Recognizing 9, o Functions per Dirichlet Space

Structure
K.J. Wirths J. Xiao*
Abstract

Under p € (0, 00) and Mobius map 04,(z) = (w—=z)/(1—wz), a holomorphic
function on the unit disk A is said to be of Qo class if lim,,|— Ep(f, w) = 0,
where

Eyfw) = [ IFGPL- lou(2)Pdm(),

and where dm means the element of the Lebesgue area measure on A. In
particular, Q, ¢ = By, the little Bloch space for all p € (1,00), Q10 =VMOA
and 9, o contains D, the Dirichlet space. Motivated by the linear structure of
D, this paper is devoted to: first show that Q, ¢ is a Mdbius invariant space
in the sense of Arazy-Fisher-Peetre; secondly identify Q,, o with the closure of
all polynomials; thirdly characterize the extreme points of the unit closed ball
of Q,0; and finally investigate the semigroups of the composition operators
on Qp,O-

Introduction

Let A and 0A be the unit disk and the unit circle in the finite complex plane C.
Denote by H the set of functions holomorphic on A, endowed with the topology
of the compact-open (i.e. the uniform convergence on compact subsets of A). The
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symbol Aut(A) is employed to represent the group of all conformal automorphisms
of A, i.e. all M6bius maps of the form Ao,, where A € A, a € A and

a—z

%) = 1—az
is the symmetry interchanging 0 and a. The Bloch space B is the class of all f € 'H
with the semi-norm

11l = sup(1 — [2[*)]f'()] < o0.
zEAN
Moreover, the little Bloch space By is the family of functions f € H satisfying

lim (1= [22) /()] = 0.

Recently, it has been found that B and By can be embedded into two new function
families, i.e., the so-called Q, and Q,,, respectively (cf. [AuLa, AuXiZh, EsXi,

NiXi]). Recall that for p € (0,00), Q, resp. Q, is the class of functions f € H
with

N [—=

Iflla, = SuplE(fw)lt < o0 resp.  lim By(f,w) =0
we wi—

Here and throughout this paper,
Ey(f.w) = [ 1FG)P0 = [ou(2)dm(2)

where dm stands for the element of the Lebesgue area measure on AA. With respect
to

I lle, = 1F O+ I Flle,

Q, becomes a normed linear space and has Q, as its subspace. Of particular
interest is to point out that if p € (1,00) or p = 1 then Q, = B; 9,0 = By or
Q, = BMOA; Q,0 =VMOA.

Let D be the classical Dirichlet space consisting of functions f € ‘H with

| fllp = [/A |f'(2)Pdm(2) ? < 00.

By some simple calculations involving power series, it is easy to establish that for
f€Hand w e A,
Fy(fw) < Ey(f,w) < 2PFy(f, w),

where

Rty =p [[ = [ [ i oon @)

An important observation is that (Qp, || - || o,) decreases to (D, || - ||p) as p \, 0. In
fact, if f € D then for arbitrary € > 0, there is a § € (0, 1) such that

/|Z|>6 |/ (2)]Pdm(z) < ¢ /61(1 — P < e
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Thus,
lim E,(f,w) < |li|m1 2PF,(f,w)

lw|—1

) 1 9 2
<p2 lim (1= [/ (f 0 o) (2) Pdm(2) | dr + ep2? || £]13
|z|<r

|w|—1
< [+ pl£11B)]e

which implies f € Q,0. On the other hand, the measure p(1 — r)?~'dr (defined
on [0,1]) converges weak-star to the point mass at 1 as p \, 0. Since [, [(f o
ow) (2)[2dm(z) is an increasing function of r, we have

lim E,(f,w) = lim F,(f,w) = sup I(f o 0w) (2)[2dm(z).

p—0 p—0 re(0,1)/|zl<r
This leads to: D consists of those functions for which there is a constant K(f) > 0
(depending on f) with || f|lg, < K(f) for all p > 0 and so, can be viewed as a limit
space of 9,0 as p \, 0.

The preceding observation appears to induce an idea: in order to solve problems
regarding Q,, o, we may treat Q, as a ‘kind’ of Dirichlet space and use the methods
of functional analysis. This viewpoint has already be testified by [NiXi] where the
closed graph theorem is an effective tool to discuss interpolation and projection
problems from Q. In the present article, we shall study the linear D-like structure
of 9,0 in some details. The material we cover is as follows: 1) Mdbius invariance of
9,0 in the strict sense of Arazy-Fisher-Peetre; 2) density of the polynomials in Q, ;
3) characterization of the extreme points in the unit ball of Q,¢; 4) semigroups of
the composition operators on Q, .

1 Mobius Invariance

Since the norm || - ||, and the semi-norm || - ||g, differ by one nonnegative constant,
the first thing to do is to see how the semi-norm || - ||, affects Q,o. We shall find
that all the 9, spaces are Mdbius invariant in the sense of Arazy-Fisher-Peetre
(cf.[ArFiPe]).

A semi-normed linear space (X, ||-||x) is called a Mébius invariant space provided
the following conditions hold:

e X C Bwith || ||x < K] -||5 for some constant K > 0

e X is complete under the semi-norm || - || x;

e Aut(A)-invariance: for each o € Aut(A) and each f € X the composition
Co(f) = f oo belongs to X and [|Co(f)l[x = [[f]lx;

e Continuity of Aut(A)-action: for every f € X the map o — Cy(f) is continu-
ous from Aut(A) to X in the semi-norm || - || x.

It is well-known that By is Mobius invariant, and according to the above defini-
tion, B is not so in that B does not satisfy the strict continuity of Aut(A)-action.
There are some other Mobius invariant spaces such as VMOA and the Besov p-
space B,. In [ArFi] it is proved that the unique Mdbius invariant Hilbert space is
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(D, || - ||p)- Nevertheless, as to a Mobius invariant Banach space which lies between
(D, || - ||p) and (Bo, || - [|8), we have

Theorem 1.1. Let p € (0,00). Then (Q,0,| - |lo,) is a Mébius invariant space.

Proof. Observe first that for any f € Q,,

op+1y 3

A= 1R < () Il €A, (11)
Thus Q,0 C Q, C B with || - |5 < K] - |0, where K = (2711 /)3,

Assume next that {f,} is a Cauchy sequence in (Qp, ||-|lo,). Then for arbitrary
€ > 0 there is a positive integer ny such that as m,n > ng, || fm — fallo, < €. By
the principle of normal family and (1.1), there exists some function f € Q, such
that || fn, — fllo, < €. Since fn, € Qppo, it follows from the definition of Q, ¢ that
f € 9Qpo. S0 (Dpo, |l - |lg,) is complete.

Because E,(f oo,w) = E,(f,0(w)), each Qp g is Aut(A)-invariant: || foollg, =
| fllg, for all f € Q,pand o € Aut(A).

To prove continuity of Aut(A)-action on Q, 0, it suffices, by homogeneity, to
verify that if a — 0 in A, then f(—o0,) — f in Q,o whenever f € Q,o. Suppose
f € 9,0, thus, for every € > 0 there exists a ; € (0, 1) such that

sup E,(f,w) <e. (1.2)

|w|>61
Without loss of generality, one may assume |a| < 1/2. Then there is a d5 > ¢; such
that as |w| > 03 one has |o,(w)| > 61 and by (1.2), sup s, Ep(f, 7a(w)) < €. Hence
sup E,(f oo, — f,w) < 4e. (1.3)

|w|>d2

In what follows, let |w| < 9, and for r € (0, 1) set

Broo,—fo= [+ [ ) )m() = 10) + B

Concerning I5(r,a), we apply the following basic inequality |oq(w)| < (|a] +
|w|)/(1 + |a||w]|) to get that |o,(w)| < d3 = (1 4 202)/(2 + J2) for |w| < 62 and
la| < 1/2. Since f € 9,0, f obeys E,(f,0) < oo, and for the above € > 0 there is
an 1o € (0,1) such that

[ TGP R < e

Furthermore, some elementary calculations imply that for r? = (2 + r)/3,

92+p 92+p

hra) < | iyt W] /|| F(2)2(1 = |22)dm(2)

92+p 92+p
] . (1.4)

(L=6p " (L—da)
However, it is obvious that lim,_ [1(r,a) = 0 for each r € (0,1). Therefore, from

(1.3) and (1.4) we derive that lim, o || f(—0a) — f|lg, = 0. This concludes the proof.
n

g
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Due to Theorem 1.1, those general properties of Mobius invariant spaces (shown
in Section 1 of [ArFiPe]) are valid for Q, . Specially, we have

Corollary 1.2. Let p € (0,00). Then the Aut(A)-invariant dual Qj , consists of
all f € H obeying sup{| (£, )| - g € Qo llglla, < 1} < 00, where

= | F2)gEdm ()
is the Aut(/\)-invariant pair.

Remark 1.3 a) Each Q,, has a weak continuity of Aut(A)-action: for f € Q, the
map o — C,(f) is continuous from Aut(A) to Q, with respect to the compact-open
topology. For a discussion of the cases p > 1, refer to [ArFiPe].

b) The Hahn-Banach theorem can be used to establish that the second Aut(A)-
invariant dual of Q, is isomorphic to Q, under (-,-). It is worth pointing out that
D is isomorphic to D, moreover if p = 1 resp. p > 1 then Q7 ; isomorphic to the
Hardy-Sobolev space W resp. the Besov space M, which consists of all f € H
obeying

Iflw= [ 17Eldzl <o resp. fllac= [ [ )]+ 11" ()lldm(z) < oo

It would be interesting to provide a function-theoretic characterization of Q7 ; similar
to that of D, W or M.

2 Polynomial Density

Although Theorem 1.1 actually tells us that Q, and Q,( are Banach spaces under
Il - llo,, since Q, ¢ contains all polynomials, it is worth to consider the density of P,
the class of the polynomials, and hence to imply that 9, is a closed subspace of
Q, with respect to the norm || - |g,.

Theorem 2.1. Let p € (0,00) and let f € Q, with f,(z) = f(rz) for r € (0,1).
Then the following are equivalent: (i) f € Qpo; (ii) lim—1 || fr — fllo, = 0. (iii) f

belongs to the closure of P in the norm || -||g,. (iv) For any € > 0 thereis a g € Q)
such that ||g — fllo, < €.

Proof. Since the implications: (ii)=-(iii),(iii)=>(iv) and (iv)=-(i) are nearly obvious,
it suffices to verify the implication: (i)=-(ii). Let f € Q,. An application of Poisson’s
formula to f, gives
1 2
(2) = — d 2.1

16 = 57 [ FEO T =gl (2.1
Derivating both sides of (2.1) with respect to z, integrating and using Minkowski’s
inequality, one has

foo L GORIL = lout@lam(e) %r%f;§%5

_ 1 —r
=5 /M[Ep(f, C’w)]Qde- (2.2)

iy



52 K.J. Wirths — J. Xiao

Consequently, ||f-llo, < |Ifllo,- Furthermore, if f € Q,0, then by (2.2), limy,—1
E,(fr—f,w) = 0 holds for a fixed r € (0,1). Also, for a givenn € (0, 1) it is not hard
(by dividing the integral into two parts) to determine lim, 1 supy,, <, Ep(fr — f,w) =
0. Summing up, we see that lim,_; || f» — f|lo, = 0 and hence (i)=-(ii) holds.

n

Corollary 2.2. Let p € (0,00). Then (Qp0, | - [lo,) is a separable closed subspace
of (Qp, [ - le,)-

Asfor f € Q,, denote by d(f, Q,0) the distance of f to Q, ¢, namely, d(f, Qp0) =
infreo,, [|f — ||, Meanwhile, put

do,(f) = h|m|ilip [Ep(f,w)] g

The argument for Theorem 2.1 can infer the following result.

Corollary 2.3. Let p € (0,00) and let f € Q,. Then

00, (f) < d(f, Lpo) < 200,(f)- (2.3)

Proof. On the one hand, since limy,|—.1 Ep(h, w) = 0 for any h € Q,, by the triangle
inequality of || - ||, one has

1
2

+ [Ep(h7 w)} )

N
N

By(fw)]® < [E(f — h,w)

consequently,

=

00,(f) < sup[E,(f — h,w)]

weA
for every h € Q. In other words, the left-hand side estimate of (2.3) holds.
On the other hand, if f € Q, with f.(z) = f(rz), r € (0,1), then d(f, Q,0) <
If = frllg,, owing to f. € Q,0. From the proof of Theorem 2.1 it is seen that for
arbitrary € > 0 and a fixed n € (0,1), there is an ry € (0,1) such that as r € [rg, 1),

1/2

[Ep(f - frawﬂ v < (1 - 77>_p [Ep(f - fr,O)} <€

Hence by (2.2),

1/2 1/2
Af. Qo) S IIf = flla, S e sup [B,(F = frow)] 7 < 2 sup [By(fw)]
w|>n w|>n
This implies that the right-hand side of (2.3) is true. ]

Remark 2.4. a) Theorem 2.1 is an extension of the corresponding results on
By and VMOA. See also [An, Theorem 1; Si4, p.236].

b) For (analytic and geometric) estimates of the distance to VMOA (related to
Corollary 2.3), see also [AxSha, CaCu, StSt].

c) In the case p € (0, 1), the density of the polynomials in 9, o doesn’t mean that
the disc algebra A (consisting of functions f € H continuous on JA) is a subset
of Q0. Indeed, let fi(z) = 352,27 %0-2)/2;2"  Then from [AuXiZh, Theorem 6] it
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follows that f; € A\ Q,. This phenomenon distinguishes the cases p € (0,1) from
the cases p € [1, 00).

d) An example of an unbounded function in 9, ¢ is easily constructed by using the
Riemann mapping theorem. Let €2 be the inside domain of the curve v = v, Uy, U~s3,
where

n=A{(z,y) € 224+y2=1, ze€[-1,0]}
72 ={(z,y) € y—e =0, wec[0,00)};
vs={(z,y) €C: y+e =0, xel000)}

C:
C.

Let fs be a conformal map of A onto 2. Clearly, f> is unbounded, but in D C Q,,
owing to || f2||% = (72 +4)/2.
3 Extreme Points

Given a norm || - | x on a Banach space X. In studying (X, || - || x), one problem of
considerable interest is that of characterizing the geometry of the unit closed ball

(Bx, - llx) ={f € X - [Ifllx <1}

In particular, we would like to find the extreme points of (Byx, || - |lx), namely, the
points in (Bx, || - ||x) which are not a proper convex combination of two different
points of (Bx, || - [lx). The problem addressed here deals with the extreme points of
(Bg,o: |l - llg,) in order to better understand the linear structure of Q.
The following result is the Proposition 1 in [CiWo].

Lemma 3.1. Let X and Y be Banach spaces with norms || - ||x and || - ||y
respectively. Let N : [0,00) x [0,00) — R be a function so that (x,y) — N(|z|,|y|)
is a norm on R?. Define a norm || - ||z on Z =X &Y by

lz @ yllz = N(lllx, lylly), for zeX, yeY.

Then x & y is an extreme point of (By,| - ||z) if and only if the following three
conditions hold: (i) x is an extreme point of the closed ball of radius ||x||x of X.
(ii) y is an extreme point of the closed ball of radius ||y|ly of Y. (iii) (||| x, lly[lv)

is an extreme point of the unit closed ball of R? with the norm N.

Before stating our result, we still need another useful lemma whose hyperbolic
version is presented in [SmZh, Lemma 2.3].

Lemma 3.2. Let p € (0,00) and f € H. If E,(f,w) is finite for some w € A,
then E,(f,-) is a continuous function on /.

Proof. 1t is easy to figure out that for three points z, wy, wy € A,

(1= )1 = Jws) _ 1= [ou ()P 4
1 S T )P = (= Jun) (1~ [wa])

(3.1)

This indicates that if E,(f, ) is finite at some point of A then so is it at all points of
A. Let now E,(f,w) < co. To prove the continuity of E,(f,-), it suffices to verify
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that it is continuous at w. For this end, one assumes that {w,} C A is convergent
to w. Then there is a positive integer ng such that as n > ng, 1 — |w,| > (1 —|wl|)/2
and thus, by (3.1),

Accordingly,

By(f.wa) — By(f.w)] < [1 ; ﬁ] By(f.w) < oo

An application of the Lebesgue Dominated Convergence Theorem implies that
E,(f,w,) — E,(f,w) as n — oo, i.e., E,(f,-) is continuous at w. The proof is
complete. -

It is a classical result that for a Hilbert space X (certainly, including D), the
extreme points of (Bx, || - [|x) are precisely those on the unit sphere:

(Sx, - lx) = {f € X+ Ifllx = 13-

The following (which seems surprising to us) says that this is also valid for the
non-Hilbert space Q, o.

Theorem 3.3. Let p € (0,00) and f € Q,0. Then f is an extreme point of
(Bg,o, | - llg,) if and only if either f = X with |A\| = 1 or f(0) = 0 with || f|lg, = 1.

Proof. For p € (0,00) let Q) = {f € Q,0 : f(0) = 0}. Notice that ||f]lo, =
| F(0)|+ I fllg, for f € Qpo. So by Lemma 3.1, we need only to verify that a function
f e Qg’o is an extreme point of the unit closed ball BQS,O in Qg,o if and only if
1flle, = 1.

The necessity is essentially trivial. The key is to argue the sufficiency. Now
suppose that f lies in Q) ; with || f||g, = 1. Since limy,—1 E,(f, w) = 0, there is an
r € (0,1) such that sup,,,., Ep(f,w) < 1/2. Consequently, we have

1=fllg, = sup Ey(f,w) = max E,(f, w).

lw|<r

Applying Lemma 3.2 to this f, we see that E,(f,-) is continuous on the compact
set {w € A : |w] < r}, and thus there exists a wy € A (Jwy| < 7) to ensure

Ep(f7 wO) =L
Let g be any function in QY ; such that || f 4 gllo, <1 and [|f — g[lo, < 1. Then
Ep(f,wo) + Ey(g, wo) = 27 [E,(f + g,wo) + Ep(f — g,wo)] < 1.
Therefore E,(g,wp) = 0. This implies that g = 0. We conclude that f is extreme. m

The previous proof actually leads to a sufficient condition for f € Q, to be an
extreme point of (Bg,, | - [la,)-
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Corollary 3.4. Letp € (0,00) and f € Q,. If f is an extreme point of (Bg,, |||l 0,)
then ||f]lo, = 1. Conversely, if either f = X with |\| = 1 or there exists a point
wo € A such that E,(f,wo) =1, then f is an extreme point of (Bg,, | - |lo,)-

Remark 3.5. a) Different norms produce different sets of the extreme points.
This viewpoint is reflected by our Theorem 3.3, Cima-Wogen’s Corollary 1 and
Theorem 2 in [CiWo], and Axler-Shields” Theorem in [AxShi].

b) It would be interesting to give a full description of the extreme points of

(Bo,, [I - lle)-

4 Composition Semigroups

Let now {¢; : t > 0} be a composition semigroup of the holomorphic self-maps v
of A, that is: 1 0 s = Py for t,5 > 0; Yo(2) = z; and ¢(z) is continuous in
two-parameters: ¢t and z.

A composition semigroup always consists of univalent functions and all such
semigroups can be classified in two classes Wy and ¥, according to whether the
common fixed point of ¢ is in A or on dA. Without loss of generality, one can
assume that the fixed point is 0 for Wy and 1 for ¥; (where the fixed point 1 is
understood to be the Denjoy-Wolff point, namely, lim,_,; ¢:(r) = 1 for any {1} €
Uy). Hence

o {1/;} € Uy is of the form 1(z) = h™(e"h(z)), where Re > 0 and h € H with:
h(0) = 0 and wexp(—ct) € h(A) for each w € h(A).

e {1y} € Uy has the form ¥ (z) = h™(ct + h(z)), where Rc > 0, h € ‘H with:
h(0) = 0 and R(c*(z — 1)*1/(2)) > 0 for each z € A.

It is clear that each semigroup {4} induces a one-parameter operator semigroup
by composition {Cy,} : Cy, (f) = f o 9. As in the D-setting [Si3], more is true:

Theorem 4.1. Let p € (0,00). Then {Cy,} is strongly continuous on Q.
Moreover (i) The infinitesimal generator of {Cy,} is given by I'(f) = Gf' and its

domain is {f € Q0 : Gf' € Q,0}, where G = —c(h/h') or ¢/h whenever {i,} € ¥
or Vy. (ii) {Cy,} is not continuous in the uniform topology unless it is trivial. (iii)

The growth bound w = lim;_o t~*log ||Cy, || = 0, where

1Cy |l = mf{M = |C (F)ll, < M flleys [ € Qpol

Proof. Notice that if a holomorphic map ¢ : A — A is univalent then
p
By(fovu) < [ IFEP[1 = loww )] dm(),

and so the composition Cy(f) = f o exists as a bounded linear operator on 9,

with
2]7—1 1/2 1 0
I, < 1+ () rog THAD

] Ille, = Killflle,- (4.1)
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Moreover, if f € Q, and € > 0, then by Theorem 2.1, there exists a polynomial p,
such that ||f — pn] o, < €. Thus (4.1) implies ||Cy(f) — Cy(pn)]o, < €K1. Owing
to Cy(pn) € Qpo, it follows that Cy(f) € Qpo. Therefore Cy : Qpo — Qpo exists
as a bounded operator with ||Cy| < Kj.

In order to show that each semigroup {Cy,} is strongly continuous on 9,0, it
suffices to verify that lim,_o ||Cy,(f) — fllo, = 0 for every f € Q,0 and every
{1} € ¥y U ¥,. Since the polynomials are dense in (Q,, || - [lo,) but also (4.1)
infers that

ICu(f) = Fllo, < Killf = Plla, + 1Cu(P) — Pllo,

holds for any polynomial P, it is enough, by the properties of ¥y and W, to prove
limy o [|Yr — 2], = 0. While, this is a simple thing in that lim; .o [[¢ — z[|]p = 0

and [[¢; = 2[lg, < [[¢¢ = 2|[p.
The infinitesimal generator I' of Cy, is determined by

r(f)(z) = 20D

where G is the generator of {i,}:
G — _hc/h7 {’l/}t} E ®0
W {1} € D1
By definition, the domain of I" is the following set:

( ) {fEQp hmcwt(];)_f

On the one hand, if f € D(I') then some calculations involving ¥, and ¥, deduce
that f meets the requirements of the domain stated in Theorem 4.1 (ii). On the
other hand, if f is in Q, with g = Gf' € Q, ¢ and G being as above, then for ¢ > 0
one has

= G(2)f'(2),

t=0

exists in Qp,o} )

/ _ G =1

£ Jo €9 t

Because {Cy,} is a strongly continuous semigroup, the left-hand side of the last

equation has a limit g as ¢ — 0, with respect to || - ||g,. Accordingly, f € D(I').
Next, observe that the strongly continuity of {Cy,} is equivalent to the bounded-

ness of I' : I'(f) = G f’ (cf. [Si4, p.231]). Soif I' is bounded on Q,( then Gf' € Q, ¢

when f € Q,0. In particular,

ITCfnp)lle, < 1T frnll o (4.2)

where ||T'|| means the norm of operator I', and for each integer n > 1,

z", p>1
np\Z) = n
Fral?) { 2. pe(n)

Now consider p € (0,1). Clearly, || fupllo, < 2. If G(z) = 332, axz”, then through
(4.2) and some elementary calculations, we can find out a constant Ky > 0 depending
only on p € (0,1) such that

> larl*(k+n— 1)1 < K||T).
k=0
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This derives all ay = 0, and so G = 0 which is impossible.

The By and VMOA settings may be similarly treated, using the facts: Q¢ =
VMOA and Q¢ = By for p > 1.

Finally, let us come to the proof of w = 0. Since all Cy, keep 1 unchanged,
one always has [|Cy,| > 1 and so w > 0. Further, if {¢4} € ¥y, then w = 0 in
that ¢¢(0) = 0 and thus ||Cy,|| <1 (thanks to the constant K above). However, if
{4} € Uy then by [Si3,(3.3)],

lim sup log log[1/(1 — |¢:(0))] <0

= Y
t—o00 t

which, together with ||Cy,|| < K;, implies w < 0 and hence w = 0. The proof is
complete. -

Remark 4.2. a) A —I' is invertible on Q, ¢ whenever A > 0, and

A=D1 (f) = [ eMCu

0

In addition, the spectral radius of Cy, (acting on Q, () is 1.
b) Suppose {¢;} € ¥y and n is a natural number. Then, as in [Si3, Corollary 2],
the semigroup S;(f) = ()" Cy, (f) is strongly continuous on Q,, with generator

Lo(f)(2) = =c[h(2) /W' (2)1f'(2) = en[h(2)/ (21 ()1 f(2).

Acknowledgment. J. Xiao is grateful to S. Axler, M. Essén and A. Siskakis
for interesting discussions.
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