ON THE MODIFIED FERMAT PROBLEM
ZVONKO CERIN

AsstracT. For a given positive real number v smaller than /2, we
consider the Fermat-like configuration consisting of a circle k and
a rectangle ABB’A’. A point P is on k if and only if the relation
|AD|? 4+ |BC|? = v? |AB|? holds, where C' and D are the intersec-
tions of the line AB with the lines A’ P and B’P, respectively. There
are four such rectangles with the side AA’ parallel to any given line
of symmetry of the circle. This property is shared by all ellipses.
When v = /2, analogous statements hold for parabolas. Finally, for
v > /2, this is true for hyperbolas only for its line of symmetry con-
taining the foci. We also show that many geometric properties of this
configuration do not depend on a position of a point on the circle.
The original Fermat problem corresponds to the case v = 1.

1. INTRODUCTION — THE FERMAT PROBLEM

For given different points A and B and any points Py, P>, P3, P, in the

PPy |2+|PsPy|?
plane, let (P Py, P3P;) = %
Among the numerous questions that Pierre de Fermat formulated, the

following geometric problem is our main concern (see Figure 1).

Fermat Problem . Let P be a point on the semicircle that has the top
side AB of the rectangle ABB’A’ as a diameter. Let % =+/2. Let
the segments PA’ and PB’ intersect the side AB in the points C' and D,
respectively. Then p(AD, BC) = 1.

The great Leonard Euler in [3] provided the first rather long proof, which
is old fashioned (for his time), and avoids the analytic geometry (which
offers rather simple proofs as we shall see later). Several more concise
synthetic proofs are now known (see [6], [4, pp. 602, 603], [1, pp. 168, 169]
and [5, pp. 181, 264]). A nice description of Euler’s proof can be found in
[7].

The analytic proofs also reveal that the above relation holds for all points
on the circle with the segment AB as a diameter.
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F1GURE 1. The configuration of the Fermat problem.

2. THE MODIFIED FERMAT PROBLEM

For a circle, we consider a slightly more general situation when the num-
ber 1in ¢(AD, BC) = 1 is replaced by v?, where v is a real number satis-
fying 0 < v < /2 (see Figure 2).

A B'

FIGURE 2. The modified Fermat configuration for a circle.
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ON THE MODIFIED FERMAT PROBLEM

The following result gives this modified form of the Fermat problem.

Theorem 1. For every positive real number v smaller than \/2, every circle
k and every line w in the plane there are exactly four rectangles ABB'A’
such that the lines AA" and 7 are parallel and the following two statements
are equivalent for a point P in the plane:

(a) A point P is on the circle k.
(b) ¢(AD, BC) = v?%, where C and D are intersections of the line AB
with the lines A'P and B’ P, respectively.

Proof. We shall use analytic geometry which offers a simple proof. With-
out loss of generality, we can assume that the line 7 is the y-axis of the
rectangular coordinate system, the center of the circle O is its origin and
the equation of the circle is a standard 22 4+ y? = 72, where r is a positive
real number (the radius of the circle).

The coordinates of the points A, B, A" and B’ are (a,b), (a + cd,b),
(a,b+c) and (a+ cd,b+ c), respectively, where a, b, ¢ and d are real
numbers such that ¢ # 0 and d # 0. An arbitrary point P on the plane
has coordinates (p,q). From the similar right-angled triangles, we easily

find that C (%@;b), b) and D (%Cdjq(q_b), b). For an integer n, let

6n =n —v? Note that ¢(AD, BC) —v? is

M, .
Fre=gz Where M, is the

quadratic polynomial
d? [c61(2b+ ¢ — 2q) + 62(q — b)*] +2(a — p)(a+ cd — p)

in the variables p and gq.

Now in order that P is on the circle k, the polynomial M,, should be of the
form A(p? + ¢® — r?) for some real number \ # 0. This gives the system of
six equations in five variables a, b, ¢, d and \. Let L = rv/2 and K = \/20,.
One solution is a = —%, b= ‘slTL, c= —LT‘sz, and d = —%. Hence, the
associated first rectangle ABB’A’ has as vertices the pairs %(—%,51),
% (%,51), % (%,—1), % (—%, —1), where we use p(a,b) as a shorter no-
tation for the pair (pa,pd). The second rectangle is the reflection of the
first in the x-axis. We get two additional rectangles by reflecting these
rectangles in the y-axis (see Figure 3). The above system of equations has
no other solutions.

Finally, if P(p, ) is any point in the plane, then p(AD, BC) — v? = ”i;#,
where 9 =vq+ L and s = p? + ¢2 — 2. Hence, for the first rectangle
ABB’'A’, the identity ¢(AD, BC) = v? holds if and only if the coordinates
of the point P satisfy x = 0, i.e., if and only if the point P is on the circle

k. The same conclusion is true for the remaining three rectangles. O

In the sequel, we shall call any of the above four rectangles ABB’A’,
the FV-rectangle of the circle k (in the direction 7). We shall use the same
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C.

A B'

FIGURE 3. The four FS5-rectangles ABB'A’, BAA'B',
A.B.B. A, and B,A, Al B in the vertical direction.

name also for other conics. Note that the points C' and D (for the first
rectangle) are ﬁ (2vd2p F Kvg + K Ld1,2619). Throughout the paper, the
upper sign goes with the first stated point and the lower sign goes with the
second stated point, respectively.

3. THE CASE OF AN ELLIPSE

The following theorem is a version of Theorem 1 for ellipses. Since circles
are special ellipses (with eccentricity zero) and their lines of symmetry are
all lines through their centers, it follows that Theorem 2 is a generalization
of Theorem 1. On the other hand, the ellipse case could also be derived
from the circle case by applying an affine stretch.

Theorem 2. For every positive real number v < \/2, every ellipse vy and
each line of symmetry m of v there are exactly four rectangles ABB’A’ such
that the lines AA’ and 7 are parallel and the following two statements are
equivalent for a point P in the plane:

(a) A point P is on the ellipse ~.
(b) ¢(AD, BC) = v?%, where C and D are intersections of the line AB
with the lines A'P and B'P, respectively.

156 MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2



ON THE MODIFIED FERMAT PROBLEM

Proof. We shall use analytic geometry again and follow the above proof
for circles. We first assume that the line 7 is the y-axis of the rectangular
coordinate system, the center of the ellipse O is its origin and the equation
of the ellipse is a standard i—z + Z—j =1, where h and k are positive real
numbers (the semi-axes of the ellipse).

Once again, the coordinates of the points A, B, A" and B’ are (a,b),
(a+cd,b), (a,b+ c¢), and (a + ed, b+ c), respectively, where a, b, ¢, and d
are real numbers such that ¢ # 0 and d # 0. An arbitrary point P on the
plane has coordinates (p,q). The coordinates of the intersections C and
D, the difference ¢(AD, BC) — v* as well as the polynomial M, have been
computed above.

Now in order that P is on the ellipse <, the polynomial M, should

be of the form A (Z—z + Z—i — 1) for some real number A\ # 0. This gives

the system of six equations in five variables a, b, ¢, d, and A. One solu-

tion is a = —hT‘/E7 b= @, c= —@7 and d = —:T‘/% that gives the

first rectangle ABB’ A’ with vertices 1 (—hv/32,k61v2), 2 (h/S2,k 61V2),
1 (h/62,—kV2), L (=h\/82, —k v/2). The second rectangle is the reflection
of the first in the z-axis. We get two additional rectangles by reflecting these
rectangles in the y-axis (see Figure 4). There are no other solutions.

FIGURE 4. The eight F'5-rectangles of the ellipse 22 + 4y2 = 1.

By repeating this argument for the z-axis (the second line of symmetry
of ), we shall get analogously four more rectangles. O
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2v2h k §2/92
2

Note that these eight F¥-rectangles all have the same area -

and their vertices lie on two ellipses coaxal with v (see Figure 4).

4. THE CASE OF A PARABOLA

When v = v/2, the Fermat configuration is tied to a parabola. This is
explained in the following result.

Theorem 3. For every parabola 6 and every real number d # 0, there is
a rectangle AqBqaBL A, such that the side AqAl, is parallel to the line of
symmetry © of § and for a point P in the plane the following two statements
are equivalent:

(a) A point P is on the parabola §.
(b) w(AqDy, BaCyq) = 2, where Cy and Dy are intersections of the line
AyBqg with the lines AP and B)P, respectively.

Proof. We again assume that the line 7 is the y-axis of the rectangular
coordinate system, the equation of the parabola is a standard z2 = 2hy
and the coordinates of the vertices A, B, A’, and B’ of a rectangle ABB’'A’
with AA” and 7 parallel are (a,b), (a + ¢d,b), (a,b+ ¢) and (a + cd, b+ ¢),
respectively, where a, b, ¢, d, and h are real numbers such that ¢ # 0, d # 0,
and h > 0. An arbitrary point P on the plane has coordinates (p,q). The
coordinates of the intersections C' and D have been computed above. Then
2 — QD(AD, BC) = %, where
My =cd*(2b+c—2q)+2(p—a)(a+cd—p).

Now, in order that P is on the parabola ¢, the polynomial M, should
be of the form A (p2 -2 hq) for some real number A # 0. This gives the
system of five equations in five variables a, b, ¢, d, and A. The only solution

isa= %, b= %, c= —2d—§, and A = —2 that gives the required rectangles
; ; h 3\ h 3 h 1 h 1

AdBdBl/iAId with vertices q (1, ﬁ)/ q (—1, ﬁ)’ i (1, ﬁ)’ — 4 (—1, ﬁ)’

respectively (see Figure 5). O

It is obvious that for every d # 0 the rectangles A;ByB, A, and
A_4B_4B' ;A ,; are symmetric with respect to the line .

5. THE CASE OF A HYPERBOLA

Finally, when v > /2, the modified Fermat configuration is possible for
each hyperbola. This is described in the following theorem.

Theorem 4. For every hyperbola n and every real number v > /2, there
are ezactly four rectangles ABB'A’ such that the side AA’ is parallel to the
magjor line of symmetry ™ of ) (going through its foci) such that for a point
P in the plane the following two statements are equivalent:
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By Ay

FIGURE 5. The Fﬁ—rectangle AqBqB Al of a parabola.

(a) A point P is on the hyperbola 7.

(b) ¢(AD, BC) = v?%, where C and D are intersections of the line AB
with the lines A'P and B’ P, respectively.

Proof. We assume that the line 7 is the z-axis of the rectangular coordi-

nate system, the equation of the hyperbola is ﬁ_z — Z—z =1 and the coordi-
nates of the vertices A, B, A’, B’, and P are (a,b), (a,b+ cd), (a + ¢,b),
(a+ ¢, b+ cd), and (p,q), respectively, where h, k, a, b, ¢, d, p, and ¢ are
real numbers such that h > 0, £k > 0, ¢ # 0 and d # 0. The coordinates of
the intersections C' and D, the difference p(AD, BC) —v?, and the poly-
nomial M, have been computed above.

The point P is on the hyperbola 7 if and only if the polynomial M,
has the form A (Z—z - 1) for some real number A # 0. This gives

k2
the system of six equations in five variables a, b, ¢, d, and A. One of
its four solutions is a = —h‘;;ﬂ, b= kv;‘b, c= %ﬁ, and d = hf}%

that gives the first rectangle ABB’A’ with vertices % (—h51\/§, k\/——éz),
—1(h61v2,kV=083), L (hV2,k\/=053), and 2 (hv/2,—k+/=83). The sec-
ond rectangle is the reflection of the first in the y-axis. We get two ad-
ditional rectangles by reflecting these rectangles in the z-axis (see Figure
6). There are no other solutions. Also, when we assume that the line 7
is the y-axis, repeating the above procedure, we get a system that has no
solutions. g
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FIGURE 6. The four F3-rectangles of the hyperbola 22 — 4y? = 1.

6. INVARIANTS OF THE MODIFIED FERMAT CONFIGURATION

In the rest of this paper, our main goal is to explore what other relation-
ships in the modified Fermat configuration of a circle and its FV-rectangle
ABB’A’ remain invariant as the point P changes position on the circle.
In other words, we search for statements analogous to (b) that are also
equivalent to (a) (both in Theorem 1) and are related to the F-rectangle
of k. The case v = 1 was considered earlier in [2]. Similar results could be
also proved for other conics (ellipse, parabola, and hyperbola). These cases
have more complicated statements.

Let P’ be the reflection of the point P in the z-axis. We remark that
most of our results in this section come in related pairs. The second version,
which requires no extra proof, comes (for example, already in Theorem 1)
by replacing the points C and D with the points C’ and D’, which are the
intersections of the line AB with the lines P’A’ and P’B’, respectively.

We begin with the diagonals of the trapezium A’B’DC (see Figure 2).
It is somewhat unusual that the number v does not appear.

(c) p(A'D,B'C)=p(A'D',B'C") =2.

Proof of (c). With straightforward computations one can easily check that

@(A'D,B'C) -2 = 1o h2, 0

We note the following generalization. Let the points A,, By, Ci, D,
satisfy AA, = AAA’, BB, = A\ABB’, BC, = uBC, AD, = uAD for real
numbers A and p. Then o(A,D., B.C,) = 6202 + v?pu2.

For points X and Y, let X @Y be the center of the square built on the
segment XY such that the triangle X (X @ Y)Y has the positive orientation
(counterclockwise). When the point X &Y is shortened to M, then M*
denotes Y & X.
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The midpoints G, H, G, H' of the segments AC, BD, AC', BD’ and
the top N of the semicircle over AB are used in the next two statements.
In other words, N = B ® A. The midpoint M (O, &TL) of the segment AB
appears in the statement (e) (see Figure 7).

(d) ¢(NG,NH) = o(NG', NH') = 22,
() (MG, MH) = o(MG',MH') =

0.
Proof of (d) and (e). This time the differences (NG, NH) — % and

o(MG,MH) — % both simplify to the following quotient ”42‘15922", which has

the factor x again. g

A' B'

FIaurE 7. The quotients (NG, NH), o(AN2, BN;) and
©(N Ny, NNs) are equal to % + %27 1+ %, and %

Let Gs, Hs, G, H. be the points that divide the segments NG, NH,
NG', NH' in the same ratio s # —1 (i.e., NG5 : G;G = s: 1, etc.).
() @(MGy, MH,) = (MG, MH]) = 5543

(g) ¢(NG,, NH,) = o(NG', NH') = +2
g QO Sy S QO CRl S 4(S+1)2 .

Proof of (f). Since 2(SL+1) (5(26217:!:22.’;(1:!3KLU)’ K+2611)(s+1)) are the coordinates

of G and Hj, the difference o(M Gz, M Hy) — :(zsvjf)% is 4(852:2;‘)53’:92. O
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Let Ny, N2, N3, Ny denote the highest points on the semicircles built
on the segments AC, BD, AC', BD' above the line AB. In other words,
Ni=C@®A Ny=B@&D, N3=C"®A, Ny =B D' (see Figure 7).

(h) @(BNy, AN3) = ¢(BN3, ANy) =1+ %
. o
(i) (NNy, NN3) = o(NN3, NNy) = %
Proof of (h) and (i). Since Ny and N, have the coordinates £ (ng, %),
with ny = 252]9 + 2Kq F vK L and mx = 2U(51q + 62]9) + L(K62 + 451)= we

get o(BN1, AN,) — (1 T ”—;) = G(NNy, NNp) — & = oo 0

The following statements also use the points Ny, N2, N3 and N4. How-
ever, they do not use the function ¢.

5y [VaNa| [NsNa| _
() AN =V and AN = V-

(k) [N1N2| = [N3Ny].
(1) |N1N2|2 + |N2N3|2 + |N3N4|2 + |N4N1|2 = 29?2 |AB|2

. . 2 2 2 L%62 K
Proof of (j) and (1). We easily get [Ny Na|* — v?|AN|* = =#—.

Since N3 and Ny have the coordinates % (h;, k%) with n =vqg — L,
hy = —260p F2Kq+tvKL and kg =2v(2d1q F d2p)— L(K 2 + 461), the
sum |N1N2|2 + |N2N3|2 + |N3N4|2 + |N4N1|2 — 2’02 |14B|2 is equal to

8126212 q® +21%)k
2 92 ‘

O

Note that [Ny N;|? + |[N3N3|2 4+ |NiNy|? + |[NyN1 |2 = 202 |ABJ? if and
only if the point P is on the ellipse ’;—z + g—z =1, where a=7r,/3 — 722 and
b=ry/3 - 4L =

Letm:%,n:H'Tm,0:1+m,t:(5—|—1)2,andp:n+%.
Let Ns=A® D, Ng=C® B, N7:AEBD/, and Ny = C' @ B.

(m) ¢(AN5, BNg) = ¢(AN7, BNg) = m.

(n) ¢(GNg, HN5) = ¢(G'Ns, H'N7) = n.

(0) @(NN5, NNg) = o(NN7, NNg) = 0 and ¢(GsNg, H;N5) = p.

Proof of (m). Since N5 and Ng have the coordinates 2 (s+,t5), where
sz=02(2vp F KL) and t=20[(26; — K)q F d2p] + L(401 — K v?), we get

¢(ANs, BNg) — % = &vn. 0

The next six statements use the centers of squares on the segments C'D
and C'D’'. Let M\i =C @D and My =C"® D'.
(p) |[N M| =v|AN|and |N M| =v|AN]|.
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(@) [N M| =[N Ma|.
Proof of (p) and (g). Since My =52 (2v6sp, v(261 — K )q+ L6y (K +2)), the

2r25§n

difference |M;N|? — v? |AN|? is equal to =—2". In a similar way, we get
3 52
MNP — [My NP = L2 gzges, O

2

(r) @p(MiN1, M1N2) = @(M2N3, MaNy) = 5.
For any point X in the plane, let Gy, G2, G3, G4, G5, and Gg denote the
centroids of the triangles ACX, CDX, DBX, AC'X, C'D'X, and BD'X,

respectively.
(8) @(G2G1,GaGs) = p(G5Ga, GsGig) = &
(1) [G2G1[? +|GaGl? = |G5 Gal? + G5 G

Proof of (s). If X = (z,y), then the points G1, G2, and G3 have the same
ordinate ¥ + 2L while their abscissae are & — L2Ka=20p+v K L) o 4 21 0p

3T T3y 3 6V '3 o
and £ + L(2Kq+2é5f9p+” KL) respectively. Now we can easily get that the dif-
ference p(G2G1, G2G3) — % is Uggéﬁ' -

We use U and V to denote the midpoints of the segments CC’ and DD’
respectively (see Figure 8).
(u) (NU,NV) =1.
(v) (MU,MV) = 1.
(W) @(NeU, N5V) = 2.
Proof of (u) and (v). Since £ (—%’:}im FK, 2(51> are U and V, re-
spectively, we get (NU,NV) —1=o(MU,MV) — 1 = SoL? vi O
(

1202
Let W =U®V (see Figure 8).
(x) (AW, BW) =1 and o(NW, NW*) = 1.

(y) o(WN;, WN;) =% forie {1,3} and j € {2,4}.
(z) The center W lies on the circle that has the segment AB as a

diameter.
Proof of (z). Since W = ﬁ (2620 Lp, (K — 261)v? ¢* 4+ 01 L*(K + 2)), we
get that [WM|? — % equals 4;2 g%“. O

(al) The lines WN; and W Ny are perpendicular.
(b1) The lines W N3 and W N, are perpendicular.

Proof of (al). The lines WN; and W Ny have equations a(z,y) = A and
b(x,y) = p, respectively, where a = a(z,y) and b= b(x,y) are homoge-
nous linear functions and A\ and p are real numbers. Let S =x + y and
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A B'

2

FIGURE 8. o(NU,NV) =1 and p(WN;, WN3) = 4.

R=21z—y. Then a = [Kv(L? — 2¢*) + 252 L p|S — 62q(2pv + KL)R. Sim-
ilarly, we have b= [Kv(L? —2¢?) — 252Lp|R + §2q(2pv — KL)S. These

L362quk .
1922;172 is zero. O

lines are perpendicular if and only if

Let Kl :B@Nl, K2 :NQ@A, Kg :B@Ng, K4 :N4@A These
points can be defined more simply. They all are at the same height as N
and vertically above the points Ng, N5, Ng, N7, respectively. Let Ly, Lo,
L3, L4 be the reflections of the points Ky, Ky, K3, K, in the line AB,
respectively. The next four statements use rather exotic numbers.

(c1) p(A'Ky, B'K)) = p(A'Ky4, B'K3) = 3 — 32 L .

(A1) @(A'Ly, B'Ly) = p(A'Ls, B'Lg) = 3

Proof of (c1). Since t25 (62(2vp £ KL),29(K + 261)) are the coordinates
of K; and Ko, we get that p(A'Ky, B'K;) — % — % + K) is ”2‘2922”. |

Replacing A" and B’ with A and B in (c1) and (d1) we get the number

% + % as the common value of the function ¢ in all four cases.

Let S; and T; denote the midpoints of the segments A’C and B’D,
respectively. Similarly, let Sy and T5 be the midpoints of the segments

164 MISSOURI J. OF MATH. SCI., VOL. 25, NO. 2



ON THE MODIFIED FERMAT PROBLEM

A'C" and B'D’, respectively. Note that

2 2
PGSt HT)) = p(G S, H{Ty) = Ut 242 e Kot

(e1) p(NS1,NTy) = (NS, NTp) =1+ £.
(f1) p(MSy, MT1) = p(MSs, MT,) =

1
3

Proof of (f1). From the right-angled triangles MGS; and M HT; and (e)
we get, that the sum

[MS I[P+ MT1[? = (MG + |GSi[*) + (IMHP* + |HT3|?)

is (MG + |MH[?) + W25 = 2 |AB]2 + (3 - 4 ) |ABJ =

L IAB2. O

1
2

By replacing the point N with its reflection N* in (el) on the right hand
side the + sign changes into the opposite sign —.

For points X and Y, let Q}/( be the reflection of the point X in the point
Y. Let Q =08, R=0%5, Q' = o}, R' = 0§ .

(g1) ¢(AQ,B'R) = p(A'Q', B'R') = 3v* + 2.

Proof of (g1). Since ﬁ (4vdap + 3Kvg + KL(1 — 261),2519) are the co-

ordinates of Q and R, we get that ¢(A’'Q, B'R) — (3v? +2) is equal to
411262& [l
ER

We conclude with the following three additional invariant properties of
the points @, R, Q’, and R’ that could be established by the same method.

(h1) »(AQ, BR) = ¢(AQ', BR') = 4v>.

(i1) o(NsQ, N6R) = o(N7Q', NgR') = 52

. v2

(i1) ¢(K2Q,K1R) = p(K4Q', K3R') = 2~ + 1.
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