
ON A DEGREE OF PRIMALITY
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Abstract. In this paper we introduce a degree of primality for natu-
ral numbers, and hence, a measure of primality for intervals of consec-
utive numbers. We characterize maximally prime intervals of length
≤ 3 and their primalities. Maximally prime intervals of length 2
are those that contain Mersenne or Fermat primes; maximally prime
intervals of length 3 are, but for a few exceptions, those whose mid-
points are Dan numbers. There are relatively few maxprimes for
larger lengths. We present a heuristic argument for an asymptotic
form describing the distribution of maximal primalities. Finally, we
mention open problems and directions for further research.

1. How Prime Is It?

Prime numbers are, of course, ‘purely’ prime, but can we ask meaningfully–
and interestingly–how prime a composite number is? We would like to
devise a degree or measure ρ(n) of a number’s primality. Such a scheme
should assign the same maximal primality degree to prime numbers and
allow for partial primality for composite numbers. (By ‘number’ in this
paper, we mean natural number, unless otherwise specified.)

As a first approach, let’s look at the number of divisors d(n) of n > 1.
Prime numbers p have the least number of divisors, with d(p) = 2, and
numbers with few divisors would be considered ‘nearly prime’. We could
define a primality measure or degree κ(n) for n > 1 by: κ(n) = 2/d(n).
Then κ(p) = 1 for prime p and κ(n) ≤ 1 for all n > 1. The trouble with
this approach is that it is biased against larger numbers, which tend to
have more divisors than smaller ones, yet primality should not depend on
a number’s size. For example, d(4) = 3, d(77) = 4, hence, κ(4) = 2/3 >
1/2 = κ(77), and 4 would be ‘more prime’ than 77 although more than
half of the numbers less than 4 are divisors of 4 yet only about 4% of the
numbers less than 77 divide 77.

A more sensible measure of primality uses the Euler phi-function ϕ(n),
defined as the number of i with 1 ≤ i ≤ n that are relatively prime to n,
that is, gcd(i, n) = 1. Note that n is prime if and only if ϕ(n) = n − 1,
which is the maximum value attainable by ϕ(n) relative to n. Furthermore,
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more divisors mean fewer numbers relatively prime to n and vice versa.
Thus, ϕ(n) indirectly measures primality.

Definition 1. The primality degree (or simply, primality) ρ(n) of n is
defined by: ρ(n) = ϕ(n)/(n − 1), where the purpose of the denominator
n − 1 is to normalize the scale of n. For the ‘degenerate’ case n = 1, we
define ρ(1) = 0 (since 1 is not considered prime).

Hence for all n, we have 0 ≤ ρ(n) ≤ 1 and ρ(p) = 1 for all primes
p. Going back to the example of 4 and 77, we get ϕ(4) = 2, ϕ(77) =
ϕ(7 × 11) = 60, so that ρ(4) = 2/3 < 60/76 = ρ(77). This agrees with our
intuition that 4 is less prime than 77.

Later on it will be helpful to consider in proofs instead an alternative
but related measure of primality.

Definition 2. ρ∗(n) = ϕ(n)/n.

ρ∗(n) is easier to manipulate than ρ(n) (since it is multiplicative) and
ρ(n)/ρ∗(n) → 1. Note that ρ(n) = n/(n− 1)ρ∗(n) for n > 1.

We can now talk about the primality of a finite set of numbers. This
can be defined as the sum of the primality of its elements. We call an
interval In of n numbers an n-interval. (Note that an interval is just a set
of consecutive natural numbers.) Given n, how prime can an n-interval be?

Definition 3. The primality ρ(I) of an n-interval I = {a, a + 1, . . . , a +
n − 1} is defined by ρ(I) = ρ(a) + ρ(a + 1) + · · · + ρ(a + n − 1). For a
fixed n, the sequence En = {[1, n], [2, n + 1], [3, n + 2], . . .} enumerates all
the n-intervals. The corresponding sequence of primalities Pn is obtained
by applying ρ to each term of En.

Pn is bounded (from below by 0 and from above by n), and so the
least upper bound or supremum of Pn exists. However, as some initial
terms of Pn are often larger than the rest, it is more interesting to use
a different kind of upper bound. For example, in the sequence P3 =
{2, 2.6667, 2.0667, 2.4, 1.9714, 2.3214, 1.7659, 2.1944, . . .} (to four dec-
imal places), we would like to consider the largest limiting value of a sub-
sequence of P3 rather than the upper bound 2.6667. In other words, we do
not want an ‘isolated’ upper bound. With this aim in mind, we define the
following measure of maximal primality of an n-interval.

Definition 4. The n-maxdegree, denoted by Sn, is defined by Sn = lim supPn,
i.e., the limit superior or largest cluster point of Pn. (Recall that a cluster
point of a sequence s is the limit of a convergent subsequence of s.)

In the previous example, it turns out that lim supP3 = 2.3333 . . . = 7/3
(see Theorem 1 below).

160 VOLUME 23, NUMBER 2



ON A DEGREE OF PRIMALITY

2. Maxprimes

We now focus on intervals that are the ‘most prime’ among intervals of
the same length. Intuition would suggest that these can be obtained by
including as many prime numbers and as few divisors of composite num-
bers as possible. When n ≤ 3, it is possible to give an exhaustive list of
maximally prime intervals. For larger n the analysis is more difficult and
we are able to find only few such intervals.

Definition 5. Call an n-interval I n-maximally prime or an n-maxprime
(maxprime for short) if ρ(I) ≥ Sn. (Maxprimes generalize the usual primes
in the sense that the 1-maxprimes are precisely the 1-intervals I = {p},
where p is prime.)

Lemma 1. If n is a multiple of M > 1, then

ϕ(n)

n
≤

∏

p|M

(

1−
1

p

)

where p runs through the prime factors of M . This implies, for example,
that if n is a multiple of 2, then ϕ(n) ≤ n/2; if n is a multiple of 3, then
ϕ(n) ≤ 2n/3; and if n is a multiple of 6, then ϕ(n) ≤ n/3.

Proof. We use the following well-known theorem [1, Theorem 62].

ϕ(n)

n
=

∏

p|n

(

1−
1

p

)

. (1)

The lemma follows immediately by noting that

∏

p|n

(

1−
1

p

)

≤
∏

p|M

(

1−
1

p

)

(2)

because each factor on the right product of (2) occurs on the left product
(since n is a multiple of M) and all the factors are between 0 and 1. �

Lemma 2.

(i) If ϕ(n) = n/2, then n is a (positive) power of 2, and conversely.
(ii) If ϕ(n) = n/3, then n = 2a3b for some (positive) a and b, and

conversely.

Proof of (i). If n = 2a, a ≥ 1, then ϕ(n)/n = (1−1/2) = 1/2 by (1) above,
hence, ϕ(n) = n/2. Conversely, let ϕ(n) = n/2. Then n is divisible by 2
and ϕ(n)/n = 1/2 = (1 − 1/2)

∏

(1 − 1/q), where the q’s are any prime
factors of n other than 2. Hence,

∏

(1− 1/q) = 1, so that there are zero q’s
and n contains only 2 as a prime factor, that is, n = 2a for some a ≥ 1. �
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Proof of (ii). If n = 2a3b, with a, b ≥ 1, then ϕ(n)/n = (1−1/2)(1−1/3) =
1/3 by (1), implying ϕ(n) = n/3. Conversely, let ϕ(n) = n/3. Then n is
divisible by 3. First, we assert that n is also divisible by 2, for otherwise,
ϕ(n)/n = (1 − 1/3)

∏

(1 − 1/q) = 1/3, where the q’s are any prime factors
of n larger than 3, implying either the contradiction 2/3 = 1/3 in the case
of an empty set of q’s, or otherwise

∏

(1 − 1/q) = 1/2, which is impossible
since

∏

(1 − 1/q) = 1/2 implies 2
∏

(q − 1) =
∏

q, with the left side of
the equation equal to an even number and the right side equal to an odd
number since the q’s are > 3. Hence, n is divisible by 2 and 3, so that
ϕ(n)/n = (1 − 1/2)(1− 1/3)

∏

(1 − 1/q) = 1/3, implying
∏

(1 − 1/q) = 1,
which is possible only when the set of q’s is empty. Therefore, n = 2a3b.
This concludes the proof of Lemma 2. �

Lemma 3. If n is an odd composite number, then ϕ(n) ≤ n− 3.

Proof. If d is a divisor of n with 1 < d < n then d ≥ 3, and hence n/d and
2n/d are integers less than n and greater than 1 and not relatively prime
to n. Hence, there are at least three numbers greater than or equal to 1
and less than or equal to n that are not relatively prime to n, namely d,
2n/d, and n. Therefore, ϕ(n) ≤ n− 3, as required. �

In the first part of Theorem 1 below, we obtain upper bounds for the first
few maxdegrees and describe an algorithm for getting similar bounds for
higher-order maxdegrees. In the second part, we give a method to obtain
lower bounds for maxdegrees and show that the upper bounds computed
in the first part are also lower bounds, hence are optimal.

Theorem 1. A. (i) S2 ≤ 3/2; and (ii) S3 ≤ 7/3. In general, if n > 1 and
△ is the product of the primes ≤ n, then

Sn ≤ max

{

n−1
∑

k=0

ϕ(gcd(j + k,△))

gcd(j + k,△)
: j = 1, . . . ,△

}

. (3)

(Using (3), for example, the next few bounds for Sn can be determined:
S4 ≤ 17/6, S5 ≤ 107/30 = 3.566 . . ., S6 ≤ 59/15 = 3.933 . . ., and S7 ≤
1019/210 = 4.852 . . ..)

B. The bounds in (i) and (ii) of part A are also lower bounds, and there-
fore S2 = 3/2 and S3 = 7/3. (The same method for obtaining lower bounds
of S2, S3 can also be used for higher-order maxdegrees, and in particular, to
demonstrate the optimality of the above upper bounds for S4, S5, S6, S7.)

Proof of Part A. The number of cases is small for us to give intuitive proofs
for (i) and (ii), which we shall do. Of course, they are subsumed in the
general case which is handled by (3) above.
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Proof of (i). Let I2 be a 2-interval and a, b be its elements in increasing
order. Then one of a and b, say b, must be a multiple of 2 (the only
divisibility constraint required for a 2-interval), while a can be prime. (The
case where a is a multiple of 2 is analogous.) Using Lemma 1, the largest
upper bound required for a cluster point of the sequence P2 = {ρ(I2)} is
3/2 since

ρ(I2) = ρ(a) + ρ(b) ≤ 1 +
ϕ(b)

b− 1
≤ 1 +

1

2

(

b

b− 1

)

→ 1 +
1

2
=

3

2
as b → ∞.

Proof of (ii). Let I3 be a 3-interval and a, b, c be its elements in increasing
order. Then one of the numbers in I3 must be a multiple of 2 and one must
be a multiple of 3 (the only divisibility constraints required for a 3-interval).
It is easily checked that the largest upper bound required for a cluster point
of the sequence P3 = {ρ(I3)} is 7/3, which occurs when b is both a multiple
of 2 and of 3. For example, in the case that b is a multiple of 2 and 3,

ρ(I3) = ρ(a) + ρ(b) + ρ(c) ≤ 1 +
ϕ(b)

b− 1
+ 1 ≤ 2 +

1

3

(

b

b− 1

)

→ 2 +
1

3
=

7

3
as b → ∞.

In the case that a is a multiple of 2 and 3, then c must also be a multiple of
2, and the corresponding upper bound (obtained using Lemma 1 as above)
is 1/3 + 1 + 1/2 = 11/6 < 7/3; the case where c is a multiple of 2 and 3 is
handled similarly. If the multiples of 2 and 3 are distinct, say when a is a
multiple of 3 and b is a multiple of 2, then the corresponding upper bound
is 2/3 + 1/2 + 1 = 13/6 < 7/3.

We now describe a general “brute force” but easily-automated approach
to find Sn. Consider for example S5. First we find S∗

5 , the 5-maxdegree
relative to the ρ∗ primality measure (in Definition 2). The idea is to consider
only prime divisors ≤ 5, that is, prime factors of 30 = 2× 3× 5; this works
since

ρ∗(n) =
ϕ(n)

n
=

∏

p|n

(

1−
1

p

)

≤
∏

p|n, p|30

(

1−
1

p

)

=
ϕ(gcd(n, 30))

gcd(n, 30)
.

Now we observe that, since gcd(n, 30) is periodic with period 30, the prob-
lem of finding the bound for S∗

5 is reduced to finding the maximum of the
30 quantities

4
∑

k=0

ϕ(gcd(n+ k, 30))

gcd(n+ k, 30)
(n = 1, . . . , 30),

which can easily be done using software such as Mathematica. It turns out
that the maximum is 107/30 for n = 7 and n = 19. We have now found S∗

5 ,
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the 5-maxdegree relative to the ρ∗ primality measure, and therefore also
S5, since ρ/ρ∗ → 1. This completes the proof of Part A. �

Proof of Part B. We use the following result from sieve theory [3, p. 58
and formula 6.107 on p. 78]. Let F be a product of k distinct irreducible
polynomials with integral coefficients and positive leading coefficients, and
let F have no fixed prime divisor. Then there are infinitely many positive
integers m such that F (m) has no prime divisors less than m1/(4k+1).

The main idea is that ρ(n) is close to 1 if n has only large prime divisors,
and the sieve theory result guarantees that there will be intervals that
have only large divisors except for the few small divisors that we account
for separately. Take S3, for example. The upper bound 7/3 comes from
the triple {6n− 1, 6n, 6n+ 1} (obtained from the maximizer in (3) above:
maximum = 7/3 attained at j = 5). Factoring out the constant prime
divisors and forming the polynomial F (m) = (6m − 1)m(6m + 1), the
sieve theory result implies that there are infinitely many m such that the
numbers 6m−1,m, 6m+1 have no prime divisor less thanm1/13. Therefore,
each of these numbers has at most 13 prime factors (counting multiplicity),
and so, denoting by M any one of these numbers, we have ϕ(M)/M ≥
(1− 1/m1/13)13. The last expression goes to 1 as m goes to infinity, hence
ϕ(M)/M → 1 for each of the three numbers M . Therefore, ρ(6m − 1) +
ρ(6m) + ρ(6m+ 1) → 1 + 1/3 + 1 = 7/3, as desired.

The proof for S2 is similar. The upper bound 3/2 comes from the pair
{2n, 2n+ 1} (obtained from the maximizer in (3) above: maximum = 3/2
attained at j = 2), and F (m) = m(2m + 1). Then ρ(2m) + ρ(2m + 1) →
1/2 + 1 = 3/2.

As an example of handling higher-order maxdegrees, consider S5. The
upper bound 107/30 comes from the quintuple

{30n+ 7, 30n+ 8, 30n+ 9, 30n+ 10, 30n+ 11}

(maximum = 107/30 attained at j = 7). The product of the elements of
the quintuple is

G(n) = (30n+ 7)[2(15n+ 4)][3(10n+ 3)][10(3n+ 1)](30n+ 11)

where we have factored out the constant prime divisors. We get

F (m) = (30m+ 7)(15m+ 4)(10m+ 3)(3m+ 1)(30m+ 11).

However, F (m) still has constant prime factors, namely 2. This can be seen
by reducing F (m) modulo 2 to get F ∗(m) = m(m + 1), which is always
even, or empirically by writing out the first few values of F (m) (e.g. F (1),
. . ., F (10)).
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Yet it turns out that this difficulty can be fixed by considering the sub-
sequence

L(n) = G(2n) = (60n+ 7)(60n+ 8)(60n+ 9)(60n+ 10)(60n+ 11)

= (60n+ 7)[4(15n+ 2)][3(20n+ 3)][10(6n+ 1)](60n+ 11)

and

Q(m) = (60m+ 7)(15m+ 2)(20m+ 3)(6m+ 1)(60m+ 11).

We see that Q(m) does not have any constant prime divisors by inspecting
initial terms of Q(m) and observing that any constant prime divisor p of
Q(m) divides △. (For, as in the derivation of F ∗ above, p does not exceed
N = 5, the number of linear factors of L(n), and hence p is one of the
primes not exceeding N). Then as in previous cases, ρ(60m+7)+ρ(60m+
8)+ · · ·+ ρ(60m+11) → 1+ 1/2+ 2/3+ 2/5+ 1 = 107/30. (Here we have
used Lemma 1 with M = 10.)

S4, S6, S7 are handled similarly as S5. The corresponding maxima for
S4, S6, S7 are attained at j = 4, 26, 37, respectively. This completes the
proof of Part B and Theorem 1. �

Definition 6. If p, p + 2 is a pair of twin primes and p + 1 = 2a3b, for
some a, b ≥ 0, we call p+ 1 a Dan number.

See A027856 of [2], which lists the currently known Dan numbers. Note
that, except for the first Dan number 4, we have p + 1 = 2a3b, for some
a, b ≥ 1, for all Dan numbers.

In Theorem 2, we enumerate the 2- and 3-maxprimes. From this theorem
and the conjectured infinity of Mersenne primes, we can conjecture that
there are infinitely many 2- and 3-maxprimes.

Theorem 2.

(i) The 2-maxprimes are the 2-intervals Jn = {2n, 2n+1} where 2n+1
is prime and Kn = {2n−1, 2n} where 2n−1 is prime. The sequence
of left endpoints of the 2-maxprimes starts: 2, 3, 4, 7, 16, 31, 127,
256, 8191, . . .. (Note that the Fermat primes are the right endpoints
of Jn, and the Mersenne primes are the left endpoints of Kn.)

(ii) The 3-maxprimes are the 3-intervals {2, 3, 4}, and Lp = {p, p +
1, p + 2} where p and p + 2 are twin primes and p + 1 is a Dan
number. The sequence of left endpoints of the 3-maxprimes starts:
2, 3, 5, 11, 17, 71, 107, 191, 431, 1151, . . ..

Proof of (i). Since

ρ(Jn) = ρ(Kn) = 1 +
2n−1

2n − 1
≥ 1 +

2n−1

2n
= 1 +

1

2
=

3

2

then Jn and Kn are 2-maxprimes.
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To see that any 2-maxprime I is among the Jn and Kn, note that some
element s of I must be a multiple of 2. Indeed, s = 2a for some a ≥ 1, for
otherwise s has prime factors q ≥ 3, and so

ρ(s) =
ϕ(s)

s

s

s− 1
=

s

s− 1

(

1−
1

2

)

∏

(

1−
1

q

)

=
1

2

∏ q−1
q

s−1
s

<
1

2

since
∏ q−1

q
s−1
s

< 1

(because all factors (q− 1)/q are less than (s− 1)/s and 1). But, denoting
the other element of I by t, we have ρ(s) + ρ(t) ≥ 3/2, and ρ(s) < 1/2
implies that ρ(t) ≥ 3/2 − ρ(s) > 3/2 − 1/2 = 1, contradicting ρ(t) ≤ 1.
Hence, s = 2a for some a ≥ 1.

Now, we show that t is prime, which will complete the proof of part (i).
Case (a). t = s+ 1. Since s = 2a, a ≥ 1,

ρ(s) + ρ(t) ≥
3

2

ρ(t) ≥
3

2
− ρ(s) =

3

2
−

2a−1

2a − 1
=

2a+1 − 3

2a+1 − 2
.

Now, s = 2a and t = s+ 1 imply 2s = 2(t− 1) = 2t− 2 = 2a+1. Then

ρ(t) ≥
(2t− 2)− 3

(2t− 2)− 2
=

2t− 5

2t− 4

ϕ(t)

t− 1
≥

t− 5
2

t− 2

which, noting that t > 2, can be rewritten as

(t− 2)ϕ(t) ≥

(

t−
5

2

)

(t− 1) ≥

(

t−
5

2

)

(t− 2).

Cancelling (t− 2) from both sides yields

ϕ(t) ≥ t− 2.5. (4)

If t were not prime, then t would be an odd composite number (because
s is even), and we obtain by Lemma 3, ϕ(t) ≤ t − 3, contradicting (4).
Therefore, t must be prime.
Case (b). t = s−1. As in Case (a) above, s = t+1 and 2s = 2t+2 = 2a+1,
and so

ρ(t) ≥
(2t+ 2)− 3

(2t+ 2)− 2
=

2t− 1

2t

which can be rewritten as

ϕ(t) ≥ t−
3

2
+

1

2t
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implying

ϕ(t) ≥ t−
3

2
. (5)

If t were not prime, then t would be an odd composite number (because
s is even), and we obtain by Lemma 3, ϕ(t) ≤ t − 3, contradicting (5).
Therefore, t must be prime. �

Proof of (ii). Since ρ({2, 3, 4}) = ρ({3, 4, 5}) = 8/3 > 7/3 and

ρ(Lp) = 2 +
2a3b−1

2a3b − 1
> 2 +

2a3b−1

2a3b
= 7/3

where p + 1 = 2a3b, with a, b ≥ 1, then {2, 3, 4} and all the Lp’s are 3-
maxprimes.

In the rest of the proof we shall use the fact that x/(x − 1) → 1 from
above, and so for example, if x ≥ 11, then x/(x−1) ≤ 11/(11−1) = 11/10.

To see that any 3-maxprime I = {p, p+ 1, p+ 2} is among {2, 3, 4} and
Lp, first note that at least one element s of I is a multiple of 2 and at
least one element t of I is a multiple of 3. It is easily checked that the
first three 3-maxprimes are {2, 3, 4}, {3, 4, 5}, and {5, 6, 7}; for succeeding
3-maxprimes, we have s, t ≥ 11 (since the next 3-maxprime is {11, 12, 13}),
which we now assume without loss of generality. Now, s = t since otherwise,
using Lemma 1,

ρ(I) ≤ 1 + ρ(s) + ρ(t) = 1 +
ϕ(s)

s− 1
+

ϕ(t)

t− 1
≤ 1 +

s/2

s− 1
+

2t/3

t− 1

≤ 1 +
11/2

11− 1
+

2
3 (11)

11− 1
=

137

60
<

7

3

contradicting ρ(I) ≥ 7/3. Hence s = t is a multiple of 2 and of 3.
Indeed, s = t has no prime factors other than 2 and 3, that is, s = t =

2a3b for some a, b ≥ 1. Otherwise, s has prime factors q ≥ 5, and thus

ρ(s) =
ϕ(s)

s

s

s− 1
=

s

s− 1

(

1−
1

2

)(

1−
1

3

)

∏

(

1−
1

q

)

=
1

3

∏ q−1
q

s−1
s

<
1

3

since
∏ q−1

q
s−1
s

< 1

(as in the proof of Part (i) above). But, denoting the other elements of I
by x and y, we have ρ(s) + ρ(x) + ρ(y) ≥ 7/3, and ρ(s) < 1/3 implies that
ρ(x) + ρ(y) ≥ 7/3− ρ(s) > 7/3 − 1/3 = 2, contradicting ρ(x) + ρ(y) ≤ 2.
Hence, s = 2a3b for some a, b ≥ 1.

Next, recalling that I = {p, p + 1, p + 2} we must have s = p + 1,
that is, s must be the midpoint of I. Otherwise, I will contain two distinct
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multiples of 2, namely p and p + 2, and then, writing p1 = p, p2 = p + 1,
p3 = p+ 2,

ρ(I) = ρ(p1) + ρ(p2) + ρ(p3) ≤
ϕ(p1)

p1 − 1
+ 1 +

ϕ(p3)

p3 − 1

≤
1

2

p1
p1 − 1

+ 1 +
1

2

p3
p3 − 1

≤
1

2

11

11− 1
+ 1 +

1

2

11

11− 1
=

21

10
<

7

3

(since we have assumed p1, p3 ≥ 11), contradicting ρ(I) ≥ 7/3. Hence,
s = p+ 1 = 2a3b.

It remains to show that p and p+ 2 are prime. First, we show that p is
prime. Now,

ρ(p) ≥
7

3
−ρ(p+1)−ρ(p+2) ≥

7

3
−ρ(p+1)−1 =

4

3
−

2a3b−1

2a3b − 1
=

2a3b+1 − 4

2a3b+1 − 3
.

But p+1 = 2a3b, so 3(p+1) = 3p+3 = 2a3b+1, and the previous inequality
becomes

ρ(p) ≥
(3p+ 3)− 4

(3p+ 3)− 3
=

3p− 1

3p

ϕ(p)

p− 1
≥

3p− 1

3p
.

The last inequaltiy can be rewritten as

ϕ(p) ≥ p−
4

3
+

1

3p

implying
ϕ(p) ≥ p− 2. (6)

If p were not prime, then p would be an odd composite number (because
p + 1 = s is even), and Lemma 3 would give ϕ(p) ≤ p − 3, contradicting
(6). Therefore, p must be prime.

Finally, we show that p+ 2 is prime. As in the preceding argument,

ρ(p+ 2) =
ϕ(p+ 2)

(p+ 2)− 1
=

ϕ(p+ 2)

p+ 1
≥

3p− 1

3p

which can be written as

ϕ(p+ 2) ≥ p+
2

3
−

1

3p

and thus
ϕ(p+ 2) ≥ p. (7)

But by Lemma 3, ϕ(p+2) ≤ (p+2)−3 = p−1, contradicting (7). Therefore,
p+ 2 is prime. The proof of Theorem 2 is now complete. �
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3. Searching for Maxprimes

The n-maxprimes are more difficult to find for larger n. Hitherto, we
have completely characterized the 2- and 3-maxprimes. In this section, we
search for higher-order maxprimes.

The followingMathematica program can be used to search for n-intervals
whose primalities are greater than or equal to some threshold value thresh.
(To search for n-maxprimes, set thresh to the value of Sn.) In the program,
the variable lenint is set to n, and hi is set to the largest value of an
interval’s left endpoint we would like to examine.

prm [ n ] := EulerPhi [ n ] / ( n−1) / ; n>1

prm [ n ] := 0 / ; n=1

l = {} ; l e n i n t = 7 ; l i 2 = l e n i n t − 1 ;

h i = 10ˆ8 ; thresh = 4 . 8 5 ;

cnt = Apply [ Plus , Map[ prm , Table [ i , { i , 1 , l e n i n t } ] ] ] ;

For [ i = 2 , i <= hi , i++,

I f [ cnt >= thresh ,

l = Append [ l , { i − 1 , N[ cnt ] } ] ] ;

I f [ i < hi , cnt = cnt + prm [ i + l i 2 ] − prm [ i − 1 ] ] ] ;

MatrixForm [ l ]

The program output is in matrix form with two entries for each row: the
first entry is the left endpoint of the n-interval and the second entry is the
interval’s primality (to several decimal places) ≥ thresh. The following is
(partial) output for the program with inputs lenint =7, thresh =4.85, hi
=108.

































1 5.06667
2 5.6381
3 5.3881
5 5.16587
7 5.12951
11 4.92994
13 4.91924
17 4.85018

21377 4.85139
39227 4.85044

































(8)

After running the program consecutively for n = lenint = 4, 5, 6, 7,
and hi = 108, we find very few n-maxprimes. For example, we discover
only five 4-maxprimes, no 5-maxprimes with left endpoint greater than 79,
only nine 6-maxprimes, and no 7-maxprimes with endpoint greater than
13.
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4. A Conjecture on the Distribution of Maxprimes

What happens to Sn for larger n? It appears that Sn/n → C = 6/π2 ∼
0.61. We conjecture that Sn = Cn asymptotically. This claim is made very
plausible by the following heuristic argument, which might well be a simple
matter to formalize. First,

Sn

n
=

lim supPn

n
∼

(

1

n

) n
∑

i=1

ϕ(i)

i
.

The ‘∼’ is the conjectured, unproved, part. Now it is known that

n
∑

i=1

ϕ(i)

i
=

n

ζ(2)
+O(log n) =

6

π2
n+O(log n)

since ζ(2) = π2/6 [5, Exercise 5, p. 70]. Therefore,
(

1

n

) n
∑

i=1

ϕ(i)

i
=

6

π2
+O

(

logn

n

)

Sn

n
∼

6

π2
+O

(

logn

n

)

which concludes the heuristic argument.
In connection with the conjecture, it is not hard to show the following.

Lemma 4.

Sn/n ≥ 1/ζ(2) = 6/π2.

Proof. First, we assert that

lim sup
1

n

n
∑

k=1

ak ≤ lim sup an. (9)

This is a special case of the Stolz-Cesàro Theorem [6]: If {bn} is a sequence
of positive real numbers whose sum diverges, then for any sequences {an}
of real numbers we have

lim sup
a1 + a2 + · · ·+ an
b1 + b2 + · · ·+ bn

≤ lim sup
an
bn

. (10)

Equation (9) follows immediately from (10) by taking bn = 1 for all n.
Next, we apply (9) to the sequence an = ρ(n) + · · · + ρ(n + m − 1).

The same result on the average value of ϕ(n)/n cited above (i.e. [5, Ex-
ercise 5, p. 70]) shows that the average value of ρ(n) is also 1/ζ(2), and
so the average value of an is m/ζ(2). Using (9), Sm = lim supPm =
lim sup an ≥ lim sup(average value of {a1, . . . , am}) = m/ζ(2). Therefore,
Sm/m ≥ 1/ζ(2), as desired. �
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5. Problems

In the following, we gather in one place a few of the many unanswered
questions and problems on this topic.

(a) Are there only finitely many 4-, 5-, 6-, and 7-maxprimes? If not,
exhibit larger maxprimes than the few already mentioned above. How
about n-maxprimes for n > 7?

(b) Near Maxprimes. It may well be the case that there are only finitely
many n-maxprimes for some n. In such a case, “near maxprimes”, whose
primalities are only approximately equal to their corresponding maxdegrees,
would be the best we can do in the way of exhibiting ‘large’ n-intervals
with maximal primality. Near maxprimes have a looser structure than
maxprimes; for example, the maxprimes we have found can be obtained by
including in an interval as many primes and as few divisors of composite
numbers as divisibility constraints allow, but some near maxprimes contain
no prime numbers at all.

Consider the case n = 7. It is impossible to have three consecutive
primes each differing from the previous one by 2. (This is easily shown by
considering their residues modulo 3.) Hence, the smallest possible length of
an interval that contains three primes is 7; for example, with primes of the
form p, p+2, p+6. Recall that in Section 3, we ran the program for thresh
= 1019/210 = 4.852 . . . (the value of S7 obtained from Theorem 1) and
found very few 7-maxprimes, indeed none with left endpoint greater than
13. Let us then select any convenient thresh value very slightly less than
this, say thresh = 4.85. (So 7-near maxprimes are more properly called
(7, ε)-near maxprimes, where thresh = S7 − ε, due to the dependence on
ε > 0.) Running the program with thresh = 4.85 and hi = 108 yields the
near 7-maxprimes of the above sample program output in (8). There are
554 rows in this output, but only the first few rows are shown. There are
15 near 7-maxprimes that do not contain prime numbers at all, the first
one being {26171707, 26171708, . . . , 26171713}. Remarkably, after the
first seven rows, all the left endpoint values end in the digit 7, that is, are
congruent to 7 modulo 10.

Do all, except for finitely many, 7-maxprimes have left endpoints that
are congruent to 7 modulo 10? For a fixed n ≥ 2, given ε > 0, can we always
find an n-interval with primality at least Sn − ε and containing no prime
numbers? (Other constraints on the interval can be considered, e.g. that it
contain at most one prime, etc.)

(c) It seems likely that (3) of Theorem 1, Part A, gives not just upper
bounds, but the actual values of maxdegrees. Obtain a formal proof of this.
However, even assuming that (3) holds, we have more of an algorithm than
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a ‘simple’ formula (say, expressible in terms of elementary functions) for
computing the n-maxdegrees. Is there such a simple formula?

(d) Does limSn/n = 6/π2? If this is true, then Sn = (6/π2)n is an
asymptotic answer to the ‘simple’ formula required in Problem (c) above.

(e) Investigate the primalities of other finite sets of numbers, for example,
sets whose elements are not necessarily consecutive. (We remark that the
primality of sets of numbers in arithmetical progression has been studied;
see [4] for example.)

(f) Can maxprimes–even near maxprimes–be used in lieu of prime num-
bers in some applications–perhaps in probabilistic scenarios where a specific
prime number value can be replaced by a range of ‘highly prime’, but not
necessarily prime, values?

6. Acknowledgments

The author would like to thank Prof. Mohammad R. Khadivi for review-
ing this paper and for his valuable suggestions on its improvement. The
author is grateful to the number theory referees of the Missouri Journal of
Mathematical Sciences for their role in polishing the paper and strength-
ening its results.

References

[1] G. H. Hardy, E. M. Wright, et al., An Introduction to the Theory of Numbers, 6th
edition, Oxford University Press, Oxford, 2008.

[2] N. J. A. Sloane (Ed.), The On-Line Encyclopedia of Integer Sequences, 2010.
http://www.research.att.com/∼njas/sequences/.

[3] J. Friedlander and H. Iwaniec, Opera de Cribro, American Mathematical Society,
Providence, RI, 2010.

[4] B. Green and T. Tao, The primes contain arbitraily long arithmetic progressions,
Annals of Mathematics, 167 (2008), 481–547.

[5] T. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York,
1976.

[6] G. Nagy, The Stolz-Cesro theorem,
http://www.math.ksu.edu/∼nagy/snippets/stolz-cesaro.pdf.

MSC2010: 11A25, 11A41

Director, Data Mining, Catalina Marketing Corporation, 20 N. Martingale

Road, Suite 300, Schaumburg, IL 60173

E-mail address: joseph.pe@catalinamarketing.com

172 VOLUME 23, NUMBER 2


