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Abstract

A fixed point and homotopic invariance result is presented for set valued
contractive type maps in complete gauge spaces.

1 Introduction

This paper presents new fixed point results for contractive type maps on complete (or
sequentially complete) gauge spaces (i.e. complete uniform spaces). We begin with
a local fixed point result for single valued maps and then this result is extended
to multivalued closed maps. In addition we present a homotopy type result for
contractive type maps in complete gauge spaces. Our results in particular extend
those in [1, 3, 4]. It was noted in [5] that many generalized contractive type maps F
considered in the literature are in fact contractive maps with respect to a suitable
uniform structure associated with F .

In Section 2, E = (E, {dα}α∈Λ) (here Λ is a directed set) will denote a gauge
space endowed with a complete gauge structure {dα : α ∈ Λ}. We denote by Dα

the generalized Hausdorff pseudometric induced by dα; that is, for Z, Y ⊆ E,

Dα(Z, Y ) = inf{ε > 0 : ∀x ∈ Z, ∀y ∈ Y, ∃x? ∈ Z, ∃y? ∈ Y
such that dα(x, y?) < ε, dα(x?, y) < ε},

with the convention that inf(∅) = ∞.
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2 Fixed point theory in gauge spaces

In this section E = (E, {dα}α∈Λ) (here Λ is a directed set) will denote a gauge
space endowed with a complete gauge structure {dα : α ∈ Λ} (see Dugundji [2
pp. 198, 308]). For r = {rα}α∈Λ ∈ (0,∞)Λ and x ∈ X, we define the pseudo–ball
centered at x of radius r by

B(x, r) = {y ∈ E : dα(x, y) ≤ rα for all α ∈ Λ} .

We begin with a local theorem for single valued maps.

Theorem 2.1. Let E be a complete gauge space, r = {rα}α∈Λ ∈ (0,∞)Λ, x0 ∈ E
and F : B(x0, r) → E. Suppose for each δ ∈ Λ that there exists a continuous
nondecreasing function φδ : [0,∞) → [0,∞) satisfying φδ(z) < z for z > 0. Also
assume there exists functions β : Λ → Λ and γ : Λ → Λ such that for each α ∈ Λ
and x, y ∈ B(x0, r) we have

(2.1) dα(F x, F y) ≤ φβ(α)(dγ(α)(x, y)).

Finally suppose for each α ∈ Λ that

(2.2)

{ ∑∞
n=1 φβ(α) φβ(γ(α)) ....φβ(γn−1(α))

(
dγn(α) (x0, F x0)

)
+dα(x0, F x0) ≤ rα

holds; here γ0(α) = α and γn(α) = γ (γn−1(α)) for n ∈ {1, 2, ....}. Then F has a
fixed point (i.e. there exists x ∈ B(x0, r) with x = F x).

Remark 2.1. If for each α ∈ Λ we have

(2.3) dα(x0, F x0) ≤ rα − φβ(α)(rα)

and

(2.4)

{ ∑∞
n=1 φβ(α) φβ(γ(α)) ....φβ(γn−1(α))

(
rγn(α) − φβ(γn(α))(rγn(α))

)
≤ φβ(α)(rα)

then (2.2) holds. This is immediate since for fixed α ∈ Λ we have

∞∑
n=1

φβ(α) φβ(γ(α)) ....φβ(γn−1(α))

(
dγn(α) (x0, F x0)

)
+ dα(x0, F x0)

≤
∞∑

n=1

φβ(α) φβ(γ(α)) ....φβ(γn−1(α))

(
rγn(α) − φβ(γn(α))(rγn(α))

)
+[rα − φβ(α)(rα)]

≤ φβ(α)(rα) + [rα − φβ(α)(rα)] = rα.

Proof : Let xn = F xn−1 for n ∈ {1, 2, .....}. Fix α ∈ Λ and we claim

(2.5)


{xn}∞1 is a Cauchy sequence with respect to dα

and xn+1 ∈ Bα(x0, rα) = {y ∈ E : dα(x0, y) ≤ rα}
for n ∈ {0, 1, ....}.
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Before we prove (2.5) we first notice for n ∈ {0, 1, ...} and δ ∈ Λ that

dδ(xn+1, xn) = dδ(F xn, F xn−1) ≤ φβ(δ) (dγ(δ)(xn, xn−1))

and as a result

(2.6)
dδ(xn+1, xn) ≤ φβ(δ) φβ(γ(δ))....... φβ(γn−1(δ)) (dγn(δ)(x1, x0))

= φβ(δ) φβ(γ(δ))....... φβ(γn−1(δ)) (dγn(δ)(x0, F x0)).

Notice for α ∈ Λ that xn+1 ∈ Bα(x0, rα) since (2.6) and (2.2) imply

dα(xn+1, x0) ≤ dα(x0, x1) + dα(x1, x2) + .......+ dα(xn, xn+1)

≤
∞∑

k=1

φβ(α) φβ(γ(α)) ....φβ(γk−1(α))

(
dγk(α) (x0, F x0)

)
+ dα(x0, F x0) ≤ rα.

Also {xn}∞1 is a Cauchy sequence with respect to dα since if n, p ∈ {0, 1, ....} we
have

dα(xn+p, xn) ≤ dα(xn+p, xn+p−1) + .......+ dα(xn, xn+1)

≤
∞∑

k=n

φβ(α) φβ(γ(α)) ....φβ(γk−1(α))

(
dγk(α) (x0, F x0)

)
,

so (2.2) guarantees that {xn}∞1 is a Cauchy sequence with respect to dα. Thus
(2.5) is true for each α ∈ Λ. As a result xn ∈ B(x0, r) for each n ∈ {1, 2, ....} and
{xn}∞1 is a Cauchy sequence. Thus there exists x ∈ B(x0, r) with xn → x. We
now claim

(2.7) dα(x, F x) = 0 for each α ∈ Λ.

If (2.7) is true then x = F x and we are finished. To see (2.7) fix α ∈ Λ and notice

dα(x, F x) ≤ dα(x, xn) + dα(xn, F x)

≤ dα(x, xn) + φβ(α) (dγ(α)(xn−1, x)).

Let n → ∞ (note dδ(xn, x) → 0 for all δ ∈ Λ) to obtain (note φβ(α)(0) = 0)
dα(x, F x) = 0. �

Remark 2.1. It is easy to combine the ideas in Theorem 2.1 together with those in
[1] to obtain an analogue of Theorem 2.1 when the space E is also a gauge space
endowed with a gauge structure {d′α : α ∈ Λ′}.

If our map F : B(x0, r) → E in Theorem 2.1 is replaced by F : E → E then
the iterates xn defined in Theorem 2.1 do not need to belong to B(x0, r) and so
we have the following result.

Theorem 2.2. Let E be a complete gauge space, x0 ∈ E and F : E → E.
Suppose for each δ ∈ Λ that there exists a continuous nondecreasing function φδ :
[0,∞) → [0,∞) satisfying φδ(z) < z for z > 0. Also assume there exists functions
β : Λ → Λ and γ : Λ → Λ such that for each α ∈ Λ and x, y ∈ E we have

dα(F x, F y) ≤ φβ(α)(dγ(α)(x, y)).
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Finally suppose for each α ∈ Λ that

∞∑
n=1

φβ(α) φβ(γ(α)) ....φβ(γn−1(α))

(
dγn(α) (x0, F x0)

)
+ dα(x0, F x0) < ∞.

Then there exists x ∈ E with x = F x.

Next we present an analogue of Theorem 2.1 for multivalued maps with closed
values.

Theorem 2.3. Let E be a complete gauge space, r = {rα}α∈Λ ∈ (0,∞)Λ, x0 ∈ E
and F : B(x0, r) → C(E) (here C(E) denotes the family of nonempty closed
subsets of E). Suppose for each δ ∈ Λ that there exists a continuous strictly
increasing function φδ : [0,∞) → [0,∞) satisfying φδ(z) < z for z > 0. Also
assume there exists functions β : Λ → Λ and γ : Λ → Λ such that for each α ∈ Λ
and x, y ∈ B(x0, r) we have

(2.8) Dα(F x, F y) ≤ φβ(α)(dγ(α)(x, y)).

Now suppose the following two conditions hold:

(2.9) for each α ∈ Λ we have distα (x0, F x0) < rα − φβ(α)(rα)

and

(2.10)


for every x ∈ B(x0, r) and every ε = {εα}α∈Λ ∈ (0,∞)Λ

there exists y ∈ F x with dα (x, y) ≤ distα (x, F x) + εα
for every α ∈ Λ.

Finally assume for each α ∈ Λ that

(2.11)

{ ∑∞
n=1 φβ(α) φβ(γ(α)) ....φβ(γn−1(α))

(
rγn(α) − φβ(γn(α))(rγn(α))

)
≤ φβ(α)(rα).

Then there exists x ∈ B(x0, r) with x ∈ F x.
Proof : From (2.9) and (2.10) we may choose x1 ∈ F x0 with

(2.12) dα(x0, x1) < rα − φβ(α)(rα) for every α ∈ Λ.

Next fix α ∈ Λ and choose εα > 0 so that

(2.13) φβ(α)(dγ(α)(x0, x1)) + εα < φβ(α)(rγ(α) − φβ(γ(α))(rγ(α)))

(this is possible from (2.12) and the fact that φδ is strictly increasing for each
δ ∈ Λ). From (2.10) we may choose x2 ∈ F x1 so that for every α ∈ Λ we have

dα(x1, x2) ≤ distα(x1, F x1) + εα ≤ Dα(F x0, F x1) + εα

≤ φβ(α) (dγ(α)(x0, x1)) + εα

and this together with (2.13) yields

(2.14) dα(x1, x2) < φβ(α)(rγ(α) − φβ(γ(α))(rγ(α))) ∀α ∈ Λ.
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Next fix α ∈ Λ and choose δα > 0 so that

(2.15) φβ(α)(dγ(α)(x1, x2)) + δα < φβ(α) φβ(γ(α))(rγ2(α) − φβ(γ2(α))(rγ2(α))).

¿From (2.10) we may choose x3 ∈ F x2 so that for every α ∈ Λ we have

dα(x2, x3) ≤ distα(x2, F x2) + δα ≤ Dα(F x1, F x2) + δα

≤ φβ(α) (dγ(α)(x1, x2)) + δα,

and this together with (2.15) yields

(2.16) dα(x2, x3) < φβ(α) φβ(γ(α))(rγ2(α) − φβ(γ2(α))(rγ2(α))) ∀α ∈ Λ.

Continue this process to construct xn+1 ∈ F xn for n ∈ {2, 3, ....} so that

(2.17) dα(xn+1, xn) < φβ(α)φβ(γ(α)).....φβ(γn−1(α))(rγn(α) − φβ(γn(α))(rγn(α)))

for all α ∈ Λ. Notice xn+1 ∈ B(x0, r) for each n ∈ {0, 1, 2, ....} since for α ∈ Λ we
have

dα(xn+1, x0) ≤ dα(x0, x1) + dα(x1, x2) + .......+ dα(xn, xn+1)

≤
∞∑

k=1

φβ(α)φβ(γ(α))....φβ(γk−1(α))

(
rγk(α) − φβ(γk(α))(rγk(α))

)
+ dα(x0, x1) ≤ dα(x0, x1) + φβ(α)(rα)

< [rα − φβ(α)(rα)] + φβ(α)(rα) = rα.

Also for each α ∈ Λ and n, p ∈ {0, 1, ....} notice

dα(xn+p, xn) ≤
∞∑

k=n

φβ(α) φβ(γ(α)) ....φβ(γk−1(α))

(
rγk(α) − φβ(γk(α))(rγk(α))

)
,

and so (2.11) guarantees that {xn}∞1 is a Cauchy sequence with respect to dα. As a
result {xn}∞1 is a Cauchy sequence so exists x ∈ B(x0, r) with xn → x. It remains
to show x ∈ F x. Notice for each α ∈ Λ that

distα(x, F x) ≤ dα(x, xn) + distα(xn, F x) ≤ dα(x, xn) +Dα(F xn−1, F x)

≤ dα(x, xn) + φβ(α) (dγ(α)(xn−1, x)).

Let n→∞ to obtain distα(x, F x) = 0 for each α ∈ Λ. Thus x ∈ F x = F x and
we are finished. �

Next we obtain a homotopy result via Zorn’s Lemma.

Theorem 2.4. Let E be a complete metric space with U an open subset of E.
Suppose H : U × [0, 1] → C(E) is a closed map (i.e. has closed graph) and assume
the following conditions are satisfied:

(a). x /∈ H(x, t) for x ∈ ∂U and t ∈ [0, 1];

(b). for each δ ∈ Λ, there exists a continuous strictly increasing function φδ :
[0,∞) → [0,∞) satisfying φδ(z) < z for z > 0 and also assume there exists
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functions β : Λ → Λ and γ : Λ → Λ such that for each α ∈ Λ and for ∀ t ∈ [0, 1]
and x, y ∈ U we have

Dα(H(x, t), H(y, t)) ≤ φβ(α)(dγ(α)(x, y));

(c). for each δ ∈ Λ, Φδ : [0,∞) → [0,∞) is strictly increasing and Φ−1
δ (a) +

Φ−1
δ (b) ≤ Φ−1

δ (a+ b) for a ≥ 0, b ≥ 0 (here Φδ(x) = x− φδ(x));

(d). for each α ∈ Λ and for any s = {sα}α∈Λ ∈ (0,∞)Λ we have{ ∑∞
n=1 φβ(α) φβ(γ(α)) ....φβ(γn−1(α))

(
sγn(α) − φβ(γn(α))(sγn(α))

)
≤ φβ(α)(sα);

(e). for every t ∈ [0, 1] and every ε = {εα}α∈Λ ∈ (0,∞)Λ there exists y ∈ H(x, t)
with dα (x, y) ≤ distα (x,H(x, t)) + εα for every α ∈ Λ;

and

(f). there exists M = {Mα}α∈Λ ∈ (0,∞)Λ and there exists a continuous increasing
function ψ : [0, 1] → R such that Dα(H(x, t), H(x, s)) ≤ Mα |ψ(t) − ψ(s)| for all
t, s ∈ [0, 1] and x ∈ U , for every α ∈ Λ.

Then H( . , 0) has a fixed point iff H( . , 1) has a fixed point.

Proof : Suppose H( . , 0) has a fixed point. Consider

Q = {(t, x) ∈ [0, 1]× U : x ∈ H(x, t)} .

Now Q is nonempty since H( . , 0) has a fixed point. On Q define the partial
ordering (see (c) for transitivity)

(t, x) ≤ (s, y) iff t ≤ s and dα(x, y) ≤ Φ−1
β(α)(2Mα [ψ(s)− ψ(t)])

for every α ∈ Λ. Let P be a totally ordered subset of Q and let

t? = sup{t : (t, x) ∈ P}.

Take a sequence {(tn, xn)} in P such that (tn, xn) ≤ (tn+1, xn+1) and tn → t?. We
have

dα(xm, xn) ≤ Φ−1
β(α) (2Mα [ψ(tm)− ψ(tn)]) for all m > n

and α ∈ Λ. Thus {xn}∞1 is a Cauchy sequence with respect to dα for each α ∈ Λ,
so {xn}∞1 is a Cauchy sequence and it converges to some x? ∈ U . Now since H
is a closed map we have (t?, x?) ∈ Q (note x? ∈ H(x?, t?) by closedness and (a)
implies x? ∈ U). It is also immediate from the definition of t? and the fact that P
is totally ordered that

(t, x) ≤ (t?, x?) for every (t, x) ∈ P.

Thus (t?, x?) is an upper bound of P . By Zorn’s Lemma Q admits a maximal
element (t0, x0) ∈ Q.

We claim t0 = 1. Suppose our claim is false. First note since U is open
that ∃ δ1, ....., δm ∈ (0,∞) with U(x0, δ1) ∩ .... ∩ U(x0, δm) ⊆ U ; here U(x0, δi) =
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{x : dαi
(x, x0) < δi} for i ∈ {1, ...,m} and αi ∈ Λ for i ∈ {1, ...,m}. Choose

δ = {δα}α∈Λ ∈ (0,∞)Λ and t ∈ (t0, 1] with

B(x0, δ) ⊆ U and δα = Φ−1
β(α)(2Mα [ψ(t)− ψ(t0)]).

Notice for every α ∈ Λ that

distα(x0, H(x0, t)) ≤ distα(x0, H(x0, t0)) +Dα(H(x0, t0)), H(x0, t)))

≤ 0 +Mα [ψ(t)− ψ(t0)]

=
Φβ(α)(δα)

2
< Φβ(α)(δα) = δα − φβ(α)(δα).

Now Theorem 2.3 (applied to H( . , t), note (d)) guarantees that H( . , t) has a fixed
point x ∈ B(x0, δ). Thus (x, t) ∈ Q and notice since

dα(x0, x) ≤ δα = Φ−1
β(α)(2Mα [ψ(t)− ψ(t0)] and t0 < t,

that we have (t0, x0) < (t, x). This of course contradicts the maximality of (t0, x0).�

Remark 2.2. Of course the results in this section hold if E a complete gauge space
is replaced by E a sequentially complete gauge space.
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