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Abstract

We find solutions to the linear problem (1.1) and to the p-Laplacian type
problem (1.2) in Lorentz spaces, improving the sumability of the solutions.

1 Introduction

We consider the linear problem

(LU{L(u)zdiZ(M(x)vu) z diBF iinn aszz

where Q@ C RY is a bounded domain and M (x) is a symmetric matrix in
L= (Q)V*N satisfying the ellipticity condition: M(x)¢ - € > alé|? for z € Q, € €
RY (a > 0), and the nonlinear problem

(1.2){N<“>Ediv(a(zv“(ﬁf%VU(x))) - diEF iinn 3%

Specifically, let A(u) be a monotone operator of Leray-Lions type ([LL],[Li]) :
A(u) = div(a(z,u, Vu)), with a : Q@ x R x RY — RY a Caratheodory function
verifying the following conditions:

i)There exist two constants a, 8 > 0, and a function d(z) in L” (Q) G+ =1),
1 < p < N such that:

a(x, s,§)§ = algf’ (1.3)
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(@, s, ) < B(d(x) + |s["~" + [¢™)

ii) For £,n € RN, £ #n, and a.e. for z € Q : [a(z,s,&) —alz,s,n)] - (E—n) >0

We recall that for a(z,s, &) = |£[P72€, the Leray-Lions type operator A =
div(|Vu[P~2Vu) is the p-laplacian (See [DIM],[G]).

Our main results are:

Theorem 1 Let F € Lq’q#(Q,RN) be, with L#4" the Lorentz space, 2 < ¢ < N

and ¢# = q(]]\y—__;). Then, there exists a unique solution u € H} N L1 (Q) to (1.1).

Morover we have the a-priori estimate:

HUHLQ*,Q#(Q) S CHFHLq,q#

Theorem 2
Consider F' € L#7" (Q,RY) and:

, N

P <qg< ——
p—1
q# _ (N —p)g

N—(p—1)q

Then, there exists a unique solution u € Wy N L™ to (1.2) where:

_ _Np=1)q

N—(p—1)q

(N =p)p—1)q
N—(p—1)q
Furthermore, we have the apriori estimate:

S =

/
lullzre < CIFIT, %

Remark The weak formulation of problem (1.1) is: find u € H} () with
/ M(2)Vu - Vi = / F-Vo Yee HY(Q)
Q Q

if e (L*(Q))Y, then divF € H~(Q) and from Lax-Milgram’s lemma we obtain
the existence of a unique solution in H}(€2).

When F' € L7 with ¢ > 2, we obtain a better sumability of the solution u from
the following theorem of G. Stampachia ([S2], Theorem 4.2)

Theorem Let F' € L1(Q)"Y with ¢ > 2, and supose that u is a weak solution to
problem (1.1). Then we have:

i) If 2 < g < N then u e L7 (Q)

ii) If ¢ = N then u € LP(Q) for any p < +00

iii) If ¢ > N we have that u € L>*(Q)

Here ¢* = q—]jq is the Sobolev exponent.

N

As remarked by Boccardo ([B]) , a similar result holds in the non-linear case for
operators of monotone type.
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Remarks
i) In theorem 1, we have ¢# > ¢ hence L? C Lq’q#, and ¢7 < q*, so Lo <[4
ii) Theorem 2 is a extension of theorem 1 to the nonlinear case.

2 Preliminaries: Lorentz spaces

The Lorentz spaces [Lo] are a generalization of the L spaces and are related to sev-
eral topics of Harmonic Analysis, in connection with the Marcinkiewicz interpolation
theorem (see [SW],[R]) and with the convolution operators (see [O]).

In this section we give some definitions and results [T] that we will need in order
to prove theorems 1 and 2.

Definition 2.1  Let (X, M, u) a measure space and u : X — RF a measurable
function. Suppose that p({z € X : u(z) > t}) < oo for any ¢. The distribution
function of u, and the decreasing rearangement of u, u*, are defined as:

d(t) = du(t) = p({z € X : |u(x)] > t})
and u*(s) = min{t > 0: d,(t) < s}.
Definition 2.2  For 1 < p < oo we define the pseudo-norm

1/q
00 . ds
|U|Lp,q = |U|Lp,q = (/0 (sl/pu (S))q—>

S

and

|| poe = sup s¥/Pu*(s)
>0

The Lorentz space LP4(X,R¥) is defined as the set of measurable functions with
|U|Lp,q < Q.
We recall that |u|pr.a is not a norm. A norm can be introduced defining

0o ds 1/q
il = ([0 %

S

where

S

Proposition 2.3  (Equivalence between ||u||1r.a and |u|pe.a, see [T], (4.v))
1. If p > 1 then:

:L/OO 1/p, * @
fullss = 2 [0 (5)

2. If p>1and 1< q < oo then:

1
(1 _ ];) lullzoe < Julira < ullor

We recall that the Lorentz spaces LPP are the classical spaces LP:
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Proposition 2.4  (see [O], lemma 2.2) Let 1 < p < 0o be and i + 1% = 1, then
we have:

1A lle < W fllow < PN F 1o

From this result and the following one, we can compare the result obtained in
LP and the one in the Lorentz space.

Proposition 2.5  (see [T], 4. vii))
Let be p>1and 1 < ¢ <r < oo. Then LP? C LP" with continuous inclusion.

In the Lorentz spaces it is possible to improve the Sobolev inequality:

Theorem 2.6  ([T], Theorem 4.A) Let 1 < p < n then WP(R") C LF"P(R"),
where p* = n—”_ﬁp, with continuous imbeding.

Using an standard density argument we obtain:
Corollary 2.7

Let Q C R", then W,?(Q) C LP* (Q) with continuous imbeding, and for 9Q €
C' we have the same result for W'r(Q)

We also have an inequality of the Holder type:
Proposition 2.8 Let f € LP(X) and g € L”"7(X) be, with ]—12 —|—I% =
Then f - g € L'(X) and the following inequality holds:

15 gldis < 1 lpalgl
We recall that from ([T], Theorem 1.A) we also have:

o0 " N o0 % 1 . 1
JIF sl < [T @ (s)ds = [ sV0p () g8 g (5) s

) q 1/q 00 , ¢ 1/q
< {/0 (Sl/Pf*(s)) %} {/0 (Sl/p f*(s)) %} = |f|p7q|g|p/’q/

where the last inequality holds from the usual Holder inequality.
For k > 0 and = € R define the truncating function:

—k if <k
T if —k<z<k
k if x>k
Remark 2.9 If
1T (W)l o (x) < C
for any k, then u € LP?(X) and HuHL(p,q>(X) <C.
Remark 2.10  Let f € L»? and m > 0 be. Then |f|™ € LP™™

A pg = | flmp.ma

In fact we have
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djyjn () = dy (/™)
It follows that (|u|™)* = (u*)™, then,

1/q
"l = { [ ) = i

S

3 The linear problem
Proof of theorem 1

We choose ¢ = 515 [Ti(u)[*™Ti(u) as a test function in the weak formulation of
the problem.

Hence, Vo = |Ty(u)*"V (Txu), ¢ € Hy and

/Q T ()" M (2) V- VT () = /Q ITo(w) " F - VT (w) (3.1)

Using the ellipticity condition, we can estimate the first term as:
/Q ITo(w) |2 M (2) V- VT () = /Q T () [P M (2)V T () - VT (u)

> o [ VT3 () TP

Regarding to the second term, we obtain:

[ TP F - VT < [ [T F| - [V Tw)
= [Tl F)) - (1Taw) [V Ti(w) )

< ([ mwpeee) " ([ imrvnwr)

From the Holder inequality for Lorentz spaces,

[ Imw P e < ||p ()P

La/2.a% /2 La/(a—2),9% /(g% —2)

2 2
< |F|Lq,q#|Tku|Lgnmq/(q—2),2mq#/(q#—2)
Then, the second term of (3.1) is smaller than

1/2

F it 1T oy o [ 1Til0) PV Ti() )

and writing all together,

O‘/Q |V T () | T ()

1/2
S |F|LQ7q# |Tku|zl2mq/(q—2),2mq# /(q#—2) <\/Q |Tk(u) |2m|VTk‘(u> |2>
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or equivalently,

1/2
«@ <\/ﬂ |ka(u>|2|Tk(u)|2m> S |F|LQ7q# |Tku|Zl2mq/(q—2),2nLq#/(q#—2)
On the other hand, we have that
2

IV T (w) P T ()™ = ‘V (%)

then,

m
S |F|Lq,q#(Q) |Tku|L2mq/(q—2),27nq#/(q#—2)
L2(Q)

o)

and from the Sobolev inequality in Lorentz spaces:

H |T/€(u> |m+1 HLQ*Q(Q) < C|F|Lq,q# |Tku|7Z[L2mq/(q—2),2rnq#/(q#—2)

where ¢ is a constant depending on the ellipticity constant, on the Sobolev in-
equality constant and on m, but not on k.
Finally we have that

|Tku|§;n2t(1m+1>,2(m+1> < O|F|Lq,q#|Tku|2n2mq/(q—2),2mq#/(q#_2)

Now we choose the exponents , in order to have the same norm in both sides of
the inequallity:

D) 25 (m+1) = 24

i) 2(m 4 1) = 2na?

P
Condition i) is the one in Stampachia’s theorem. From i) we obtain: m =
With this value of m, we get

N(q¢—2)
2(N—q)°

*

2mq 2¢ N(q—2) gN
= = =q

2(m +1) = = = -
( ) q—2 q—22(N—-q) N-—q

Finally, from ii) we obtain

and

|T/€u|Lq*,q# S C|F|Lq,q#

with ¢ independent of k. From remark 2.9 we conclude that u € L¢"9" (Q) and

|u|Lq*,q#(Q) S C|F|Lq,q#
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4 The nonlinear problem

Proof of theorem 2
First, we recall that for ' € L¥ | divF € (Wy*(Q))’, by the Leray-Lions Theorem
([LL]) N is a monotone operator and there exists a unique solution to the problem:

(1.2){N(“>Ediv(“(zau(@aVU(m))) - di(V)F iinnagz2

in W, 2(Q).
In order to prove theorem 2, we choose
[ Tk(w) [T (w)

WP (Q
mp+ 1 € Wy (Q)

as a test function in the weak formulation. Then,

| 1T ata, u, Vu) - $Ti(w) = [ [Tu)]"™F - Vi)

We can estimate the first term using (1.3) as:
J, Tl ate,u, ) - VT = [ (Tl a(e v, VTw) - VTi(w)
ul<

= [T ate, u, VIw) - VTiw) > o [ (VT ) T (w)"

and using the Holder inequality in the second term, we obtain:

LT F -V T(w) < [ (7)) F)) | Taw) | 9T (w)

AL/ 1/p
< ([marop) ([ T 9 Tl

and then,
1

ol

[ Tl VTl < [ (Gl

From the Holder inequality in Lorentz spaces, and the fact that F' € Lq’q#(Q),
we get

La/v'.a% /v’ H |T/€ (U) |mpHLq/(q—p/),q#/(q#—p/)

Limw e < |ipp
or equivalently (Remark 2.10),
LT BV < P, 0 D)2
where

mpq ) mpq*
q—7p’ gt —
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On the other hand, by Sobolev inequallity,
| ()" T (w) \ [
T ()| |V Tiul? = /
e - fo (B
> || Te()[" T[], = 1 Te(w) [ 5507
ZC k(U k(U Lp*.p k(U Lp*(m+1),p(m+1)
with ¢ = ¢(m, Q).
Then,
m+1)p
ITull S5 ey < NP IE o 1T ()72,
Now we choose m and ¢* such that:
r=p(m+1)= 2 and s = p(m +1) = 2L
Solving the first equation for m:
N
N—
m=
q—p N
From p' < ¢ < oo, We obtain m > 0. Hence,
N(p—1)q
r=p'(m+1) = ——"-—
( =N (p—1g
(N —=p)(p—1)g
s=pm+1) =
( iy (p—1g
and from the second equation
q# _ (N —p)g
N—(p—1)q
From proposition 2.9 we get:
lullrs < CIFI, 4
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