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Abstract

Let Q be a connected bounded open set in RY, N > 2, with lipschitzian
boundary. The best constant in the Poincaré type inequality:

|u 2< C(Q) || grad (u) |2, Yu € L*Q)/R

is the inverse of the smallest spectral value of the the bounded self-adjoint
linear operator T = —div(—A)"tgrad in L?(Q)/R ([4]). In this paper we
show that, in the case of an elliptical domain of R?, the point spectrum of this
operator is the set 0,(T) = { A, A, 1; n € N*}, where 1 is an eigenvalue
of infinite multiplicity and

N = 1 2ab(n+ 1)(a? — b?)" T = 1_’_ 2ab(n + 1)(a? — b?)"
L) (a +b)2nt2 — (g — b)2nt2 "9 (a+ b)2n+2 — (g — b)2n+2

If a # b, A\, and A, are eigenvalues of multiplicity 1, they converge
to 1/2 when n — oo and o(T) = o,(T)U{1/2}. If a = b, A\, = Ny, =
1/2 is an eigenvalue of infinite multiplicity and o(T) = o,(T) = {1/2, 1}.

2 b2

Consequently, if b < a, 7 is the best constant in the preceding Poincaré

type inequality.
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1 Preliminaries

Let  be a bounded, open, connected domain in RY, N > 2, with regular
boundary 0f2. Throughout this paper, we use the usual product topology on the
product spaces.

In L?(Q), the Hilbert norm and the scalar product are written | - |, and (-, -)
Let M(9) be the closed subspace of L?(2) of functions of zero mean :

PR

M(Q) = {u € L*(Q); /Qu(x)dx = O} .

M(€) is equipped with the norm induced by the Hilbert space L?(2), and it is
isometrically isomorphic to the quotient space L*(2)/R.

The Sobolev space H} () is equipped with the gradient norm. We denote by
H=(Q) the dual space of H}(2) normed by :

v
HfHH—l(Q):Sup{H/Ui; ’UEHOI(Q), 'Uyé(]}’

where < -,- > denotes the duality between H~1(Q2) and H}(Q). (H}(Q))" is isomor-
phic to (H71(Q))" and —A is this isometric isomorphism. We shall write | - ||_, for
the norm on (H'(Q2))".

The important inequality which follow is proved in [5] :

Proposition 1. There exists a constant C(2) > 1, depending only on 2, such
that :

[ul;< CQ) | grad(u) %, Vue M(Q). (1)

Notation. In the remainder of this paper, the best value of constant C(Q) in
the inequality (1) is denoted by P() :

T we M(Q), u;«éO}.

From proposition 1, the operator T'= —div(—A) 'grad is an isomorphism from
M (Q) onto M(2). Moreover, for all u € M(Q), we have (Tu,u), =|| grad (u) || .
Consequently,

P(Q)' =Inf{ (Tu,u),; ue M), u#0}

Important properties of this operator T" are proved in [4] :

Theorem 1. T is a self-adjoint and coercive operator. Tu — u is a harmonic
function, Yu € M(Q). || T ||= 1 and 1 is an eigenvalue of T of infinity multiplicity.
If u is an eigenvector of T corresponding to an eigenvalue A 1, then u is a harmonic
function.

Consequently ([1]), the spectrum o(T) of T is closed, o(T) C [P(Q)~!, 1], the
residual spectrum of T' is empty and P(Q) is the inverse of smallest spectral value
of T.
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2 Case where () is an elliptical domain

In the particular case where € is an elliptical domain :

2 P
Q:{(x,y)ERZ; §+b_2<1}’

we are able to give the spectrum o(T") of the operator T.
Proposition 2. The point spectrum of the operator T = —div(—A) ‘grad is

the set o,(T) = {)\n, RE nEM} where

12 1)(a® — b?)" - 1 2 1)(a® — b%)"
)\n — _ _ a’b(n + )(a’ b ) and )\n — + ab(n + )(a b ) .
2 (G, + b)2n+2 _ (a _ b)2n+2 2 (a + b)2n+2 _ (a _ b)2n+2

1 is an eigenvalue of infinite multiplicity. If a # b, M\, and )\, are eigenvalues
of multiplicity 1, they converge to 1/2 when n — oo and o(T) = o,(T) U 1/2. If
a="b, A\, =X\, =1/2 is an eigenvalue of infinite multiplicity and o(T) = 0,(T) =
{1/2,1}.

Proof.- We are going to search harmonic polynomials of degree n such that they

are eigenvectors of T'. We shall write 9, for and 0, for

dx dy’
Let w, = p™cos(nf) be the harmonic homogeneous polynomial of degree n =
2m (even) :

Let us calculate Tu, = —0,(—A)"*0pu, — 9y(—A) " 0yu,. The first step is to
obtain (—A)7!'0,u,. For this, we search a polynomial of the form

" " YR b g Y a2y 4 Pos(z,y),
where P,_3(z,y) is a polynomial of degree n — 3, such that

2 2
— n— n— z
—-A l(aox” "™ 3y + ooy i+ Pn_g(x,y)) <9 + 2—2 — 1)] = OyUn,.
We develop this expression and identifying the coefficients of the terms of degree
n — 1, we obtain the following system of m linear equations in m unknowns :

(n+1Ln 2 2
) A
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and the equation :

2 2
—-A l—(ao " a4 a2y ) + P2, y) ( + L 1)] 0.

b2

(3)

We solve the system (2) by successive elimination of unknowns «g, ag, au,. ..
and we obtain

( 62[ 6 +1+ nét n—lb2+.”+2<gi—%>a36n—2]
Op—2 =
2[( ndyartt (g ez (DT a2 g (] )abn]
that is
1 1 b)" —b)"
S— (_1>m—1b2 - a(n+ )((a+ ) + (a’ ) ) ) (4)
2 2((a+b)"*t! + (a — b))
Hence, we easily compute o;,_4,... aa, ag.

Similarly, to calculate (—A)~*d,u, we search a polynomial of the form
Boy" ™'+ By Pa? A B P2+ B2 ya™ ™+ Quos(z,y),
where Q,—3(x,y) is a polynomial of degree n — 3, such that

x2 2
S8 [ Bk )+ Quatoa) (B B 1) = 0

As previously, we obtain the system

_<3+w>ﬁo — 352:(—1)%71,

a? b2

and the equation :

.T2 2
A= (Boy" T+ Boy" P A o yr" ) + Quosl,y) ( " %2 - 1)] .
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We solve the system (5) by successive elimination of unknowns [3,,—2, Bn—4, Bn—6, - - -
and we obtain
(=)™ tab*  (a+b)" —(a—0b)" .
2 (@ + b)"t! — (a — b)nt1’ 0
Hence, we easily compute s, ..., Bh_4, Bn2-
Now we are going to determine the polynomials P,_3(x,y) and Q,_3(x,y) such
that they verify the equations (3) and (6). For this, we get P,_3(z,y) of the form

Bo =

Pos(z,y) =72 + 522" + o+ Y 2y + a2y + Pos(2,y),

with P,_5(x,y) polynomial of degree n — 5. Since the polynomial

22 2
(" P a3y + a2y a2y ) — Pos(2,y) <9 + :2—2 -1
must be harmonic (equation (3)), we get P,_s(x,y) such that
1 2 3 4 z? P
ap 2" ap o xy" T = (Yo" T+ A a2y Pos (2, y)) (? + i ) =
=0p-1Up—1+ Op-3Up—3+ ...+ 03uU3+ 01U, (8)

where w; is the harmonic homogenous polynomial defined by p/cos(jp) (j odd) and
0 € R.
Identifying the coefficients of the terms of degree n — 1, we obtain the system :

1
—9’70 +ag = op_1,

1 1 i n—1 .
—Eve T gt ey = (1) ;o J=24,...,n—4, (9

1
_b_2 Yn—4 + ap_o = (_1) ’ Onp—1-

It is easy to solve this system and we have g, 72, ..., Yn—a and 0,1 (the values
a; are given by system (2)).
To calculate P,_5(x,y) we write
Bus(w,y) = moa™ ™ + 22" Ty 4 A s 229"+ g 2y 0 4 Par(2,y),
with P,_7(x,y) polynomial of degree n — 7.
Introducing this expression in (8) and identifying the coefficients of the terms
of degree n — 3, we obtain a system similar to (9). Solving this system we obtain

N0s M2y - - -y Mn—g and o,_s.
To calculate P,_7(z,y) we proceed similarly and so on. Thus, we can consider

that o,-1, op-3,...,01 and P,_3(x,y) are calculated.
Proceeding as previously, we obtain @Q,—s(z,y) and 7,1, Th—3,...,71 € R such
that

2 2

_ n— x
(50 yn 1+. . -+5n—2 yxr 2)—Qn_3(x,y) (? + :Z—Q - 1) = Tp-1Un-1+Tp—3 Up_3+...+71 V1,
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where v; is the harmonic homogeneous polynomial defined by par p’sin(j6) with j
odd.
Let us return to Tu,. We have

n+l—j n—i—l—y j—l-l j—l—l n—j
Tun=— Y, (TO@‘—2 + 22 j Br—j—2 + 5n—j> "yl —
§=0,2,4,....n

22 2
— 0y l—(ao " "y b a2y ) + Ps(2,y) ( + vy _ 1)] —

.%'2 y2
O l—(ﬁoy”—l + Boy" P A B2 Y2 ) + Quos(2,y) ( Toa T 1)1 .

Now, we are going to prove that there exits A, € R such that

2 2
Ty = My, — Oy l—(aox”_l o xy™ ) + Pys(2,y) (3: + 2—2 — 1)]

.1'2 y2
- ay l_ (ﬁo yn_l + 52 yn_3x2 Tt ﬁn—2 yxn_2> + Qn—B(xa y> ( * b_2 a 1)]

For this, we must find A, satisfying

n+1 1
o2 Qo — 9571—2 = Ans

Q59

—(n+1-37) ( =t %) —(+1) (ﬁn;;_2 i 5;;‘) _ (—1)%%( ), (10)

1 n+1 2
_b_2 Qp—2 — TBO = <_1) )\n

Introducing «y,—o and [y given by (4) and (7) in the last equation of system
(10), we obtain
1 2ab(n + 1)(a® — b*)"

=_-— . 11
An 2 (a4 )22 — (g — b)2n+2 (11)

To show that this A, verifies the others equations of system (10), we add the

1
last equation of (2) multiplied by par 5 and the first equation of (5) multiplied by

n—1

. Thanks to the last equation of (10), we find the next to last equation of

system (10). Repeating this procedure, we show that this A, verify all equations of
system (10).

On the other hand, for the harmonic homogeneous polynomials u; = p*cos(k6)
and vy = pFsin(kf), k> 1, we have d,u; = kug_; and 9yvx = kuy_1, therefore

33'2 2
0 [(ao "™ 4 ag 2" Py’ + L o 1Y) = Pos(a,y) (ﬁ * %2 Yt
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) - , 22 P
+ay (ﬁoyn_ +ﬁ2yn— Tt +ﬁn—2yxn_ ) - Qn—B(x7y> (9 + b_2 B 1)] B
= 02(On—1Un—1+ On_3Up-3+ ...+ 01U1) + Oy (Tn—1 Vn—1 + Tn3Vn—3 + ...+ T101) =

= (n—l)an_l Un_2+(n—3)0n_3 Up—g+. . .—|—30'3 U2+0'1+(n—1)7'n_1 Up—2+. . .—|—3T3 Uo+T1.

Tun = )\nun—i—(n—1)(0n_1+7n_1)un_2—|—(n—3) (Un_3+Tn_3)un_4+. . .—|—3(0'3+T3)U2+0'1+T1.
Obsiously, we have a similar expresion for wu, o = p" 2cos((n — 2)0) :

Tup—9 = Ap—gtn—2+ (0 — 3)(ftn—3 + Vn—3)Un—a + ...+ 3(us + v3)us + 1 + 1.

Therefore

(77, — 1)(0n_1 -+ Tn—l)
T n n— = )\n n
(u * )\n - )\n—2 fn-2 o
n — 1 n— + n—
+)\n( ><U ! i 1>un_2+wn_4un_4—|—...+CU2U2+WO-
)\n - )\n—2
Also

Tup—4 = Ap—aUp—a 4+ (N —5)(Pp—s5 + On—5)tun—6 + ...+ 3(p3 + d3)us + p1 + &

thus,
(n—1)(op-1 + Tn-1) Wn—4
T u, + Un—2 + Y tna | = Anlint
( )\n - )\n—2 ? )\n - )\”_4 !
— 1) (o, - e
L )\l(a_ AI:QT 1)/””‘2“”#%_4%”_6 e e

Finally, repeating this procedure, we show that ), is an eigenvalue of T

If we take v, = p"sin(nf) (n = 2m) and we repeat the same reasoning, we
show that s o

N — l—l— 2ab(n + 1)(a* — b?) (12)
2 (a+0b)2*2 — (a —b)>+2
is an eigenvalue of T' of multiplicity 1.

Similarly, if n = 2m — 1, taking u, = p"cos(nfl) (resp. v, = p"sin(nd)) we
show that A, (resp. A,) is an eigenvalue of T de multiplicity 1.

Finally, since Tw — u is harmonic Yu € L*(Q2)/R, the orthogonal in L?(Q)/R.
of the space of harmonic functions is included in the eigenspace corresponding to
the eigenvalue A = 1. On the other hand ([3]), the family of harmonic polynomials
is a basis (in L?*(Q)/R) of the subspace of harmonic functions. Thus \,, A, with
n € N, and 1 are the only eigenvalues of 7" and the corresponding eigenvectors form
a basis of L?(Q)/R. Consequently ([1]), like the limit of X, and \,, as n — oo, is
1/2, the spectrum of 7' is the set o(T") = 0,(T) U 1/2.

In the particular case where b = a, all eigenvalues A, and A condense in 1 /2
and the spectrum of 7" only contain the eigenvalues of infinite multiplicity 1 and 1/2

([4)-
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2

If b < a, {\} is an increasing sequence and the eigenvalue prT is the
a

is the best constant in the inequality

2 2

62

smallest spectral value of T'. Thus,
(1).
Remark 1. In dimension 3, if § is the ellipsoid

2 2 2

Q:{(:c,y,z)ERg;%+z—2+z—2<1} with ¢ <b<a,
a c

this problem is more complicated since an nth degree harmonic polynomial u,, contains

2n+1 arbitrary constants and is a linear combination of 2n+1 linearly independent

harmonic polynomaials. In this case, we obtain systems that cannot be solved explicitly.
b2c?

a2b? 4+ a2c2 + b2¢c?

corresponding to the

a?b? + a’c? + b2

However, we conjecture that the eigenvalue

eigenvector u(x,y, z) = x is the smallest spectral value of T' and thus, p2c2
c
is the best constant in the Poincaré type inequality (1).

In the particular case where ) is the sphere
Q= {(x,y,z) cR*; 22 2+ 2° < 1},

each harmonic homogeneous polynomial of degree n > 1 is an eigenvector of T

corresponding to the eigenvalue 5 . The point spectrum is o,(T) = { :
n

. 2n+1’
1 has finite
multiplicity (= 2n + 1), and o(T) = 0,(T) U{1/2}. Consequently, 3 is the best
constant in the Poincaré type inequality (1) ([4]).

+1
n € N*} where 1 is an eigenvalue of infinite multiplicity,

Remark 2. We note that the operator T = —div(—A)"‘grad appears in
the static elasticity theory and that the best constant in the Poincaré inequality (1)
1s used in constructing and substantiating algorithms for solving equations like the
Stokes and the Navier-Stokes equations ([2]).
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