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Abstract

In this paper, a Fourier spectral method for an initial boundary value
problem for a class of systems of generalized Zakharov equations is proposed.
Semi-discrete and fully discrete Fourier spectral schemes are given. In fully
discrete case we have established a two level scheme which is convenient and
saves time in real computation. An energy estimation method is used to
obtain error estimates for approximate solutions.

1 Introduction

Zakharov [1] has proved that propagation of Langmuir waves in Plasma Physics,
which describe a system called Zakharov equations nowadays. In this paper, we con-
sider the following initial boundary value problem for a class of systems of generalized
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Zakharov equations:

iOu + O2u — anu + B(|ul*)u = 0, € R,t>0,
(1.1)
00+ 0pf (V) — 30,020 + Oy + pd, (Jul?) = ¢(v), re R, t>0,
(1.2)
on + 0,v =0, r € R, t>0,
(1.3)
U(ZL’,O) = an'U(x>0) = UQ,TL([L’,O) = No, r € R,
(1.4)
u(xr + 2m,t) = u(z,t),v(z + 2m,t) = v(x, t),n(x + 2w, t) = n(x, t), t>0,
(1.5)

where the complex function u(x,t) represents the envelop of the electric field, n(z,t)
is the deviation of the ion density from its equilibrium value, v(z,t) is speed of
soliton. The parameters «, (3,0, u are real constants, f(v) and ¢(v) are nonlinear
functions. The existence and uniqueness of the global solution of the generalized
Zakharov equations in one dimension is proved in [2].

A lot of work have been done on the numerical solution of Zakharov type equa-
tions. For example, in [6] Guangye used the pseudospectral method for (1.1)-(1.5)
and proved the error estimation of semi-discrete and fully discrete pseudospectral
schemes. Ma Shuging and Chang Qianshun [8] has studied the dissipative Zakharov
equations, in which they apply pseudospectral method and proved the convergence
by priori estimates. Payne et al. [5] designed a spectral method for one dimensional
Zakharov system (ZS). They used a truncated Fourier expansion in their schemes
to estimate the aliasing error. Shi Jin et al. [9] studied the time splitting spectral
methods for the generalized ZS. They analyzed the behavior of numerical solution
in the subsonic regime and studied the collision behavior of two solitons in the tran-
sonic region. Glassey [3] presented an energy preserving finite difference schemes
for the ZS in one dimension and proved its convergence in [4]. In [10, 11], Chang et
al. presented a conservative difference scheme for the generalized ZS. This scheme
can be implicit or semi explicit depending on the choice of parameter. They also
proved the convergence of their method. More recently Bao et al. [12] proposed a
time splitting spectral scheme to solve the generalized ZS. Their method was also
extended to the vector ZS for multi-component plasmas [13].

The aim of this paper is to investigate the first order finite difference approxima-
tion in time, combined with spectral approximation in space, for solving (1.1)-(1.5).
Both the semi-discrete and the fully discrete schemes are analyzed and error esti-
mation for both are found. The rate of convergence of the resulting schemes are
O(N=%) and O(k? + N=%) where N is the number of spatial Fourier modes, k is the
discrete mesh spacing of the time variable ¢t and where S is depending only on the
smoothness of an exact solution.

This paper is organized as follows: we introduce some notations and lemmas in
section 2; the semi discrete and fully discrete spectral schemes are studied in section
3 and section 4 respectively; finally the conclusion is given in section 5.
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2 Notations
Let 2 = [0, 27|, the inner product and the norm are defined by (u,v) = [, u(x)v(x)dx
and [Jul|? = (u,u) respectively. Let ||ul = esssup,cq |u(z)| and the periodic
Sobolev spaces Hg is defined by
S S(py . _
H(Q) ={u e H°(R) : u(r + 27m) = u(x)}.

For any positive integer S, the Sobolev norm and semi-norm are defined by

o\ 1/2
) 5 |u|] = |

L¥(0, T3 Hy () = {u(-, ) € H)(Q) - o [u(-, )]l < oo}

2

M

O

&u
oxJ

[ulls = (Z;

We define

For any even integer NV, set Sy = Span {gpk = \/%e““” k| < N}. Py denotes the

L? orthogonal projection operator of H2(€) upon Sy.

Lemma 2.1. [1]] For any periodic discrete function u™, there are

1 k

1
(™ uy") = Sl = Sl I, where [l [F = (™ * = [[a™]).

Lemma 2.2. [7] Assume that u € HPS(Q), for any 0 < u < S, there exists C inde-
pendent of u and N

lu = Pyul|,, < CN"=uls.

Lemma 2.3. [7] (Inverse Property) Assume that u € Sy, for any 0 < p < o,
there exists C' independent of u and N

[ulls < CNT"Hul],.

3 The Semi-Discrete Spectral Method and Error Estimation

The semi-discrete spectral approximation of problem (1.1)—(1.5) consists in find-
ing uy,vy,ny € Sy, satisfying, for any 1 € Sy, such that

(i0yuy + O*un — anyuy + B(|un|*)un,v) = 0, (3.1)
(O + Opf (un) — 00,0%vN + Opny + pOy|un|® — d(vn), ¥) = 0, (3.2)
(Omny + Opvn, ) =0, (3.3)
un(x,0) = Pyug, vn(x,0) = Pyvg, ny(z,0) = Pyno. (3.4)
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Suppose that (u,v,n) are the solutions of (1.1)-(1.5) and (uy, vy, ny) are the solu-
tions of (3.1)-(3.4). Setting

e1 =u—un = (u— Pyu)+ (Pyvu—uy) =& + 1,
es =0 — vy = (v— Pyv) + (Pyv —vn) =& + 12,
e3s=n—ny = (n— Pyn)+ (Pyvn—ny) =& +1s.
By Lemma 2.2 and using (&,,1) = 0,¢ =1,2,3,Vy € Sy, implies that
leell < 1€l + lmell < CNT5 +|Imell, €=1,2,3. (3.5)
Taking the inner product of (1.1) with ¢ € Sy, implies that
(i0yu + Dou — anu + B(|ul*)u, ) = 0. (3.6)
Subtracting (3.1) from (3.6) yields
(i0ie, + O%e1 — a(nu — nyuy) + B(|ul*u — Juy|*uy), ) = 0. (3.7)
Note that
(Oree, ) = (0i&e, ¥0) + (Opme, ) = (Opme, ¥), € =1,2,3
(ee, ) = —(Oper, 0uth) = —(Oute, ), £ = 1,2.
Setting 1 = 71, and taking the imaginary part, (3.7) follows

1d
§E||771||2 = aly,(nu — nyuy,m) — BLn([ul*u — [uy|*ux, m). (3.8)

Throughout this paper, we shall use C' to denote a general positive constant inde-
pendent of k and N. It can be of different values in different cases.

[(nu = nyun, m)| < llnllsollm I + [ lloclexllImll

< CNT> + [lmell” + [l ),

ul® = Jun|*)u + |uy|*er, m)

— o~

(|u|2u - |UN|2UN>771)

(
(

< (Ul + Nt lloe) el + e 2l
< OV + ) )
< OV + [l ).
Then (3.8) gives
=l < COV2S P+ ) (39

Next by replacing u,n with uy,ny in (1.1), it follows

i@tuN—l—ﬁiuN —oanuN+ﬁ(\uN\2)uN = 0. (310)
Differentiate (1.1) and (3.10) with respect to = respectively, subtracting one equation
from another, taking imaginary parts, and setting ¢ = 0,7, we have

1d

5&“8:#71“2 = ol 0, ((nu — nyuy), 0xmi) + BLn(0p (|u*u — |uyPuy), Opny). (3.11)
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Similar to (3.8), we get

|(nu = nyuy, Zm)l < CNT* + [I|* + [l ]]* + 107m[1%).
(ful*e = lunPun, 02m) < CNT + [ ])* + 107m[1%).

Then (3.11) gives

Sl < OOV 4 a2 4+ ol + 2] (3.12)
On other hand, taking the inner product of (1.2) with ¢ € Sy, implies that

(O + 0p f (V) — 80,020 + O + pO,|ul* — d(v), ) = 0. (3.13)
Subtracting (3.13) from (3.2), implies that

(Orea + 0 (f(v) — f(vn)) — 5@@%62 + Opes + p0y (|ul® — lun *) — (¢(v) — d(vn), ¥) = 0.

(3.14)
Set ¢ = 19, (3.14) follows
1d, ., 6d )
§£||772|| + 5@“850772” + (0:(f(v) = f(vn)), m2) + (Ozes, M2) (3.15)

+ (0o (Jul* — un?),m2) — (8(v) = ¢(vw), 1m2) = 0.
Similar to above derivation, we have
|On(uf® = Jun]?),m2) = [(Jul* = un|?, Qoo

([lloo = llun o) llex [l Ozne |
C(NT2 + [l |I* + [|0am2 ),

<
<

|(0:(f(v) = f(on));me)| = [(f(v) — fvn), Oum2)]

0
<N ealliann |
< OOV 4l + o),

0
|(0:(6(v) = ¢(on)), )| < Ha—flloollezﬂllnall
< CINT + e,

[Ozes,m2)| < C(NT2 + [|ns|* + 1|0 1?).

Then (3.15) gives

5= (Inl* +6[10em2l*) < CINT2 + [l [|* + el + 10ama 1 + [Insl*). - (3.16)

1d
2dt
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Finally, taking the inner product of (1.3) with ¢» € Sy, implies that
(Oyn + 0, 1) = 0. (3.17)

Subtracting (3.3) from (3.17), we get

(at€3 —+ am€2, w) =0. (318)
Set 1 = n3, (3.18) follows
ld 2 —25 2 2
=l < OOV ol + ) (3.19)

Combining (3.9), (3.12), (3.16), and (3.19), we get

1d .
5 77 U l” = 1”4 llns |1 + Il + lImell72) < CINT2 + [l
+ [Im2l* + [Ins1* + 102 [1* + 110am2]1* + (1025 1)

(3.20)
Note that ||n,(0)|| = 0,¢ = 1,2,3 and by applying Gronwall’s inequality, we obtain
Il + 2l + lls])* < CN72

Theorem 1. Suppose that f(v), p(v) € CH(Q), ug(x), vo(z) and ne(z) € H(Q), (S >
1). Assume that u, v and n are solution of equations (1.1)-(1.5). Then there exists
a unique solution uy, v and ny of the problem (3.1)-(3.3). Moreover there ezists
a positive constant C, the following error estimate holds

lu = unllz + [lv = vwlle + [In(t) — nx ()] < CN72

4 The Fully Discrete Spectral Method and Error Estimation
Let J be positive integer, k = % be time-length step. The approximation
70 = (uf, o, n)T to Zy = (un,vn,ny)T at t = mk given by the spectral method
is defined by Z% = Py Zy, and for m > 0, Vi) € Sy, find u, vR, n% € Sy, such that

(iufy, + O20R — anuRy + B(lag*)ay, ¢) = 0, (4.1)
(VR + Onf (V) — 6020, + Ounilfy + 0 (|ui|?) — B(VR),4) = 0, (4.2)
(ny; + Ox 05, 1) = 0, (4.3)
U%([L’,O) = PNug)n’U]nVl(l’vo) = PN’U(T,TL%([L’,O) = PN”?? (44)
where
1 m m 1 m m
Uny = E[UN—H —uy|, vN; = E[UNH — vyl
1
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Setting

el = u™ —uy = (u™ — Pyu™) + (Pyu™ —uy) = &' + 1,
ey =v" —of = (V" = Pyu™) + (Pyu™ — o) = &' + 15",

m

e5 = n" —ny = (n" — Pyn™) + (Pyn™ —ny) = &' + 05"
By Lemma 2.2 and using (£;",1) = 0,¢ = 1,2,3, Vi € Sy, implies that
le"ll < N1+ 1"l < ONT5 + [, £=1,2,3. (4.5)

Substituting the solution u(tm) v(tm), n(ty), into (1.1)- (1.3), and subtracting (4.1)
from (1.1), (4.2) from (1.2) and (4.3) from (1.3) respectively, we have

(ief; + O5e]" — a(n™u™ — niyay) + B(lu™Pu™ — [aN*ay), v) = (7", 9),  (4.6)
(€3 + 0o (f(v™) — f(vR)) — 007€5; + 085’ + pdo(|u™* — [uii|*)

= (0(v™) = ¢(vy)), ¥) = (7", ), :
(e5t + 0u3',90) = (13", ). (4.8)

where 7" = O(k?), 73" = O(k?), 7" = O(k?) are truncation errors.
Setting v = 77" in (4.6) and taking the imaginary parts, we have

k: m m m m m
||771 ||t - §’|771t“2 + "+ F = (7'1 » T )7 (4-9)
where
F" = —al,(n™u™ — nuy, "),

F3 = BLn(Ju™*u™ — [aR [Pay, ).
By applying Lemma 2.2 and Cauchy Schwartz inequality, we have

[Fr<C
<C
|Fm| <C

1™ ™ — nRay|* + ")

N7+ ||77’”||2 + [ [17 + 15" 1%,

(™™ — [ Payl®) + ln*)

C([u"[loo + @™ lloo)l[e™ oo + aRtllc] (&7 [ + [le]])
N7 P+ 1),

[l 1% =+ [l 73711%).-

gc
(") < C

/\/\/\/‘\/‘\/‘\

Substituting the above estimates into (4.9), we have
1 m k m - ~m m m m
S lE = Sl * < CON22 {12 + ot 17 + [lng"1” + [17711%)- (4.10)

Differentiate (1.1) and (4.6) with respect to z, subtracting one equation from an-
other, setting ¢ = 9,n" and taking the imaginary parts, we get

1 m k m m m m m
iHaﬂh 1} — §H8w771t“2 + B+ B = (1", 0emy), (4.11)
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where

Ft = Ol]m(a:c(nmum - nﬁﬁﬁ) a’b‘nin)’
FP = BLa(@u ™ P — |2 Pa), ).

We can estimate |F3"|, |Fj*|, similar to the above method and putting in (4.11), we
have

1 m k m - m m
SO [F = S10amit 1 < CONT2 17|12 + 17" 17 + 10 17 + [In" 1 + 1771%)-

(4.12)
Setting 1 = 04" in (4.7), we get

1 m m k m m m m m m
SUMBIE + 10um5"[17) = 5 (s l|* + N0z |17) + F5" + F§* + F* + Fg" = (137, 0u’),
2 2

(4.13)

where

Fg = (f(0"™) = f(0R), 0eny),

F" = (e5', 0uy’),

F = p(lu™? = [y, 9um3"),

F" = (o(v™) = o(v), Damg"),
of

P21 < COIm) = ORI + 101 < € %

lez"lI* + [10:75"11%)

CNT2 + [In5"|I* + 10:05" 1),

|F5"| < C(II6§”I|2 + 105" [17) < CINT2 {7517 + 10005 ]1%),

[F7°] < C(H|um\2 — [ PI1* + 10:95"1%) < CC(lu™ 1% + R 13 e * + 105" 1%)
CNT2 + [Ini"[I* + 10205"17),

9¢

el le5" I + 1l 0am5" %),

F) < Clo(™) — S + [0 ?) < 0<H

< CNT2 4 (05" 17 + 11 0am3"]?).-

Substituting the above estimate into (4.13), we get

1 m m k: m m - m
12+ 10um 12) = S GI” + N0angi ) < OOV - foumgl® )
T+ 2 + 1+ )

Setting 1) = 03" in (4.8), we get

Loz Ky mp2 —28 2 2 2

Sl llE = Sling1* < CONT2 4 0571 + [19a5° [1” + [Ing" I + 175" (1) (4.15)
Let ¢ = nj} in (4.6) and taking the imaginary parts, we get

m ~Sm m

11 = o (R ™ — nay, mi;) — BLn(lu™u™ =[Gy ey, mi) + (7" ngy).
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Using Cauchy-Schwartz inequality and algebraic inequality, ab < ea® + ébz, we get

Il < 2l + e (il il + g o 32
+ BN oo + @R o) 1™ oo + @R ool (1ET 117 + Nl 1) + 73717,
which implies that
g2l < CONT>F (17 17 + Il 1 + Nl 1> + Il [1%). (4.16)
Let ¢ = nly in (4.10), we obtain

m m 2 m
i 1” + lngzel® < st + ||a€0772t||2 + {175 1% + ||(9 m||oo|| 5 |
+lel[llu™lso + luflloc]ller” ||2+|| ||oo||6 1+ llm3n 1%

Thus we have

5% + 10zma I* < CONT2 + [l + [l I1” + 11751 + [l 73" [1%)- (4.17)
Let ¢ = n%; in (4.8), we get

151> < CONT> - (10umz 12 + s 17 + llm3"11%). (4.18)
In fact |
m - m~+11|2 m||2
) < 5 (a2 + ).

Combining (4.10), (4.12) and (4.14)- (4.18), using Lemma 2.3, Lemma 2.1, we get

m= e )

+ Hn"“\

+ Hn"“H
+ i)

£ OB Y (I + g2 + 2 s+ )

m=0

<0<k4+N [+ ol s + 2]

and hence
e (i U A PR CH R P
(4.19)
Note that ||n?]| = 0,¢ = 1,2, 3, equation (4.19) can be written as
Et) < C (K + N7) + Ck znj E™ 1 (4.20)
m=0

By applying Gronwall’s inequality, we obtain
C(kA_I_N—Zs) < Me—cT’
and so the estimate for £ in (4.20) takes the form
Et) < C (K + N72) etk Y4+ k< T

Thus we have proved:
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Theorem 2. Assume that u™, v™ and n™ are solutions of equations (1.1)-(1.5)

and uyy, vy and n¥; are solutions of the problem (3.1)-(3.3) respectively, then there
exists a positive constant M, independent of k and N. The following error estimate
holds

sup (Ju™ = wfllm + 0" = vifllm + [0 = nll) < MR+ N77).
1<m<[%]

5 Conclusion

A Fourier spectral method was applied to the initial boundary value problem for
a class of generalized Zakharov equations. An energy estimation method was used
to find error estimates for semi-discrete and fully discrete of the spectral schemes.
A Crank-Nicolson implicit scheme was used for nonlinear Schrédinger equation in
Zakharov system. The rate of convergence of the semi-discrete and fully discrete
were obtained O(N~°) and O(k? + N=%) respectively. This method is also very
useful to other similar nonlinear partial differential equations.
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