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There are a number of results concerning the generation of a collineation group
by two of its elements. A. A. Albert and J. Thompson [1] were the first to exhibit

two elements generating the little projective group PSL(d, q) of PG(d − 1, q) (for
each d and q). According to a theorem of W. M. Kantor and A. Lubotzky [8],
“almost every” pair of its elements generates PSL(d, q) as qd→∞ (asymptotically
precise bounds on this probability are obtained in W. M. Kantor [7]). Given 1 6= g ∈
PSL(d, q), the probability that h ∈ PSL(d, q) satisfies 〈g, h〉 = PSL(d, q) was studied
by R. M. Guralnick, W. M. Kantor and J. Saxl [3], and its behavior was found to
depend on how qd → ∞. Yet another variation that has been proposed is “11

2
”-

generation: if 1 6= g ∈ PSL(d, q) then some h ∈ PSL(d, q) satisfies 〈g, h〉 = PSL(d, q).
This note concerns a stronger version of this notion:

Theorem. For any d ≥ 4 and any q, there is a conjugacy class C of cyclic subgroups
of PSL(d, q) such that, if 1 6= g ∈ PSL(d, q), then 〈g, C〉 = PSL(d, q) for more than(
1− 1

q
− 1
qd−1

)2
|C| elements C ∈ C. In particular, there are more than 0.4|C| such

elements if q > 2.

While this does not look at all like a geometric theorem, the proof is entirely
geometric. The same type of result holds when d = 2 or 3 (and is easy), as well as

for all the classical groups. The proof by W. M. Kantor [4] for the latter groups is
still reasonably geometric, but is harder than the situation of the theorem.

Let V be the vector space underlying PG(d − 1, q). The following is a simple
observation concerning the set Fix(g) of fixed points (in PG(d−1, q)) of a collineation

g:
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Lemma 1. Let g ∈ PSL(V ) have prime order.

(i) If |g| | q then, for some point z and hyperplane Z fixed by g, z lies in every
hyperplane fixed by g.

(ii) If |g| 6 | q then Fix(g) ⊆ A ∪ B for nonzero subspaces A and B such that
V = A⊕B and each hyperplane fixed by g contains A or B.

Proof. Let ĝ be a linear transformation inducing g.

(i) We may assume that |ĝ| = |g|. Since |ĝ| | q, Fix(g) is the set of points in the
null space of ĝ − I , and this subspace is nonzero and proper in V . Let Z be any

hyperplane containing Fix(g). Dually, the intersection of the set of fixed hyperplanes
is nonzero, is fixed by g, and hence contains a nonzero point z fixed by g.

(ii) This time Fix(g) is the union of eigenspaces of ĝ whose corresponding eigen-

values are in GF (q). The span of these eigenspaces is their direct sum. Hence, let B
be any such (nonzero) eigenspace of smallest dimension, and let A be a complement
to B containing all remaining eigenspaces; if there are no such nonzero eigenspaces
then there are no fixed points, and B can be chosen to be an arbitrary point. 2

Let C be a cyclic subgroup of PSL(d, q) of order qd−1 − 1 that splits V as V =
x⊕ X for a non-incident point x and hyperplane X (i.e., antiflag) of PG(d − 1, q),
where C is transitive on the sets of points and hyperplanes of X. Let C denote

the conjugacy class CPSL(d,q) of C . In view of the transitivity of PSL(d, q) on the
antiflags of PG(d − 1, q), each antiflag is fixed by the same number of members of
C.

Lemma 2. Assume that d ≥ 4 and PSL(d, q) 6= PSL(4, 2). If C ≤ J ≤ PSL(d, q),

where J moves both x and X, then J = PSL(d, q).

Proof. Since C is transitive on both the points and hyperplanes of V/x, J is
transitive on the set of those hyperplanes not disjoint from Ω: = xJ , and also on

the set of those lines not disjoint from Ω. In particular, all hyperplanes not disjoint
from Ω meet Ω in the same number of points; and the same is true for the lines not
disjoint from Ω. Since J moves the only point fixed by C , |Ω| > 1. It follows that Ω
is either the complement of a hyperplane or consists of all points (this simple result

uses the fact that d ≥ 4, and is proved on the bottom of p. 68 of W. M. Kantor [5]).
Since J moves the only hyperplane fixed by C , Ω must consist of all points.

Thus, J is transitive on the set of points of PG(d − 1, q), and hence also on the

set of incident point-line pairs. By a result of W. M. Kantor [6], J is 2-transitive
on points. Now a theorem of P. J. Cameron and W. M. Kantor [2] implies that
J = PSL(d, q). 2

The case PSL(4, 2) ∼= A8 of the theorem will be left to the reader, and hence is

excluded here. Fix 1 6= g ∈ PSL(d, q), where |g| is prime. Call C ∈ C “good” if
〈g, C〉 = PSL(d, q).

(i) Suppose that |g| | q. Let z, Z be as in lemma 1(i). By lemma 2, if C ∈ C is
chosen so that its unique fixed point x and hyperplane X satisfy x /∈ Z and z /∈ X,
then 〈g, C〉 = PSL(d, q). The number of antiflags x,X behaving in this manner is
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qd−1(qd−1 − qd−2), and all such antiflags are fixed by the same number of members
of C. Consequently, the proportion of good members of C is at least

qd−1(qd−1 − qd−2)

[(qd − 1)/(q − 1)]qd−1
>

1

2

1

2
.

(ii) Suppose that |g| does not divide q. Let A and B be as in lemma 1(ii), where
A is a subspace PG(a− 1, q) and B is a subspace PG(b− 1, q) with a + b = d and
a ≥ b. Let N be the number of antiflags x,X such that x /∈ A ∪ B and X 6⊇ A,B.

Then the proportion of good members of C is at least

N
[(qd − 1)/(q − 1)]qd−1

=

[qd− 1
q − 1 −

qd−a− 1
q − 1 − qd−b− 1

q − 1

]
(qd−1− qa−1− qb−1)

[(qd − 1)/(q − 1)]qd−1

≥ qd − q − qd−1 + 1

qd − 1

qd−1 − 1− qd−2

qd−1
.

The right hand side is always >
(
1 − 1

q
− 1
qd−1

)2
; if q ≥ 3 then it is at least

(52/80)(17/27) > 0.4. This proves the theorem.

Remark. If q is fixed and d → ∞, and if g is always chosen to be a perspectivity

in (i) or (ii), then the desired probability → (1− 1/q)2.
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