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Abstract

If A is a (nonempty) bounded convex subset of an asymmetric normed
linear space (X, q), we define the closedness of A as the set clqA ∩ clq−1A,
and denote by CB0(X) the collection of the closednesses of all (nonempty)
bounded convex subsets of (X, q). We show that CB0(X), endowed with the
Hausdorff quasi-metric of q, can be structured as a quasi-metric cone. Then,
and extending a classical embedding theorem of L. Hörmander, we prove that
there is an isometric isomorphism from this quasi-metric cone into the product
of two asymmetric normed linear spaces of bounded continuous real functions
equipped with the asymmetric norm of uniform convergence.

1 Introduction and preliminaries

In the last decade several authors have successfully applied both asymmetric normed
linear spaces and other related structures from topological algebra and nonsymmet-
ric functional analysis as quasi-metric cones, algebraic [0,∞]-modules and quasi-
normed semilinear spaces to construct suitable mathematical models in theoretical
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computer science ([8], [17], [20], [21], [23], etc.) as well as in discussing some ques-
tions in approximation theory ([2], [5], [18], [19], [24]). Simultaneously, the interest
in the study of hyperspaces and function spaces in quasi-uniform and quasi-metric
spaces has increased considerably motivated in part for such applications (see [13],
[15], [16], [22], etc). In this setting it then appears the unexplored but interest-
ing problem of embedding (hyper)spaces of convex subsets of a given asymmetric
normed linear space into appropriate function spaces endowed by the asymmetric
norm of uniform convergence. In this paper we present a solution to that prob-
lem. Our main result extends to the asymmetric framework the famous embedding
theorem of L. Hörmander [10] (see also Theorem 3.2.9 of [3]) which essentially es-
tablishes the existence of an algebraic and isometric embedding of the metric cone
of the bounded convex and closed subsets of a normed linear space X, endowed with
the Hausdorff metric, into the Banach space of bounded continuous real functions
on the closed unit ball of the dual space of X equipped with the norm of uniform
convergence. Here we prove that if X is an asymmetric normed linear space, the set
of the closednesses of the bounded convex subsets of X endowed with the Hausdorff
quasi-metric can be structured as a quasi-metric cone, and we construct an algebraic
and isometric embedding from this quasi-metric cone into the product of two asym-
metric normed linear spaces of bounded continuous real functions equipped with the
asymmetric norm of uniform convergence.

In the following the letters R, R+ and N will denote the set of real numbers, the
set of nonnegative real numbers and the set of positive integer numbers, respectively.

According to the modern terminology by a quasi-metric on a (nonempty) set X
we mean a function d : X × X → R+ such that for all x, y, z ∈ X : (i) d(x, y) =
d(y, x) = 0 ⇔ x = y, and (ii) d(x, y) ≤ d(x, z) + d(z, y).

If d can take the value ∞ then it is called a quasi-distance on X. Given a quasi-
distance d on X, the function d−1, defined on X ×X by d−1(x, y) = d(y, x), is also
a quasi-distance on X, called the conjugate of d, and the function ds, defined on
X × X by ds(x, y) = d(x, y) ∨ d−1(x, y), is a distance on X. If d is a quasi-metric,
then d−1 and ds are a quasi-metric and a metric on X, respectively.

A quasi-metric space is a pair (X, d) such that X is a (nonempty) set X and d
is a quasi-metric on X.

Each quasi-distance d on X induces a T0 topology τd on X which has as a base the
family of d-balls {Bd(x, r) : x ∈ X, r > 0} where Bd(x, r) = {y ∈ X : d(x, y) < r}.

If A is a subset of the quasi-metric space (X, d), the closure of A with respect to
τd will be denoted by cldA.

The reader might consult [7] and [13], for more information about quasi-metric
spaces.

Let X be a linear space. We say that a function q : X → R+ is an asymmetric
norm on X ([8], [9]) if for all x, y ∈ X and r ∈ R+: (i) q(x) = q(−x) = 0 if and only
if x = 0; (ii) q(rx) = rq(x), and (iii) q(x + y) ≤ q(x) + q(y).

Asymmetric norms are called quasi-norms in [1], [6], [18], etc.
An asymmetric normed linear space is a pair (X, q) such that X is a linear space

and q is an asymmetric norm on X.
Given an asymmetric norm q on a linear space X, the function q−1 defined on

X by q−1(x) = q(−x), for all x ∈ X, is also an asymmetric norm on X, called the
conjugate of q, and the function qs defined on X by qs(x) = max{q(x), q−1(x)} for
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all x ∈ X, is a norm on X. We say that (X, q) is a biBanach space if (X, qs) is a
Banach space ([9]).

The following is a simple but crucial instance of a biBanach space.

Example 1. Denote by u the function defined on R by u(x) = x ∨ 0 for all
x ∈ R. Then u is an asymmetric norm on R such that us is the Euclidean norm on
R, i.e. (R, us) is the Euclidean normed space (R, |.|). Hence (R, u) is an asymmetric
normed linear space (see, for instance, [6]).

It is well known that each asymmetric norm q on a linear space X induces a quasi-
metric dq on X given by dq(x, y) = q(y − x) for all x, y ∈ X. The dq-ball Bdq(x, r),
will be simply denoted by Bq(x, r) and the set Bq(x, r) := {y ∈ X : q(y− x) ≤ r} is
said to be the closed ball of center x and radius r. Observe that Bq(x, r) is a τdq−1 -

closed set. A subset A of (X, q) is called bounded if it is bounded in the normed
linear space (X, qs). If A is a subset of (X, q), the closure of A with respect to τdq

will be simply denoted by clqA.
If A is a (nonempty) bounded convex subset of an asymmetric normed linear

space (X, q), we define the closedness of A as the set clqA ∩ clq−1A, and denote by
CB0(X) the collection of the closednesses of all (nonempty) bounded convex subsets
of (X, q).

Following [11], a cone (a semilinear space in [18]) is a triple (X, +, ·) such that
(X, +) is a commutative semigroup with neutral element 0 and · is a function from
R+×X into X which satisfies for all r, s ∈ R+ and x, y ∈ X : (i) r · (s ·x) = (rs) ·x,
(ii) (r + s) · x = r · x + s · x, (iii) r · (x + y) = r · x + r · y, (iv) 1 · x = x, and (v)
0 · x = 0 (see [12] for related structures).

By a quasi-metric cone we mean a quadruple (X, +, ·, d) such that (X, +, ·) is a
cone and d is a quasi-metric on X such that d(x+z, y+z) ≤ d(x, y) and d(rx, ry) ≤
rd(x, y) for all x, y, z ∈ X and r ≥ 0.

2 On the structure of CB0(X) equipped with the Hausdorff quasi-

metric

In the sequel we denote by P0(X) the collection of all nonempty subsets of a given
(nonempty) set X.

Let (X, d) be a quasi-metric space. Define

C∩(X) = {cldA ∩ cld−1A : A ∈ P0(X)}.

It is straightforward to show that if A ∈ P0(X), then A ∈ C∩(X) if and only if
A = cldA ∩ cld−1A.

On the other hand, if (X, q) is an asymmetric normed linear space, we can easily
describe the set CB0(X) in terms of C∩(X).

Lemma 1. Let (X, q) be an asymmetric normed linear space. Then

CB0(X) = {A ∈ C∩(X) : A is bounded and convex}.
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Proof. Let A ∈ C∩(X) such that A is bounded and convex. Since A = clqA ∩
clq−1A, we deduce that A ∈ CB0(X). Conversely, if A ∈ CB0(X), there is a bounded
and convex nonempty subset B of X such that A = clqB∩clq−1B. Thus A ∈ C∩(X).
Moreover, boundedness of B clearly implies boundedness of A. Finally, given a, a′ ∈
A and r ∈ [0, 1], we deduce that ra + (1 − r)a′ ∈ clqB by convexity of B and the
fact that a, a′ ∈ clqB. Similarly, we obtain that ra + (1− r)a′ ∈ clq−1B. Therefore A
is convex. �

Example 2. Let (X, q) be the asymmetric normed linear space of Example 1. By
using Lemma 1 it is easy to check that CB0(X) consists of all compact intervals of
(R, |.|).

Note that for the space (X, q) of the above example, the set CB0(X) coincides
with the set of bounded convex and closed (nonempty) subsets of (X, qs). The next
example shows that this is not the case, in general.

Example 3. Consider the classical Banach space (`1, ‖.‖1) of sequences of real
numbers x := (xn)n∈N such that

∑∞
n=1 |xn| converges. It is well known that the

closed unit ball U is a bounded convex and closed subset of (`1, ‖.‖1). We split the
norm ‖.‖1 as follows (see [6], [8]). For each x := (xn)n∈N ∈ `1 let

q(x) =
∞∑

n=1

(xn ∨ 0).

Then q is an asymmetric norm on `1 such that qs(x) ≤ ‖x‖1 ≤ q(x) + q−1(x) for
all x ∈ `1 ([8]). We show that U ( clqU ∩ clq−1U. Thus U /∈ CB0(`1) by Lemma 1.
Indeed, choose x := (xn)n ∈ `1 such that x2n−1 > 0, x2n < 0, ‖x‖1 > 1, q(x) ≤1 and
q−1(x) ≤ 1. Then q(y − x) = q(x − z) = 0, where y := (yn)n∈N and z := (zn)n∈N
satisfy y2n−1 = 0, y2n = x2n, z2n−1 = x2n−1, and z2n = 0 for all n ∈ N. Since y ∈ U
and z ∈ U it follows that x ∈ clqU ∩ clq−1U. However x /∈ U.

Several parts of the proof of the next result follow exactly as in the case of
normed linear spaces, hence some details will be omitted.

Proposition 1. Let (X, q) be an asymmetric normed linear space. For each pair
A, B ∈ CB0(X) and each r ≥ 0 let

A⊕B = clq(A + B) ∩ clq−1(A + B) and r · A = {ra : a ∈ A}.

Then (CB0(X),⊕, ·) is a cone.

Proof. Let A, B, C ∈ CB0(X) and r, s ≥ 0. Then A, B ∈ C∩(X) and A and B
are bounded and convex. It is immediate to show that A ⊕ B ∈ C∩(X), and that
A⊕B is bounded and convex. So A⊕B ∈ CB0(X) by Lemma 1. Clearly, we have
that A⊕B = B ⊕ A. Furthermore

(A⊕B)⊕ C = clq((A⊕B) + C) ∩ clq−1((A⊕B) + C)

= clq((A + B) + C) ∩ clq−1((A + B) + C)

= clq(A + (B + C)) ∩ clq−1(A + (B + C))

= clq(A + (B ⊕ C)) ∩ clq−1(A + (B ⊕ C)) = A⊕ (B ⊕ C).
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Note also that for A⊕ {0} = A.
It is easily seen that r · A ∈ CB0(X) and r · (s · A) = (rs) · A. Moreover

r · (A⊕B) = r · (clq(A + B) ∩ clq−1(A + B))

= clq(r · (A + B)) ∩ clq−1(r · (A + B))

= clq(r · A + r ·B) ∩ clq−1(r · A + r ·B) = r · A⊕ r ·B.

In order to show that (r + s) ·A = r ·A⊕ s ·A, we first note that, by convexity
of A, we have (r + s) · A = r · A + s · A, so (r + s) · A ⊆ r · A ⊕ s · A. Now let
z ∈ r · A⊕ s · A. Then there exist sequences (an)n, (a

′
n)n, (bn)n and (b′n)n in A such

that q(ran + sa′n − z) < 1/n and q(z − rbn − sb′n) < 1/n for all n ∈ N. Since
(ran + sa′n)/(r + s) ∈ A (where we assume without loss of generality that r + s > 0)
it follows that

q(
ran + sa′n

r + s
− z

r + s
) <

r + s

n
,

for all n ∈ N. Therefore z/(r+s) ∈ clqA. Similarly, we deduce that z/(r+s) ∈ clq−1A.
Hence z/(r + s) ∈ clqA ∩ clq−1A = A. We conclude that (r + s) · A = r · A⊕ s · A.

Finally, it is obvious that 1 · A = A and 0 · A = 0. Thus, we have proved that
(CB0(X),⊕, ·) is a cone. �

Remark 1. Note that the first part of the proof of Proposition 1 shows that if
(X, +) is a (commutative) semigroup, d is a quasi-metric on X and for each pair
A, B ∈ C∩(X), we define A⊕B = cld(A + B) ∩ cld−1(A + B), then (C∩(X),⊕) is a
(commutative) semigroup.

Given a quasi-metric space (X, d), the construction of the Hausdorff quasi-
distance on the set C∩(X) may be found in [14] (see also [4], [15], [16], etc). We
adapt this construction to our context as follows.

Let (X, q) be an asymmetric normed linear space. For each A, B ∈ P0(X) define

H+
q (A, B) = sup

b∈B
dq(A, b), H−

q (A, B) = sup
a∈A

dq(a, B),

and
Hq(A, B) = max{H+

q (A, B), H−
q (A, B)}.

Then Hq is a quasi-distance on the set C∩(X) (compare Lemma 2 of [14]) and it
is a quasi-metric on the set of all bounded subsets of X that are in C∩(X), hence
in CB0(X). In this case we say that Hq is the Hausdorff quasi-metric of q on CB0(X).

Theorem 1. Let (X, q) be an asymmetric normed linear space. Then (CB0(X),⊕, ·, Hq)
is a quasi-metric cone, where ⊕ and · are the operations defined in Proposition 1.

Proof. Let A, B, C ∈ CB0(X). We shall prove that H+
q (A ⊕ C, B ⊕ C) ≤

H+
q (A, B). Indeed, fix ε > 0. Choose any z ∈ B ⊕ C. Then z ∈ clq−1(B + C), so

there exist b ∈ B and c ∈ C such that dq(b + c, z) < ε. Now let a ∈ A such that
dq(a, b) < ε + dq(A, b). Therefore

dq(A⊕ C, z) ≤ dq(A + C, z) ≤ dq(a + c, z) ≤ dq(a + c, b + c) + dq(b + c, z)

< 2ε + dq(A, b) ≤ 2ε + H+
q (A, B).
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Hence H+
q (A⊕ C, B ⊕ C) ≤ H+

q (A, B).
Similarly we prove that H−

q (A⊕ C, B ⊕ C) ≤ H−
q (A, B), and thus

Hq(A⊕ C, B ⊕ C) ≤ Hq(A, B).

Finally, for A, B ∈ CB0(X) and r ≥ 0 we immediately obtain

dq(ra, r ·B) = rdq(a, B) and dq(r · A, rb) = rdq(A, b),

for all a ∈ A and b ∈ B. This implies that

Hq(r · A, r ·B) = rHq(A, B).

We have proved that (CB0(X),⊕, ·, Hq) is a quasi-metric cone. �

3 Embedding the quasi-metric cone (CB0(X),⊕, ·, Hq) into an

asymmetric normed linear space

We start this section by giving some concepts and properties on the dual space of
an asymmetric normed linear space which can be found in [9].

Given an asymmetric normed linear space (X, q) let

Xs∗ = {f : (X, qs) → (R, |.|) : f is linear and continuous},
and let

X∗ = {f : (X, q) → (R, u) : f is linear and continuous}.
It is well known that Xs∗ is a linear space. Note also that f ∈ X∗ if and only if

it is a linear and upper semicontinuous real function on (X, q). Moreover, X∗ is an
algebraically closed subset of Xs∗, and thus it is a cone.

Now, for each f ∈ X∗, put q∗(f) = sup{f(x) : q(x) ≤ 1}. Then q∗ satisfies: (i’)
q∗(f) = 0 if and only if f = 0; and conditions (ii) and (iii) of the definition of an
asymmetric normed linear space. Therefore (X∗, q∗) is a normed cone in the sense of
[19] (a normed semilinear space in the sense of [17]), and it is called the dual space
of (X, q).

Note that q∗ induces a quasi-distance dq∗ on X∗ given by dq∗(f, g) = q∗(g− f) if
g − f ∈ X∗, and dq∗(f, g) = ∞ otherwise.

Then, by continuity of a real function(al) on X∗ we shall mean continuity with
respect to the topology induced by dq∗ on X∗.

Lemma 2. Let (X, q) be an asymmetric normed linear space and let (Xs∗, (qs)∗)
be the dual space of the normed linear space (X, qs). Then (qs)∗(f) ≤ q∗(f) for all
f ∈ X∗.

Proof. Let f ∈ X∗. Since for each x ∈ X, |f(x)| = max{f(x), f(−x)}, and each
x ∈ X with qs(x) ≤ 1 satisfies q(x) ≤ 1 and q(−x) ≤ 1, we immediately deduce that

sup{|f(x)| : qs(x) ≤ 1} ≤ sup{f(x) : q(x) ≤ 1}.

Hence (qs)∗(f) ≤ q∗(f). The proof is finished. �
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In the sequel and according to [9], we define BX∗ := {f ∈ X∗ : q∗(f) ≤ 1},
and BXs∗ will denote the closed unit ball of (Xs∗, (qs)∗), i.e. BXs∗ = {f ∈ Xs∗ :
(qs)∗(f) ≤ 1}.

Similarly to the classical case, given an asymmetric normed linear space (X, q),
for each (nonempty) bounded subset A of X, we define the support of A as the
function s(·, A) : X∗ → R given by

s(f, A) = sup{f(a) : a ∈ A} for all f ∈ X∗.

The following property of s(·, A) will be useful later on.

Proposition 2. Let A be a (nonempty) bounded subset of an asymmetric normed
linear space (X, q). Then s(·, A) is continuous from (X∗, q∗) into (R, |.|). Further-
more it is a bounded function on BX∗ .

Proof. Let dq∗(f, fn) → 0, where f, fn ∈ X∗ for all n ∈ N. Then q∗(fn − f) → 0,
so, we can assume without loss of generality, that fn− f ∈ X∗ for all n ∈ N. On the
other hand, since fn − f ∈ Xs∗ for all n ∈ N, we deduce that

|(fn − f)(x)| ≤ (qs)∗(fn − f)qs(x),

for all x ∈ X and n ∈ N. Now let M > 0 such that qs(a) ≤ M for all a ∈ A. It then
follows from Lemma 2 that

|(fn − f)(a)| ≤ Mq∗(fn − f),

for all a ∈ A and n ∈ N. Choose an arbitrary ε > 0. Let n0 ∈ N such that
q∗(fn − f) < ε for all n ≥ n0. Therefore

|s(fn, A)− s(f, A)| ≤ sup{|(fn − f)(a)| : a ∈ A} ≤ Mq∗(fn − f) < Mε,

for all n ≥ n0. We conclude that s(·, A) is continuous from (X∗, q∗) into (R, |.|).
Finally, since BX∗ ⊆ BXs∗ (Lemma 5 of [9]), it follows that for each f ∈ BX∗ and

each x ∈ X, |f(x)| ≤ qs(x). So |f(a)| ≤ M for all f ∈ BX∗ and a ∈ A. Therefore
|s(f, A)| ≤ M for all f ∈ BX∗ . This concludes the proof. �

The following asymmetric generalization of a classical theorem on separation of
convex sets will be crucial later on (see Proposition 3 below).

Lemma 3. Let A be a nonempty convex subset of an asymmetric normed linear space
(X, q). If there is δ > 0 such that A∩Bq(0, δ) = ∅, then there are an f ∈ BX∗ and a
constant C > 0 such that f(x) ≤ C for all x ∈ Bq(0, δ) and C ≤ f(x) for all x ∈ A.

Proof. The closed ball Bq(0, δ) will simply be denoted by B. Fix y0 ∈ A. Since A
and B are convex sets, B−A+y0 is a convex set. Moreover, it is absorbent because
B is absorbent and y0 ∈ A. Let p be the Minkowski functional for B −A + y0. Thus
p(x) = inf{r > 0 : r−1x ∈ B − A + y0} for all x ∈ X. In particular p(y0) ≥ 1.

Now consider the linear function g0 defined on span{y0} by g0(ry0) = rp(y0) for
all r ∈ R. Then g0(ry0) ≤ p(ry0) for all r ∈ R. So, by Hahn-Banach’s theorem, g0
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can be extended to a linear function g on X satisfying g ≤ p on X. Clearly g(y0) ≥ 1
and g(x) ≤ 1 for all x ∈ B − A + y0. By linearity of g we deduce that g(x) ≤ c for
all x ∈ B, where c = 1− g(y0) + infx∈A g(x). Clearly, c ≤ g(x) for all x ∈ A.

Since c ≤ 1 we obtain g(x) ≤ 1 for all x ∈ B. From this relation it immediately
follows that g is upper semicontinuous at 0, so it is continuous from (X, q) to (R, u).
Hence g ∈ X∗. Note also that c > 0: Indeed, since g(y0) ≤ Mq(y0) for some
M > 0, we deduce that q(y0) > 0, and thus the point δy0/q(y0) is in B; consequently
0 < g(δy0/q(y0)) ≤ c.

Finally, since g(y0) > 0, q∗(g) > 0, and thus the function f = g/q∗(g) satisfies
q∗(f) = 1. Putting C = c/q∗(g), we deduce that f(x) ≤ C for all x ∈ B and
C ≤ f(x) for all x ∈ A. This concludes the proof. �

Lemma 4 ([9]). Let (X, q) be an asymmetric normed linear space. Then, for each
x ∈ X, q(x) = sup{f(x) : f ∈ BX∗}.

Proposition 3. Let A and B be two nonempty bounded convex subsets of an asym-
metric normed linear space (X, q). Then

H+
q (A, B) = sup

f∈BX∗
(s(f, B)− s(f, A))

and

H−
q (A, B) = sup

f∈BX∗
(s(f,−A)− s(f,−B)).

Proof. Put λ = supf∈BX∗
(s(f, B)− s(f, A)). Obviously λ ≥ 0.

If H+
q (A, B) = 0, then H+

q (A, B) ≤ λ. If H+
q (A, B) > 0, we choose an arbitrary

δ > 0 such that H+
q (A, B) > δ. Then there is b0 ∈ B such that q(b0 − a) > δ for all

a ∈ A. Since b0 − A is convex and Bq(0, δ) ∩ (b0 − A) = ∅, it follows from Lemma
3 that there exist f ∈ X∗, with q∗(f) = 1, and C > 0 such that f(x) ≤ C for all
x ∈ Bq(0, δ), and C ≤ f(b0 − a) for all a ∈ A. Therefore

s(f, B)− s(f, A) ≥ f(b0)− sup
a∈A

f(a) ≥ C ≥ sup
x∈Bq(0,δ)

f(x) = δ.

Hence λ ≥ δ. We conclude that λ ≥ H+
q (A, B).

Next we show that λ ≤ H+
q (A, B). Since this inequality is obvious for λ = 0,

we will suppose λ > 0. Choose an arbitrary δ > 0 such that δ < λ. Then, there is
f ∈ BX∗ such that s(f, B) − s(f, A) > δ, so f(b0) − s(f, A) > δ for some b0 ∈ B.
Since, by Lemma 4, q(b0 − a) ≥ f(b0 − a) for all a ∈ A, it follows that

q(b0 − a) ≥ f(b0)− f(a) ≥ f(b0)− s(f, A) > δ,

for all a ∈ A. Consequently, H+
q (A, B) > δ, and, hence, H+

q (A, B) ≥ λ.
We have shown that H+

q (A, B) = supf∈BX∗
(s(f, B)− s(f, A)).

Now if we denote by B−1
X∗ the unit ball of the dual of the asymmetric normed

linear space (X, q−1), then the first part of the proof shows that H+
q−1(A, B) =

supf∈B−1
X∗

(s(f, B) − s(f, A)), where the support function s(·, A) is now defined on
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the dual space of (X, q−1). Since f ∈ B−1
X∗ if and only if −f ∈ BX∗ , s(f,−A) =

sup{−f(a) : a ∈ A} for f ∈ BX∗ , and H−
q (A, B) = H+

q−1(B, A), we deduce

H−
q (A, B) = sup

f∈B−1
X∗

(s(f, A)− s(f, B)) = sup
f∈BX∗

(s(f,−A)− s(f,−B)).

The proof is complete. �

Similarly to [8], a map ϕ from a quasi-metric cone (X, +, ·, d) into an asymmetric
normed linear space (Y, q) is said to be an isometric isomorphism if ϕ is linear (i.e.
ϕ(a · x + b · y) = aϕ(x) + bϕ(y) whenever x, y ∈ X and a, b ∈ R+), and it is an
isometry (i.e. dq(ϕ(x), ϕ(y)) = d(x, y) for all x, y ∈ X).

Observe that if ϕ is an isometry then it is a one-to-one map.
Next we recall some concepts and results on the product of two asymmetric

norms and the asymmetric norm of uniform convergence which will be useful in
order to state our main result.

If q1 and q2 are asymmetric norms on a linear space X we define the product (or
box) asymmetric norm q× by q×(x, y) = max{q1(x), q2(y)}.

As usual, if X is a nonempty set, we define the asymmetric norm of uniform con-
vergence (or the supremum asymmetric norm) as the asymmetric norm ‖·‖∞ defined
on the linear space BRXof all bounded real functions on X by ‖f‖∞ = supx∈X(f(x)∨
0) for all f ∈ BRX . Then, the conjugate asymmetric norm ‖.‖−1

∞ of ‖.‖∞ is de-
fined by ‖f‖−1

∞ = supx∈X(−f(x) ∨ 0). Moreover, since ‖f‖s
∞ = supx∈X |f(x)| , then

(BRX , ‖.‖s
∞) is a Banach space, so we have shown the following.

Proposition 4. Let X be a nonempty set. Then (BRX , ‖.‖∞) is a biBanach space.

If (X, q) is an asymmetric normed linear space, we shall denote by C∗(BX∗) the
linear space of bounded continuous real functions on (BX∗ , q∗). By Proposition 4 it
easily follows that (C∗(BX∗), ‖.‖∞) is a biBanach space.

The proof of the next lemma is analogous to the case of normed linear spaces
(see, for instance, page 91 of [3]), so it is omitted.

Lemma 5. Let (X, q) be an asymmetric normed linear space. Then, for each A, B ∈
CB0(X) and each r ≥ 0 it follows

s(·, A⊕B) = s(·, A) + s(·, B) and s(·, r · A) = r s(·, A).

Theorem 2. Let (X,q) be an asymmetric normed linear space. Then, the map

A 7→ (s(·, A), s(·,−A))

is an isometric isomorphism from the quasi-metric cone (CB0(X),⊕, ·, Hq) into the
biBanach space (C∗(BX∗) × C∗(BX∗), ‖.‖×), where ‖.‖× is the product asymmetric

norm given by ‖(F, G)‖× = max{‖F‖∞ , ‖G‖−1
∞ }.

Proof. For each A ∈ CB0(X) put Ψ(A) = (s(·, A), s(·,−A)), where s(·, A) and
s(·,−A) are restricted to BX∗ . By Proposition 2, for each A ∈ CB0(X), s(·, A) and
s(·,−A) belong to C∗(BX∗). Moreover, it follows from Lemma 5 that
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Ψ(A⊕B) = Ψ(A) + Ψ(B) and Ψ(r · A) = rΨ(A)

for all A, B ∈ CB0(X) and r ≥ 0. Therefore Ψ is linear on the cone (CB0(X),⊕, ·).
Finally, for each A, B ∈ CB0(X), we have, by Proposition 3, that

Hq(A, B) = max

{
sup

f∈BX∗
(s(f, B)− s(f, A)), sup

f∈BX∗
(s(f,−A)− s(f,−B))

}
= max {‖s(·, B)− s(·, A)‖∞ , ‖s(·,−A)− s(·,−B)‖∞}
= ‖(s(·, B)− s(·, A), s(·,−B)− s(·,−A))‖× = ‖Ψ(B)−Ψ(A)‖×
= d‖.‖×(Ψ(A), Ψ(B)).

We conclude that Ψ is an isometric isomorphism from (CB0(X),⊕, ·, Hq) into the
biBanach space (C∗(BX∗)×C∗(BX∗), ‖.‖×), where ‖(F, G)‖× = max{‖F‖∞ , ‖G‖−1

∞ }.�

Remark 2. Define ϕ : (C∗(BX∗), ‖.‖−1
∞ ) → (C∗(B−1

X∗), ‖.‖∞) by ϕ(F ) = −F for all
F ∈ C∗(BX∗). It is routine to check that ϕ is a bijective linear map between the lin-
ear spaces C∗(BX∗) and C∗(B−1

X∗) (recall that B−1
X∗ is the unit closed ball of the dual

space of (X, q−1), as defined in the proof of Proposition 3). Furthermore, we have
‖F‖−1

∞ = ‖ϕ(F )‖∞ for all F ∈ C∗(BX∗). Then, it follows from Theorem 2 that the
map A 7→ (s(·, A), s(·,−A)) is an isometric isomorphism from the quasi-metric cone
(CB0(X),⊕, ·, Hq) into the product of the biBanach spaces C∗(BX∗) and C∗(B−1

X∗),
when they are equipped with the asymmetric norm of uniform convergence.

Remark 3. Note that if (X, q) is a normed linear space, then the map A 7→ s(·, A)
is one-to-one; actually, in this case, Proposition 3 implies Corollary 3.2.8 of [3],
that Hq(A, B) = supf∈BX∗

|s(f, A)− s(f, B)| . Thus, we restate Hörmander’s theo-
rem that the map A 7→ s(·, A) is an isometric isomorphism from the metric cone
(CB0(X),⊕, ·, Hq) into the Banach space of bounded continuous real functions on
the unit ball of the dual of the normed linear space (X, q), equipped with the norm
of uniform convergence.

We conclude the paper with an easy example which shows that in the asymmetric
setting the map A 7→ s(·, A) is not one-to-one and, hence, it is necessary to consider
the map A 7→ (s(·, A), s(·,−A)) to obtain the desired isometric isomorphism.

Example 4. Let (R, u) be the asymmetric normed linear space of Example 1. Let
A = {0} and B = [−1, 0]. Then H+

q (A, B) = H+
q (B, A) = 0. By Proposition 3,

s(f, A) = s(f, B) for all f ∈ BX∗ . Thus, the map A 7→ s(·, A) is not one-to-one.
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[16] J. Rodŕıguez-López and S. Romaguera, Wijsman and hit-and-miss topologies
of quasi-metric spaces, Set-Valued Analysis 11 (2003), 323-344.
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