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Abstract. The aim of this paper is to introduce and study strong

forms of µ-Lindelöfness in generalized topological spaces with a hered-
itary class, called SµH-Lindelöfness and S−SµH-Lindelöfness. Inter-

esting characterizations of these spaces are presented. Several effects

of various types of functions on them are studied.

1. Introduction and Preliminaries

The idea of generalized topology and hereditary classes was introduced
and studied by Császár in [1, 3], respectively. In this paper, we introduce
and study strong forms of µ-Lindelöfness with respect to a hereditary class
which was introduced by Qahis et al. in [8]. The strategy of using gen-
eralized topologies and hereditary classes to extend classical topological
concepts have been used by many authors such as [3, 6, 10, 14].

Let X be a nonempty set and p(X) the power set of X. A subfamily
µ of p(X) is called a generalized topology [1] if φ ∈ µ and the arbitrary
union of members of µ is again in µ. The pair (X,µ) is called a generalized
topological space (briefly GTS). The elements of µ are called µ-open sets
and the complement of µ-open sets are called µ-closed sets. For A ⊆ X,
we denote by cµ(A) the intersection of all µ-closed sets containing A, i.e.,
the smallest µ-closed set containing A and by iµ(A) the union of all µ-open
sets contained in A, i.e., the largest µ-open set contained in A [1, 2]. A
nonempty subcollection H of p(X) is called a hereditary class (briefly HC)
[3] if A ⊂ B, B ∈ H implies A ∈ H. An HC H is called an ideal if H satis-
fies the additional condition: A,B ∈ H implies A∪B ∈ H [7]. Some useful
hereditary classes in X are: p(A), where A ⊆ X, Hf , the HC of all finite
subsets of X, and Hc, the HC of all countable subsets of X. We introduced
the notion of µH-Lindelöf spaces as follows [8]: A subset A of X is said to
be µH-Lindelöf if for every cover {Uλ : λ ∈ Λ} of A by µ-open sets, there
exists a countable subset Λ0 of Λ such that A \ ∪{Uλ : λ ∈ Λ0} ∈ H. If
A = X, then (X,µ) is called a µH-Lindelöf space. A subset A of X is said
to be µ-Lindelöf [12] if every cover of A by µ-open sets has a countable
subcover. If A = X, then (X,µ) is called a µ-Lindelöf space. Given a
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generalized topological space (X,µ) with an HC H, for a subset A of X,
the generalized local function of A with respect to H and µ [3] is defined
as follows: A∗(H, µ) = {x ∈ X : U ∩ A /∈ H for all U ∈ µx}, where
µx = {U : x ∈ U and U ∈ µ}. If there is no confusion, we simply
write A∗ instead of A∗(H, µ). And for a subset A of X, c∗µ(A) is defined
by c∗µ(A) = A ∪ A∗. The family µ∗ = {A ⊂ X : X \ A = c?µ(X \ A)} is a
GT on X which is finer than µ [3]. The elements of µ∗ are called µ∗-open
and the complement of a µ∗-open set is called a µ∗-closed set. It is clear
that a subset A is µ∗-closed if and only if A∗ ⊂ A. We call (X,µ,H) a
hereditary generalized topological space and briefly we denote it by HGTS.
If (X,µ,H) is an HGTS, the set B = {V \H : V ∈ µ and H ∈ H} is a
base for a GT µ∗.

Definition 1.1. [11] Let (X,µ) be a GTS. Then a subset A of X is called
a µ-generalized closed set (in short, µg-closed set) if cµ(A) ⊆ U whenever
A ⊆ U and U is µ-open in X. The complement of a µg-closed set is called
a µg-open set.

Theorem 1.2. [3] If (X,µ) is a GTS and H is a hereditary class on X,
then for a subset A of X, A∗ ⊂ cµ(A).

Theorem 1.3. [3] Let (X,µ) be a GTS, H a hereditary class on X and A
be a subset of X. If A is µ∗-open, then for each x ∈ A there exist U ∈ µx
and H ∈ H such that x ∈ U \H ⊂ A.

Definition 1.4. [1] Let (X,µ) and (Y, ν) be two GTS’s, then a function f :
(X,µ)→ (Y, ν) is said to be (µ, ν)-continuous if U ∈ ν implies f−1(U) ∈ µ.

Definition 1.5. Let (X,µ) and (Y, ν) be two GTS’s. A function f :
(X,µ)→ (Y, ν) is said to be:

(1) (µ, ν)-open (or µ-open) [13] if U ∈ µ implies f(U) ∈ ν;
(2) (µ, ν)-closed (or µ-closed) [11] if f(F ) is ν-closed in Y for each

µ-closed set F of X.

2. SµH-Lindelöfness and S− SµH-Lindelöfness

In this section we define strong forms of µH-Lindelöfness, called SµH-
Lindelöf and S-SµH-Lindelöf as follows.

Definition 2.1. A subset A of GTS (X,µ) is said to be:

(1) SµH-Lindelöf if for every family {Vα : α ∈ Λ} of µ-open sets such
that
A \

⋃
α∈Λ

Vα ∈ H, there exists a countable subset Λ0 of Λ such that

A \
⋃

α∈Λ0

Vα ∈ H. If A = X, then (X,µ) is called an SµH-Lindelöf

space;
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(2) S-SµH-Lindelöf if for every family {Vα : α ∈ Λ} of µ-open sets
such that A \

⋃
α∈Λ

Vα ∈ H, there exists a countable subset Λ0 of Λ

such that
A ⊆

⋃
α∈Λ0

Vα. If A = X, then (X,µ) is called an S-SµH-Lindelöf

space.

Now we can recall the classical definition of the Lindelöf property as
follows. A topological space (X, τ) is called Lindelöf if every open cover of
X has a countable subcover [7].

Remark 2.2. The following properties are obvious from Definition 2.1:

(1) (X,µ) is µ-Lindelöf if and only if (X,µ, {φ}) is Sµ{φ}-Lindelöf.
(2) (X,µ) is µ-Lindelöf if and only if (X,µ, {φ}) is S−Sµ{φ}-Lindelöf.
(3) The following diagram holds:

S− SµH− Lindelofness ⇒ SµH− Lindelofness
⇓ ⇓

µ− Lindelofness⇒ µH− Lindelofness

(4) Let µ = τ be a topology. Then Lindelöfness on (X, τ) coincides
with Sτ{∅}-Lindelöfness and S−Sτ{∅}-Lindelofness on (X, τ, {∅}),
where {∅} is a hereditary class.

Next we will show that the implications above cannot be reversed.

Example 2.3. Let X = [0,+∞), µ = {X, (a,+∞) : a ≥ 0} ∪ {φ}, and
H = Hf , then:

(1) (X,µ,H) is µ-Lindelöf. To prove this, let {Vα : α ∈ Λ} be any an
µ-cover of X, there exists α0 ∈ Λ with Vα0

= X, and so X \ Vα0
=

φ ∈ Hf .
(2) (X,µ,H) is not SµH-Lindelöf, because X \ ∪{(a, +∞) : a > 0} =
{0} ∈ Hf , but if we let the increasing sequence {ai : a1 > 0, i ∈
Z+ − {0}} then X \ ∪{(ai, +∞) : i ∈ Z+ − {0}} = X \ (a1,+∞) /∈
Hf .

Example 2.4. Let X = R2, µ is the Sorgenfrey topology µ = {U ⊆ R2 :
for all (x, y) ∈ U, there exists b > x and c > y such that [x, b) ×
[y, c) ⊆ U}, and H = P (A). Now it is clear that (X,µ) is not µ-Lindelöf
but it is evidently SµH-Lindelöf.

Remark 2.5. SµH-Lindelöfness and µ-Lindelöfness are independent of
each other as Examples 2.3 and 2.4 show.

Theorem 2.6. An HGTS (X,µ,H) is SµH-Lindelöf if and only if for any
family {Fα : α ∈ Λ} of µ-closed subsets of X such that ∩{Fα : α ∈ Λ} ∈ H,
there exists a countable subset Λ0 of Λ such that ∩{Fα : α ∈ Λ0} ∈ H.
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Proof. Suppose that (X,µ,H) is SµH-Lindelöf. Let {Fα : α ∈ Λ} be a
family of µ-closed subsets of X such that ∩{Fα : α ∈ Λ} ∈ H. Then
{X \ Fα : α ∈ Λ} is a family of µ-open subsets of X. Let H = ∩{Fα : α ∈
Λ} ∈ H. Indeed,

X \H = X \ ∩{Fα : α ∈ Λ} = ∪{X \ Fα : α ∈ Λ}.

Since (X,µ,H) is SµH-Lindelöf, there exists a countable subset Λ0 of Λ
such that X \∪{X \Fα : α ∈ Λ0} ∈ H. This implies that ∩{Fα : α ∈ Λ0} ∈
H.

Conversely, let {Vα : α ∈ Λ} be any family of µ-open subsets of X such
that X \ ∪α∈ΛVα ∈ H. Then {X \ Vα : α ∈ Λ} is a family of µ-closed
subsets of X. By assumption we have ∩{X \ Vα : α ∈ Λ} ∈ H and there
exists a countable subset Λ0 of Λ such that ∩{X \ Vα : α ∈ Λ0} ∈ H.
This implies that X \ ∪{Vα : α ∈ Λ0} ∈ H. This shows that (X,µ,H) is
SµH-Lindelöf. �

Theorem 2.7. An HGTS (X,µ,H) is S-SµH-Lindelöf if and only if for
any family {Fα : α ∈ Λ} of µ-closed subsets of X such that ∩{Fα : α ∈ Λ} ∈
H, there exists a countable subset Λ0 of Λ such that ∩{Fα : α ∈ Λ0} = φ.

Proof. The proof is similar to that of Theorem 2.6 and is thus omitted. �

It is clear from the diagram that if X is S − SµH-Lindelöf, then it is
SµH-Lindelöf, but the converse is not true as Example 2.4 shows.

A σ-ideal on a GTS (X,µ) is an ideal H which satisfies the following.
If {Ai : i = 1, 2, 3, . . .} ⊆ H, then ∪{Ai : i = 1, 2, 3, . . .} ∈ H (countable
additivity).

Proposition 2.8. If (X,µ,H) is an HGTS and H is a σ-ideal, then the
following are equivalent:

(1) (X,µ,H) is SµH-Lindelöf;
(2) (X,µ∗,H) is SµH-Lindelöf.

Proof. (1) ⇒ (2): Let {Vα : α ∈ Λ} be a family of µ∗-open subsets of
X such that X \ ∪ {Vα : α ∈ Λ} ∈ H. For any x ∈ ∪α∈ΛVα, there exists
α(x) ∈ Λ with x ∈ Vα(x). Then by Theorem 1.3, there exists Uα(x) ∈ µx
and Hα(x) ∈ H such that x ∈ Uα(x) \ Hα(x) ⊂ Vα(x). And hence, x ∈
Uα(x) ⊂ ∪Uα(x). Therefore, ∪Vα ⊂ ∪Uα(x) and X \∪Uα(x) ⊂ X \∪Vα ∈ H.
Now {Uα(x) : α(x) ∈ Λ} is a family of µ-open subsets of X and hence there
exists a countable subset Λ0 of Λ such that X \

⋃
α(x)∈Λ0

Uα(x) ∈ H. It follows
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that

X \
⋃

α(x)∈Λ0

Uα(x) ⊃ X \
⋃

α(x)∈Λ0

{(
Uα(x) \Hα(x)

)
∪Hα(x)

}
= X \ [

⋃
α(x)∈Λ0

(
Uα(x) \Hα(x)

)
∪ (

⋃
α(x)∈Λ0

Hα(x))]

⊃ X \ [
⋃

α(x)∈Λ0

V
α(x)
∪ (

⋃
α(x)∈Λ0

Hα(x))].

Now set H = X \ [
⋃

α(x)∈Λ0

V
α(x)
∪ (

⋃
α(x)∈Λ0

Hα(x))]. Since H is a σ-ideal,⋃
α(x)∈Λ0

Hα(x) ∈ H and also H ∪ (
⋃

α(x)∈Λ

Hα(x)) ∈ H. Observe that X \

∪ {Vαx : α(x) ∈ Λ0} ⊆ H ∪ (
⋃

α(x)∈Λ

Hα(x)). In consequence

X \ ∪
{
Vα(x) : α(x) ∈ Λ0

}
∈ H.

Thus, (X,µ∗,H) is SµH-Lindelöf.
(2)⇒ (1): Since µ ⊆ µ∗ we have that (2)⇒ (1). �

It is clear that if (X,µ,H) is an HGTS and (X,µ∗,H) is S-SµH-Lindelöf,
then (X,µ,H) is S-SµH-Lindelöf.

Next we study the behavior of some types of subsets of SµH-Lindelöf
and S− SµH-Lindelöf spaces.

Definition 2.9. [9] A subset A of a HGTS (X,µ,H) is said to be µHg-
closed if for every U ∈ µ with A \ U ∈ H, cµ(A) ⊆ U .

Theorem 2.10. For a HGTS (X,µ,H), the following hold.

(1) If (X,µ,H) is SµH-Lindelöf and A ⊆ X is µHg-closed, then A is
SµH-Lindelöf.

(2) If (X,µ,H) is S − SµH-Lindelöf and A ⊆ X is µHg-closed, then
A is S− SµH-Lindelöf.

Proof. (1) Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that A\⋃
α∈Λ

Vα ∈ H. Since A is is µHg-closed, cµ(A) ⊆
⋃
α∈Λ

Vα. Then (X \ cµ(A)) ∪⋃
α∈Λ

Vα is a µ-covering of X and so X \
[
X \ cµ(A) ∪ (

⋃
α∈Λ

Vα)

]
= φ ∈ H.

Given that X is SµH-Lindelöf, there exists a countable subset Λ0 of Λ such
that

X \

[
X \ cµ(A) ∪ (

⋃
α∈Λ0

Vα)

]
∈ H. But X \

[
X \ cµ(A) ∪ (

⋃
α∈Λ0

Vα)

]
=

cµ(A)∩ (X \
⋃

α∈Λ0

Vα) ⊃ A \
⋃

α∈Λ0

Vα. Therefore, A \
⋃

α∈Λ0

Vα ∈ H. Thus, A
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is SµH-Lindelöf.

(2) Let A be any µHg-closed of (X,µ,H) and {Vα : α ∈ Λ} be a family
of µ-open subsets of X such that A \

⋃
α∈Λ

Vα ∈ H. Since A is µHg-closed,

cµ(A) ⊆
⋃
α∈Λ

Vα. Then (X\cµ(A))∪(
⋃
α∈Λ

Vα) is a µ-covering ofX and hence,

X \
[
(X \ cµ(A)) ∪ (

⋃
α∈Λ

Vα)

]
= φ ∈ H. Given that X is S−SµH-Lindelöf,

there exists a countable subset Λ0 of Λ such that X = (X \ cµ(A)) ∪
(
⋃

α∈Λ0

Vα ). Then A = A ∩ [(X \ cµ(A)) ∪
⋃

α∈Λ0

Vα] = A ∩ (
⋃

α∈Λ0

Vα) ⊆⋃
α∈Λ0

Vα. Thus, A is S-SµH-Lindelöf. �

Theorem 2.11. For an HGTS (X,µ,H), the following hold.

(1) If A and B are SµH-Lindelöf subsets of (X,µ,H) and H is an
ideal, then A ∪B is SµH-Lindelöf.

(2) If A and B are S−SµH-Lindelöf subsets of (X,µ,H), then A∪B
is S− SµH-Lindelöf.

Proof. Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that
(A∪B) \

⋃
α∈Λ

Vα ∈ H. Since A \
⋃
α∈Λ

Vα ⊆ A∪B \
⋃
α∈Λ

Vα and B \
⋃
α∈Λ

Vα ⊆

A ∪ B \
⋃
α∈Λ

Vα, then A \
⋃
α∈Λ

Vα ∈ H and B \
⋃
α∈Λ

Vα ∈ H. Since A and

B are SµH-Lindelöf, there exist countable subsets Λ0 and Λ1 of Λ with
A\

⋃
α∈Λ0

Vα ∈ H and B\
⋃

α∈Λ1

Vα ∈ H. This implies that A\
⋃

α∈Λ0∪Λ1

Vα ∈ H

and B \
⋃

α∈Λ0∪Λ1

Vα ∈ H and since H is an ideal we have that (A ∪ B) \⋃
α∈Λ0∪Λ1

Vα = (A \
⋃

α∈Λ0∪Λ1

Vα) ∪ (B \
⋃

α∈Λ0∪Λ1

Vα) ∈ H. Hence, A ∪ B is

SµH-Lindelöf.
(2) Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that (A ∪
B) \

⋃
α∈Λ

Vα ∈ H. Since A \
⋃
α∈Λ

Vα ⊆ (A ∪ B) \
⋃
α∈Λ

Vα and B \
⋃
α∈Λ

Vα ⊆

(A ∪ B) \
⋃
α∈Λ

Vα, then A \
⋃
α∈Λ

Vα ∈ H and B \
⋃
α∈Λ

Vα ∈ H and hence

there exist countable subsets Λ0 and Λ1 of Λ such that A ⊆
⋃

α∈Λ0

Vα and

B ⊆
⋃

α∈Λ1

Vα. This implies that A ⊆
⋃

α∈Λ0∪Λ1

Vα and B ⊆
⋃

α∈Λ0∪Λ1

Vα and

hence, A ∪B ⊆
⋃

α∈Λ0∪Λ1

Vα. Hence, A ∪B is S− SµH-Lindelöf. �

The following example shows that the first part of the previous theorem
does not hold when H is just a hereditary class, not an ideal.
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Example 2.12. Let R be the set of real numbers, µ the usual topology,
H = {A ⊂ R : A ⊂ (0, 1) or A ⊂ (1, 2)} and if A = (0, 1) and B = (1, 2),
then:
(1) It is clear that A = (0, 1) and B = (1, 2) are SµH-Lindelöf subsets.
(2) A ∪ B is not SµH-Lindelöf if {(a,+∞) : a ≥ 1} is a family of µ-
open subsets of X, (A ∪ B) \

⋃
a>1

(a,+∞) = (A ∪ B) \ (1,+∞) ∈ H, but

if k is a positive integer and 1 < a1 < a2 · · · < ak < · · · , then (A ∪ B) \
∞⋃
i=1

(ai,+∞) = (A ∪B) \ (a1,+∞) = (0, 1) ∪ (1, a1) /∈ H.

Theorem 2.13. Let (X,µ,H) be an HGTS and A be a subset such that
A \ U ∈ H for every U ∈ µ. Then the following hold.

(1) If there exists B ⊆ X such that B is SµH-Lindelöf, A ⊆ B and
B \ U ∈ H, then A is SµH-Lindelöf.

(2) If there exists B ⊆ X such that B is S-SµH-Lindelöf, A ⊆ B and
B \ U ∈ H, then A is S-SµH-Lindelöf.

Proof. (1) Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such
that A \

⋃
α∈Λ

Vα ∈ H. There exists B ⊆ X such that B is SµH-Lindelöf,

A ⊆ B and B \
⋃
α∈Λ

Vα ∈ H. There exists a countable subset Λ0 of Λ such

that B \
⋃

α∈Λ0

Vα ∈ H. Since A \
⋃

α∈Λ0

Vα ⊆ B \
⋃

α∈Λ0

Vα, we have that

A \
⋃

α∈Λ0

Vα ∈ H.

(2) Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that
A \

⋃
α∈Λ

Vα ∈ H. There exists B ⊆ X such that B is S-SµH-Lindelöf,

A ⊆ B and B \
⋃
α∈Λ

Vα ∈ H. There exists a countable subset Λ0 of Λ with

B ⊆
⋃

α∈Λ0

Vα and so A ⊆
⋃

α∈Λ0

Vα.

�

Theorem 2.14. Let (X,µ,H) be an HGTS and A ⊆ B ⊆ cµ(A). Then
the following hold.

(1) Let A be µHg-closed, then A is SµH-Lindelöf if and only if B is
SµH-Lindelöf.

(2) If A is µg-closed and S−SµH-Lindelöf, then B is S−SµH-Lindelöf.
(3) If A is µHg-closed and B is S−SµH-Lindelöf, then A is S−SµH-

Lindelöf.

Proof. (1) Suppose that A is SµH-Lindelöf and {Vα : α ∈ Λ} is a family of
µ-open subsets of X such that B \

⋃
α∈Λ

Vα ∈ H. By the heredity property,
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A \
⋃
α∈Λ

Vα ∈ H and A is SµH-Lindelöf and hence there exists a countable

subset Λ0 of Λ such that A \
⋃

α∈Λ0

Vα ∈ H. Since A is µHg-closed, cµ(A) ⊆⋃
α∈Λ0

Vα and so cµ(A) \
⋃

α∈Λ0

Vα ∈ H. This implies that B \
⋃

α∈Λ0

Vα ∈ H.

Conversely, suppose that B is SµH-Lindelöf and {Vα : α ∈ Λ} is a family
of µ-open subsets of X such A \

⋃
α∈Λ

Vα ∈ H. Given that A is µHg-closed,

cµ(A) \
⋃
α∈Λ

Vα = φ ∈ H and this implies B \
⋃
α∈Λ

Vα ∈ H. Since B is SµH-

Lindelöf, there exists a countable subset Λ0 of Λ such that B \
⋃

α∈Λ0

Vα ∈ H.

Hence, A \
⋃

α∈Λ0

Vα ∈ H.

(2) Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that B \⋃
α∈Λ

Vα ∈ H. Since A \
⋃
α∈Λ

Vα ∈ H and A is S−SµH-Lindelöf, there exists

a countable subset Λ0 of Λ such that A ⊆
⋃

α∈Λ0

Vα. Since A is µg-closed,

cµ(A) ⊆
⋃

α∈Λ0

Vα and this implies B ⊆
⋃

α∈Λ0

Vα.

(3) Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that A \⋃
α∈Λ

Vα ∈ H. Given that A is µHg-closed, cµ(A) \
⋃
α∈Λ

Vα = φ ∈ H and

this implies B \
⋃
α∈Λ

Vα ∈ H. Since B is S − SµH-Lindelöf, there exists a

countable subset Λ0 ⊆ Λ with B ⊆
⋃

α∈Λ0

Vα. Hence, A ⊆
⋃

α∈Λ0

Vα. �

3. Preservation by Functions

In this section, we study the behavior of SµH-Lindelöfness and S-SµH-
Lindelöfness under certain types of functions. First note that if f : (X,µ)→
(Y, ν) and H is an HC on X, then G = {B ⊆ Y : f−1(B) ∈ H} is an HC
on Y [9].

Theorem 3.1. For a (µ, ν)-continuous function f : (X,µ) → (Y, ν), the
following properties hold.

(1) If (X,µ,H) is SµH-Lindelöf, then (Y, ν,G) is SνG-Lindelöf.
(2) If (X,µ,H) is S − SµH-Lindelöf and f is a surjective function,

then (Y, ν,G) is S− SνG-Lindelöf.

Proof. (1) Let {Vα : α ∈ Λ} be a family of ν-open subsets of Y such that

Y \
⋃
α∈Λ

Vα ∈ G. Since X \
⋃
α∈Λ

f−1 (Vα) = f−1

(
Y \

⋃
α∈Λ

Vα

)
∈ H and

(X,µ,H) is SµH-Lindelöf, there exists a countable subset Λ0 of Λ with
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f−1

(
Y \

⋃
α∈Λ0

Vα

)
= X \

⋃
α∈Λ0

f−1 (Vα) ∈ H. Thus, Y \
⋃

α∈Λ0

Vα ∈ G.

(2) Let {Vα : α ∈ Λ} be a family of ν-open subsets of Y such that

Y \
⋃
α∈Λ

Vα ∈ G. Since X \
⋃
α∈Λ

f−1 (Vα) = f−1

(
Y \

⋃
α∈Λ

Vα

)
∈ H and

(X,µ,H) is S − SµH-Lindelöf, there exists a countable subset Λ0 of Λ
such that X =

⋃
α∈Λ0

f−1(Vα). Given that f is surjective we have Y =⋃
α∈Λ0

Vα. �

Lemma 3.2. [4] Let f : (X,µ)→ (Y, ν) be a function. If H is a hereditary
class on X, then f(H) = {f(H) : H ∈ H} is a hereditary class on Y .

Theorem 3.3. For a bijective (µ, ν)-continuous function f : (X,µ) →
(Y, ν), the following properties hold:

(1) If (X,µ,H) is SµH-Lindelöf, then (Y, ν, f(H)) is Sνf(H)-Lindelöf;
(2) If (X,µ,H) is S−SµH-Lindelöf, then (Y, ν, f(H)) is S−Sνf(H)-

Lindelöf.

Proof. (1) Let {Vα : α ∈ Λ} be a family of ν-open subsets of Y such that
Y \

⋃
α∈Λ

Vα ∈ f(H). There exists H ∈ H with Y \
⋃
α∈Λ

Vα = f(H). Then H =

f−1(f(H)) = X \
⋃
α∈Λ

f−1 (Vα) ∈ H. Given that (X,µ,H) is SµH-Lindelöf,

there exists a countable subset Λ0 of Λ such that f−1

(
Y \

⋃
α∈Λ0

Vα

)
=

X \
⋃

α∈Λ0

f−1(Vα) ∈ H. Thus, Y \
⋃

α∈Λ0

Vα = f(f−1(Y \
⋃

α∈Λ0

Vα)) ∈ f(H).

(2) Let {Vα : α ∈ Λ} be a family of ν-open subsets of Y such that
Y \

⋃
α∈Λ

Vα ∈ f(H). There exists H ∈ H such that Y \
⋃
α∈Λ

Vα = f(H).

Then H = f−1(f(H)) = X \
⋃
α∈Λ

f−1 (Vα) ∈ H. Given that (X,µ,H)

is S − SµH-Lindelöf, there exists a countable subset Λ0 of Λ such that
X =

⋃
α∈Λ0

f−1(Vα). Since f is surjective, Y =
⋃

α∈Λ0

Vα. �

It is clear that if f : (X,µ)→ (Y, ν) and G is an HC on Y , then f−1(G) =
{f−1(G) : G ∈ G} is an HC on X.

Corollary 3.4. Let f : (X,µ)→ (Y, ν) be a bijective µ-open function. The
following properties hold.

(1) If (Y, ν,G) is SνG-Lindelöf, then (X,µ, f−1(G)) is Sµf−1(G)-Lindelöf.
(2) If (Y, ν,G) is S−SνG-Lindelöf, then (X,µ, f−1(G)) is S−Sµf−1(G)-

Lindelöf.
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Proof. (1) Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that
X \

⋃
α∈Λ

Vα ∈ f−1(G). There exists G ∈ G with X \
⋃
α∈Λ

Vα = f−1 (G).

Then Y \
⋃
α∈Λ

f (Vα) = f(f−1(G)) = G ∈ G and given that (Y, ν,G) is SνG-

Lindelöf, then there exists a countable subset Λ0 of Λ with f(X\
⋃

α∈Λ0

Vα) =

Y \
⋃

α∈Λ0

f (Vα) ∈ G. This implies that X \
⋃

α∈Λ0

Vα ∈ f−1 (G).

(2) Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that
X \

⋃
α∈Λ

Vα ∈ f−1(G). There exists G ∈ G with X \
⋃
α∈Λ

Vα = f−1 (G). Then

Y \
⋃
α∈Λ

f (Vα) = f(f−1(G)) = G ∈ G and since (Y, ν,G) is S−SνG- Lindelöf,

then there exists a countable subset Λ0 of Λ such that Y =
⋃

α∈Λ0

f (Vα).

This implies that X =
⋃

α∈Λ0

Vα. �

Theorem 3.5. Let f : (X,µ)→ (Y, ν,G) be a µ-closed surjection.

(1) If for each y ∈ Y , f−1(y) is Sµf−1(G)-Lindelöf in X, then f−1(A)
is Sµf−1(G)-Lindelöf in X whenever A is SνG-Lindelöf in Y .

(2) If for each y ∈ Y , f−1(y) is S-Sµf−1(G)-Lindelöf in X, then
f−1(A) is S-Sµf−1(G)-Lindelöf in X whenever A is S- SνG-Lindelöf
in Y .

Proof. (1) Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such
that f−1(A) \ ∪ {Vα : α ∈ Λ} ∈ f−1(G). For each y ∈ A there exists a
countable subset Λy of Λ such that f−1(y) \ ∪ {Vα : α ∈ Λy} ∈ f−1(G).
Let Vy = ∪{Vα : α ∈ Λy}. Each Vy is a µ-open set in (X,µ) and
f−1(y) \ Vy ∈ f−1(G). Now each set f(X − Vy) is ν-closed in Y and hence,
U(y) = Y − f(X − Vy) is a ν-open in (Y, ν) . Note that f−1(U(y)) ⊆ Vy.
Thus, {U(y) : y ∈ A} is a family of ν-open subsets of Y such that A \
∪y∈AU(y) ∈ H. Since A is SνG-Lindelöf in Y , there exists a countable sub-
collection {U(yi) : i ∈ N} such that A\∪ {U(yi) : i ∈ N} ∈ G and hence,
f−1 (A \ ∪ {U(yi) : i ∈ N}) = f−1(A) \ ∪

{
f−1 (U(yi)) : i ∈ N

}
∈ f−1(G).

Since f−1(A) \ ∪ {Vyi : i ∈ N} ⊆ f−1(A) \ ∪
{
f−1(U(yi)) : i ∈ N

}
, then

f−1(A) \ ∪ {Vyi : i ∈ N} = f−1(A) \ ∪{Vα : α ∈ Λyi , i ∈ N} ∈ f−1(G).
Hence, f−1(A) is Sµf−1(G)-Lindelöf in X.

(2) Let {Vα : α ∈ Λ} be a family of µ-open subsets of X such that
f−1(A) \ ∪ {Vα : α ∈ Λ} ∈ f−1(G). Then it follows by assumption that for
each y ∈ A there exists a countable subset Λy of Λ such that f−1(y) ⊆
∪{Vα : α ∈ Λy}. Let Vy = ∪{Vα : α ∈ Λy}. Each Vy is a µ-open set in
(X,µ) and f−1(y) ⊆ Vy. Now each set f(X − Vy) is ν-closed in Y and
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y /∈ f(X − Vy) and hence, U(y) = Y − f(X − Vy) is a ν-open set con-
taining y. Note that f−1(U(y)) ⊆ Vy. The collection {U(y) : y ∈ A} is a
family of ν-open sets of Y which covers A. Since A is S-SνG-Lindelöf
in Y , there exists a countable subcollection {U(yi) : i ∈ N} such that
A ⊆ ∪{U(yi) : i ∈ N} and hence, f−1(A) ⊆ ∪

{
f−1(U(yi)) : i ∈ N

}
⊆

∪{Vyi : i ∈ N}, then

f−1(A) ⊆ ∪{Vyi : i ∈ N} = ∪{Vα : α ∈ Λyi , i ∈ N}.

Hence, f−1(A) is S-Sµf−1(G)-Lindelöf in X. �

Corollary 3.6. Let f : (X,µ)→ (Y, ν,G) be a µ-closed function.

(1) If f−1(y) is Sµf−1(G)-Lindelöf in X for each y ∈ Y and (Y, ν) is
SνG-Lindelöf, then (X,µ) is Sµf−1(G)-Lindelöf.

(2) If f−1(y) is S-Sµf−1(G)-Lindelöf in X for each y ∈ Y and (Y, ν)
is S-SνG-Lindelöf, then (X,µ) is S-Sµf−1(G)-Lindelöf.

A subset A of X is said to be µ-compact if for every µ-covering {Uα :
α ∈ Λ} of A there exists a finite subcollection {Uα : α ∈ Λ0} that also
covers A [5].

Theorem 3.7. Let f : (X,µ) → (Y, ν,G) be a µ-closed surjection. If for
each y ∈ Y , f−1(y) is µ-compact in X, then f−1(A) is µf−1(G)-Lindelöf
in X whenever A is νG-Lindelöf in Y .

Proof. Let {Vα : α ∈ Λ} be a cover of f−1(A) by µ-open sets of X. For
each y ∈ A there exists a finite subset Λy of Λ such that f−1(y) ⊆ ∪{Vα :
α ∈ Λy}. Let V (y) = ∪{Vα : α ∈ Λy}. Each V (y) is a µ-open set in
(X,µ) and f−1(y) ⊆ V (y). Now each set f(X − V (y)) is ν-closed in Y
and y /∈ f(X − V (y)) hence, U(y) = Y − f(X − V (y)) is a ν-open set
containing y. Note that f−1(U(y)) ⊆ V (y). The collection {U(y) : y ∈
A} is a cover of A by ν-open sets of Y . Hence, there exists a countable
subcollection {U(yi) : i ∈ N} such that A \ ∪ {U(yi) : i ∈ N} ∈ G. Then
f−1 (A \ ∪ {U(yi) : i ∈ N}) = f−1(A) \ ∪

{
f−1 (U(yi)) : i ∈ N

}
∈ f−1(G).

Since f−1(A) \ ∪ {V (yi) : i ∈ N} ⊆ f−1(A) \ ∪
{
f−1(U(yi)) : i ∈ N

}
, then

f−1(A) \∪ {V (yi) : i ∈ N} ∈ f−1(G). Thus, f−1(A) is µf−1(G)-Lindelöf in
X. �

Corollary 3.8. Let f : (X,µ)→ (Y, ν,G) be a µ-closed function such that
f−1(y) is µ-compact in X for each y ∈ Y . If (Y, ν) is νG-Lindelöf, then
(X,µ) is µf−1(G)-Lindelöf.

Remark 3.9. The above theorem and corollary remain valid if we assume
that for each y ∈ Y, f−1(y) is µ-Lindelöf in X.
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Acknowledgement

The publication of this paper was supported by Yarmouk University
Research Council.

References
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