Weighted eigenfunctions and Gauss curvature
of conical revolution surfaces

E. Lami Dozo B. Toukourou

Abstract

We give a description of Gauss curvatures in revolution surfaces with con-
ical singularities at the extreme opposite points thanks to positive eigenfunc-
tions of an eigenvalue problem in dimension one with a prescribed singular
weight.

1 Introduction

Given a revolution surface
S = {(a(v) cosu, a(v)sinu, f(v));0 < u < 27w, a < v < b} (1)

where a(v) > 0,a, 3 regular functions and supposing the generating curve v =
(a(v),0, B(v)) parametrized by arc-length, that is

o>+ 3% =11in]a,b]
Then the Gauss curvature K of S is given by

_O//<U>

=

, U €la,b] (2)

IDC, p. 162].
If a, B are regular up to [a,b] and
afa) =a(b) =0,0<ad(a) <1, -1 <a/(b) <0 5
Bla) < 50) ¥
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the surface S will have conical singularities at P, = (0,0, 5(a)) and P, = (0,0, 3(b))
with angles 6, and 6, determined by

(cosb,,sinb,) = (8'(a),d (a)), (cos by, sinby) = (—5'(b), —a'(D))

where 6,, 6, are in |0, 7].
We describe the family of K'’s looking for solutions of the following boundary
value problem
"+ Ag(v)a =0 in a, b]
ala) =a(b) =0 (4)
a(v) > 0in |a, b

which are in C?(]a, b]) N C([a,b]) and satisfy o/(a) > 0 > o/(b). We do so because
for a given weight g(v), in the half-line {tg;t > 0} there will be at most one K = Ag.
Functions g will be allowed to have singularities at a and b like simple poles (if they
were analytic) by considering natural examples. The main result on (4) for such a
g is supplementary to those on the subject found in [DF, M-M].

In [T], M. Troyanov fixes a Riemann surface with a metric dsf having pre-
scribed conical singularities at a prescribed finite numbers of points and gives rather
complete results on the Gauss curvatures on metrics ds® conformal to ds3, (i.e.
ds? = e*/ds?). Here we describe curvatures associated to warped singular metrics
a?(v)du® + dv? on Ja, b[x S* which are not conformally equivalent.

In §2 we give a pointwise necessary condition on K, additional to the integral-
ones given in [E-T] and examples motivating the conditions on g which appear in the
result on (4) in §3. Finally, building surfaces S having the same curvature K = \g
associated to {say; 0 < s < 1} where ||aj || = 1 is indicated.

2 Necessary ¢ ondition, examples
The area element of S is dA = a(v)dudv. A curvature K given by (2) satisfies [cf
E-T],
/ KdA = 2r(a’(a) — o'(b)) > 0 (5)
S
and

/SK 'dA = =27 (d/(a) + o/ (b)) (c/ (a) — /(b)) (6)

(5) implies that K is positive somewhere. A pointwise necessary condition, inde-
pendent of «, is given by Barta’s inequality [B]

2
sup K > ( > > inf K 7
]af[ b—a Ja,b] (7)
For ¢ = sin v , we have
b—a
T o\2
K — dA =0 8
- () .
integrating Koy, = —a’¢; by parts. If we have one equality in (7), we deduce
2

from (8) that K = (%) and a = ¢; is a solution which is unique modulo a
—a
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2
normalization. We remark that (b > is the only positive constant curvature.

—a
This uniqueness of K in {tK;t > 0} will also hold for non constant K’s.

The following examples are characteristic of the type of curvatures we will pre-
scribe.

Example 1. (Small circle). The curve
vs = (sinv —sind, 0, — cosv 4 cosd), v € [0, ™ — ¢

where 0 < 9 < z, describes a circular arc of length m — 20 parametrized by arc-

length. The corresponding surface Ss has conical singularities with same angle at
(0,0,0) and (0,0,2cosd). The curvature
sinv
Ki=———— Jo,m—9¢
sinv — sind I, m =4l
satisfies K),(v) > 0 and has simple poles at ¢ and 7 — 0.
Example 2. (Big circle)

Y = (sinv + sind, 0, cos§ — cosv), v € [—J, 7 + I]

describes the complementary circular arc to 7,. The surface S, has singularities
at the same points than S; with complementary angles to those of S;. The Gauss
curvature of .S is .
sin v
Ky=—""—"—/—vel-46r1+S5|
"7 Sinv +sind’ I-9, [

K, changes sign at v = 0 and v = 7 and has also simple poles at — and 7 + 4.

3 A sufficient condition

Taking into account the examples in §2 we introduce a condition on g to obtain
a positive eigenfunction « of (4) in the Sobolev space H{(Ja,b[). We proced as in
[M-M,DF], consequently we only detail the differences in our proof.

Theorem 3.1. Let g € C(la,b]) be such that

d, = lim (v —a)g(v), dy = lim (b — v)g(v) (9)

v—at v—b—

exist. If g is positive at one point, then there is a unique positive \ such that (4)
has a solution o € H}(Ja,b[). Moreover o € C*([a,b]) and if dody # 0 we have
a(a) > 0> a/(b).

Proof. We may suppose [a,b] = [0,L]. Let ¢ € CX(]0,L[) and ¥ € Ci([a,b]), i.e.
Y € Cl([a, b)), ¥(0) = (L) = 0. From

“gupdo = [Tog) (3 [ @) gy a

v Jo
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1 v
and from Hardy’s inequality : ||—/ w(t) dt|| 2wy < 2||w||r2k,) applied to 1 ex-
v Jo

tended by 0 out of [0,L] and to ¢(v) = ¥ (L —v) on [0,L] also extended by 0 to R,
we deduce

L
I/O gedo| < [lvg(v)e()] 22| |2 + [[(L = v)g(v) ()] 222]]4| -

From (10) we obtain

L
|| gvedvl < Milgllel@llie, o € CLO0.LD, v € CG3(0,L) (1)

where M = 2([[vg(v)]|eo + [|(L = v)g(v)]]oo)-
As in [M-M,DF] the map ¢ — Ty : H}(]0, L[) — H3(]0, L]) defined by

L L
| @eyvan=["govdv, v e Hi(0,L)
0 0

L
is then linear, compact and symmetric for the scalar product / "' dvin HY(]0, L]).
0

Non zero eigenvalues p of T correspond to eigenvalues A = ! of (4). The hypothesis
g(vo) > 0 for some vy €]0, L] gives that the eigenvalues A > 0 of (4) form a sequence
0 < M < X1, = 1,2,... with lim Ay = oco. The first one \; called principal

k—oo

eigenvalue is simple and is the only )\, with a positive eigenfunction ¢;(v)>0 on
10, L[. Besides ¢1(v) > 0 on |0, L[ and ¢ € Co([0, L]).

The type of singularity of K(v) = A1g(v) at v = 0 implies for & = ; that

L
lilglJr v (v) = —lim K (v)a(v) = 0, sova”(v) € C([0, 5] and va”(v) = W' (v) on ]0, L],
h
where h(v) = va/(v) — a(v). Hence lirorgr hv) = lilrorgr o (v) — a(v)
v— v v— v

o/ (0%) = o/(0) exists. Analogously o/ (L™) = /(L) exists and o € C}([a,b]). Fi-
nally A = A1, a = ¢ is our solution.

Ifd, = lirélJr vg(v) # 0, we have a § > 0 such that g(v) > 0 on ]0,d[ and vg(v) is

=0 also, so

continuous and bounded on ]0,d[ and o’ + Aga = 0 on |0, d[ with —a having a as

maximum value attained at 0. These four properties and a well adapted maximum
principle for (9) [P-W, Th. 4, p. 7] insure &/(0) > 0. Also o/(L) < 0 follows. Q. E.
D.

Remark 3.2. The existence of A and « holds if (v — a)g(v)(b — v) is bounded in
Ja,b[. Conditions (9) with d.d, # 0 are meaningful for g(v) unbounded. If g(v) is
bounded (so d, = d, = 0), from g = gt — ¢~ and —a” — A\gta = A\g~a we have
a(a) > 0> a/(b). [DF, Th. 1.17].

4 Building S

Given ¢ fulfilling the hypothesis of the preceding theorem, there is only one a =
ag € C*(Ja, b[) N C'([a, b]) such that ||of || = 1, a(v) > 0.
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If g(v) > 0 on ]a,b[, then K(v) = Ag(v) > 0 and —a/'(v) = K (v)a(v) > 0 also.
Hence « is concave on [a, b] and

lim K(v)a(v) = lim K(v)(v —a) av) = M, (a)

v—a™T v—a™T v—a

implies @ € C?*([a,b]) and ' strictly decreasing in [a,b] with |[¢/|]c = 1. If 0 <
a/(a) < 1 we deduce o/ (b) = —1. Defining

Ba) = [(=-a/(v) 2, (12)

the surface generated by («,0,3) will have a conical singularity at (0,0,0) with
angle 0, €]0, g[ and of angle 0, = g at (0,0,5(b)) i.e. no singularity. If we consider
pa, 0 < p < 1, (12) gives 5, and we obtain a family of surfaces S, with conical
singularities with the same curvature K(v) = Ag(v). If ¢/(a) = —a/(b) = 1, S will
have no singularities, however S, will have.

2
Two examples illustrating this case are g = 1 on [¢,b] = [0, L], then A = (%) ,

2 L
K = (%) and oy = —sin %’U satisfies o (0) = —a/(L) = 1. The surface S is a
m

L
sphere of radius — The other example is g(v) = [v(L —v)]~! on |0, L], then \ = 2

and oy = Z’U(L — ).

Finally, if g changes sign a finite number of times (hence K, as in the “big
circle”) that is if g has a finite number of zeros in [a, b] and at each zero vy, we have
g'(vo) # 0, then —ay = Agay has the same zeros, so |a,(v)| =1 has a finite number
of solutions. For the associated partition of ]a, b, v will be successively convex then
concave or vice-versa on contiguous subintervals. A convenient choice of the sign in
+(1 — o/ (t)%)¥/? at each subinterval and (12) define 3 and we obtain S = S, of class
CL.
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