' C D with dist(ag, F') = dist(ag, D). Then, by
Theorem 5.7 and Theorem 5.13 of [1], F' is orthocomplemented in F' + [ao] ; hence,
there exists € F' with ||ag — z|| = dist (ag, F') = dist (ag, D), a contradiction.

Recall that a linear subspace D C E is called a hyperplane of E if dim(F/D) =
1.

Lemma 2. Let D be a closed hyperplane of E. Let vy € E\D. If dist(xg, D) is
attained (not attained), then dist(x, D) is attained (not attained) for all x € E\D.

Proof. Taking z € E\D, we can write x = Azg + d, for some A € K (A # 0) and
some d, € D. Suppose that dist(zg, D) is not attained and assume that there exists
do € D such that dist(z, D) = ||z — do||. Then

d, —d
e = doll = A - [}z + <52
By assumption, there exists d € D such that
d, — d,
||$0+d||< To + X\ 0

Thus,

|z + (Ad = do)|| = ||(Azo + da) + (Ad = do)[| = [A[ - [|w0 + d]|
dy — dy
A

<A - {]zo + = ||[Azo + di — do|| = ||z — do]] ,
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a contradiction. Assuming that dist(xg, D) is attained, we conclude from the above
that dist(z, D) is attained for all z € E\D. ]

Proposition 1. Let t € (0,1] and (x,),.5 be a t—orthogonal sequence in E. Let
D = [(xn),en]- If there exists a € E\D such that dist(a,D) is attained then
(#n) ey 18 not mazimal t—orthogonal sequence in E.

Proof. Let a € F\D and assume that there exists x € D such that ||a —z|| =
dist(a, D). Denoting ag = a — x, we get ||ag — d|| > ||ag|| for all d € D. Thus, for
every m € N and for all uq, ..., ., € K we obtain

m
> max { Z T
j=1

since, by assumption szzl ,ujxjH > t-maxj_q, m ||p;z;||. Hence, {agxq,xs,...} is
a t—orthogonal sequence in FE. [

ap + Z 5T

i=1

,||ao||}2t-max{ygax gzl o}
J m

=1,...,

From now on in this paper we assume that E = ¢q. By {ey, €9, ...} we will denote
a standard base of F.

Remark 1. Taking x, := e 41 (n € N),a = e; we get a simple example of an
orthogonal sequence in E which satisfies conditions of Proposition 1.

Note that linear subspaces of E which do not satisfy assumptions of Proposition
1 exist. Examples can be constructed using the next proposition. Recall that by
Exercise 3.Q of [1], E' = [*° and every f € E’ is given by the formula

f(I) = Z UnTp,

neN

for some u = (uy, us, us, ...) € [*°, where x = (x1, 22, 23,...) € E.
) ) 9 Y ) 9 Y

Proposition 2. Let u = (uj,ug,ug,...) € I and f € E' be defined by f(z) =
> oneN UnZn, wWhere z = (21,29, 23, ...) € E. Denote by D = ker (f). Then, dist(z, D)
is attained for every x € E\D if and only if max,en |u,| ezists.

Proof. Let z = (21,22, 23, ...) € E. Since

|f(z)| _ |Zn€N UnZn| < maxpenN |unzn| < sup |Un|
2]l [[Znen znenll = maxpen |zn| T nen
and
|f<€n)| . |Un| -
p = sup = sup |u,|,
neN ||6nH neN||€n|| neN

we note that the norm of f is reached on {e, e, ...} ;i.e.

171 = sup LN .
neN HenH neN
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Assume that max, ¢y |u,| exists, then || f|| = |u,| for some m € N and f (e,,) ¢ D.
More, dist (€, D) = ||en]|| - If not, then there exists d € D with ||e,, — d|| < ||em]| -
PR e )] Ve
€m — e e
- = o > e = |l = I£1],
llem —dll lem —dl| = [leml]

a contradiction. It follows from Lemma 2 that dist(x, D) is attained for every
x € E\D.
Suppose now that dist(x, D) is attained for every z € E\D and assume that

max,ey |u,| does not exist (thus, ||f|| > “lc'(ZZH)l

strictly increasing sequence (ny), C N with ||f|| = limy . |y, | . Taking p > 1, we

for all z € F). Then, we can choose a

see that f (enp> #0, x, =e,, — Z%enr € D forall » > p and lim,_, Henp — xr‘
; thUS, diSt(enzﬂD) S hmr—>oo ‘Z%

unp

d € D such that Henp — dH < lim, o |+

np

. U .
lim, P and by assumption we can choose

. But then, we get

nr

> lim |uy, |,

flew, — )| |Flen,)

lews =l len, | =

a contradiction. n

Now, we prove the main theorem.

Theorem 1. For every t € (0,1) there exists a mazimal t—orthogonal sequence in
E which is not a base.

Proof. Let 0 < ¢t < 1. Choose a sequence (ay),.y C K (recall that by assumption
K is densely valued) such that

1
L=la] < ... <|ay| <|ap+| < ... < 7
Now, define elements of E as follows
a3n—2
b3n—2 = €3p—2 + Ag,Ck, — Lefﬂ(n—&—l)—Q
a3(n+1)—2

a
bsp—1 = ey, + —ey,
akn

bgnzegn (TLEN),

selecting k,,l, € N such that k, = 3i,,l, = 3j, for some 1i,,j, € N, k, > 3n,
Ly > ky,
| agna| <t [asein o] - o, (1)

and I, < k,,1 for alln € N. Let N, ={k,:n€ N}, N, ={l,:n € N} (observe
that Ny N N; = () and let Ny = N\ Ng.

Now, we prove that Xo = {by : k € Ny} is a t—orthogonal sequence in E. To
this end take a finite subset J C N, {A\i};,.;, C K and assume that max;c s || \ibi|| =
| Nigbio|| > 0 for some ig € J.
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First, we note that applying properties of the sequence (ay), .y Wwe have

ag,, 1
by, — —bsp_1 + —bz,_2
a a

ln

n

ag 1 g A3n—2
=|ley, — (—ex, +e,) + (—esn_o + —€r, — —————€3m+1)-2)
ag, ag, ag, aj,, a3(n+1)—2
1 a3n—2 1
=||[—e3p—2 — ———————€3(ms1)—2|| = |—| (2)
a, aj,, A3(n+1)—2 ag,
for every n € N and
ag 1
|61, — —"b3p—1 + —bzn 2
CI/ n a n
1 asn—2 ak as a a
— n—1 n—2 ln_1 3n—2
+ — b3(n—1)—2 — b3(n-1)-1 + b,n_l I
ay,, @3(n—1)—2 ap, a3n-1)—2 ap,, a3(n—1)—2
ar, 1 a,, (3n—2
= |le, — (—"ex, +e€1,) + (——€sn—2+ —€r, — ——————€3(m+1)-2)
ai, ai, ai, aj, A3(n+1)—2
L agno Ak,_y  (3n—2 1
— ———————€3(n-1)-2 T Clp_y — —C3n—2)
ay,, @3(n—1)—2 ap, a3mn-1)—2 ai,
Ak, A3p—2 ap,_, a3p—2 Qap,_;  A3p—2
eknfl + 6l'n,fl) + lnfl ||
ap, Aagn-1)—2 aj, a3(n—1)—2 l, @3(n—1)-2
B A3n—2 I agn2
=|| - ————e€3mt1)—2 + — e3(n—1)—2||
aj, A3(n+1)—2 aj, a3(n—1)—2
1 a3n—2 1
= |— G
aj,, a3(n—1)—2 ai,
forn=23,....

Now, consider the following cases:

e ip = 3n for some n € N. If ig ¢ N; then ||>;c; \ibi|| = max;ey || Nibi]| =
| Xigbio|| - Suppose that ig € N, then ig = [, for some n € N. We get ||\, by, || =
l| A, e, || = |\i,,| and applying (2) and (3) we obtain

a 1
STNbi|| > [ Abi, = Ay = bgn 1+ Ay — b
icJ a, ai,
ag,, 1 )\ln
= |/\ln|’ bln_ bgn_1+7b3n—2 - |/ >t’|/\ln| :tmaX||/\2b,||
ai, ai, ai, =

(note that ||)\lnbln + )\]b]H < ||/\lnbln|| OIlly lfj =3n —1 and ||>\lnbln + )\jbj +
/\lb1|| < ||/\lnbln + /\]b]H only if [ = 3n — 2).

o [fig =3n — 1 for some n € N, then we obtain

CLln

ap

Agn—1€k, + Azn—1

n

ak'ﬂ

eln

||/\3n—1b3n—1|| = ‘ >‘3n—1

n
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and using (2) and (3) we get

(05 1

> N > ‘ A3n—1b3n—1 — Agn—1—"b1, — Azp—1—b3n 2
icJ Ak, Ak,

(07} Qg 1

= )\31171 = - b3n71 - bln - 7b3n72
ay,, In ai,
1 ap
= )\311,17 >t )\371,71 “l=t- maXH)\szH ,
ag,, ag,, ied

since H)\?m—lb?m—l -+ )\]b]H < ||>\3n—1b3n—1H only lf] = ln and ||)\3n—1b3n—1 +
A b, 4+ Nibil| < [ Asn—1bsn—1 + A, by, || only if [ = 3n — 2.

e Assuming that ¢y = 3n — 2 for some n € N, we have
H)\3n72b3n72’| = |>\3n72akn’ 5
ObSGI‘Vng that ||>\3n72b3n72 + )\jbj + )\lblH < H)\3n,2b3n,2H only lfj = ln and

[ =3n — 1 and applying (2) and (3) again, we calculate

> || Asn—2b3n—2 — Asn—2ak, bsn—1 + Asn—2ay, by, ||

> Aibi

icJ

1
aln
= |)‘3n—2| >t- |)\3n_2akn| =t- max ||/\2bz|| .

i€

CL]gn
= |Agn—2a,,| - b3p—o — —"bgpn_1 + by,
CLln

In this way we prove that X is t—orthogonal.

Note that, doing simple calculations, we have

e — (bsn—2 — g, b3n—1 + az,by,)
n—1 3n—2
ai
= llev = (er +aper, — e — awen, —anen + ayen)

4

ay Q4
— —(e4 + apyep, — —€7 — ApyCry — Q1,€5 + agyep,) —

Gy az

a1 a3m—2

. — ——(esm—2 + ag,, €k, — —————€3(m+1)-2 — k,,Ck,, — Q,,€1,, T ar,,er,,)||
A3m—2 ag(m+1)—2
aq
= <1 (4)
a3(m+41)—2
and easily observe that
dist (61, [X[)]) = lim €1 — (b3n_2 — aknbgn_l + alnbln)
m—00 asn—
n=1 Y3n—2
. aq
= lim =t-|la| =t. (5)
M0 | A3(m+1)—2
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Clearly, dist (e, [Xo]) is not attained.

Now, we prove that X, is a maximal t—orthogonal sequence in [{e;} U Xy.
Taking w € [X], (we can write w = 31" \;b; for some mg € N and Ay, ..., Ay, € K)
we show that {e; +w} U Xy is not t—orthogonal sequence in [{e;} U Xo]. Since
dist (e1,[Xo]) is not attained, using (4) and (5), we can select m > mg+ 3 such that

m
a
€1 — : (bgn—2 — g, b3n—1 + a, by, )|| < |lex +w|.
n=1 @3n—2
Let

m ay

z=w -+ Z (bgn,Q — aknb3n71 + alnbln) .
n=1 a3n—2

Since z € [X], we can write, choosing proper scalars i, ..., 3, € K, z = Y\, Bib;.
In particular we have

a1 a1
ﬁzm = —a, 53m—1 = —Qg,, 53m—2 = )
A3m—2 A3m—2 A3m—2

a

thus, we get
a1

Jmax |G} = |-

—Lyeentm

ay

m | °

3m—2

On the other hand, using (4) and (1) we obtain

" a
Hel +w — ZH =|le; — Z 1 (b3n72 - aknb3n71 -+ alnbln) |
n=1 a3n72
a]_ al
= <t- ap | <t- max Bb
A3(m+1)—2 A3m—2 m =1, lm {|| ) z||}

and conclude that X, is maximal in [{e;} U X].

It is easy to check that F' = [{e1} U Xo U {e3n—1 : n € N}|and that [{e;} U Xo] is
orthocomplemented to [{es,—1 : n € N}]. Hence, taking X, = XoU{e3,—1:n € N}
we get a maximal t—orthogonal sequence in FE which is not a base of E¥ and complete
the proof. [

Remark 2. Note, that the closed hyperplane D = [X,,| of E, where X, is the
t—orthogonal sequence constructed in the proof of Theorem 1, can be obtained as
a ker (f), for f € FE', induced by (ay,0,0,a4,0,0,ar7,...) € [® (where ay,ay,ar, ...
are defined in the proof of Theorem 1). Observe that f (e3n—2) = azn—2, f (€3n-1) =
flesn) =0 (neN) and f(by) =0 for all k € Ny. Since sup,,cn |asn—2| is not
attained, it follows from Lemma 2 and Proposition 2 that dist (x, D) is not attained
for every x € E\D.
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