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Abstract. A classical theorem of Landau states that, if an ordinary
Dirichlet series has non-negative coefficients, then it has a singular-
ity on the real line at its abscissa of convergence. In this article, we
relax the condition on the coefficients while still arriving at the same
conclusion. Specifically, we write an as |an|eiθn and we consider the
sequences {|an|} and {cos θn}. Let M ∈ N be given. The condition
on {|an|} is that, dividing the sequence sequentially into vectors of
length M , each vector lies in a certain convex cone B ⊂ [0,∞)M .
The condition on {cos θn} is (roughly) that, again dividing the se-
quence sequentially into vectors of length M , each vector lies in the
negative of the polar cone of B. We demonstrate the additional free-
dom allowed in choosing the θn, compared to Landau’s Theorem. We
also obtain sharpness results.

1. Introduction

A (ordinary) Dirichlet series is a function of the following form, with
an ∈ C:

f(s) =
∞
∑

n=1

ann
−s, s ∈ C. (1)

For s = σ+ it ∈ C, we denote the real part of s by ℜs. The standard region
on which a Dirichlet series might be expected to converge is a right half
plane, we denote these by

Ωσ = {s ∈ C : ℜs > σ}

and its closure will be written Ωσ. A Dirichlet series has several different
“regions of convergence” Ωσ, with several different abscissa σ accordingly.
The abscissa most often considered are:
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σa = inf{σ :
∑

ann
−s converges absolutely for s ∈ Ωσ},

σu = inf{σ :
∑

ann
−s converges uniformly on Ωσ},

σb = inf{σ :
∑

ann
−s converges to a bounded function on Ωσ},

σc = inf{σ :
∑

ann
−s converges for all s ∈ Ωσ}.

It is a basic result that the function f defined by (1) is holomorphic on
the open region Ωσc

. Further relations among these abscissa, the coefficients
{an}, and the function f are of considerable interest. Some of the standard
results are the following ones.

• σa − σc ≤ 1 (a basic result), and this is sharp (ex. the alternating
zeta function

∑

(−1)n+1n−s).
• σu = σb [6], henceforth we will denote this abscissa by σb.
• σa − σb ≤ 1/2 [5], and this is sharp [4].

For other standard results in analytic number theory and Dirichlet series,
we refer the interested reader to [1].

There has been recent interest in applying tools from modern analy-
sis to Dirichlet series (see the survey of Hedenmalm [8]). A short list
(non-exhaustive in both topics and articles within those topics) includes
the interpolation problem within Hilbert spaces of Dirichlet series [13], the
multiplier algebras of Hilbert spaces of Dirichlet series [9, 12], Carleson-type
theorems for Dirichlet series [10, 3], and composition operators on spaces
of Dirichlet series [2].

We mention the above results for contrast, because our result will be
“classic” in both statement and proof, and we will investigate Dirichlet
series which (among other things) satisfy

σa = σc. (2)

Specifically, we are interested in extending the following theorem of Landau.

Theorem 1. [11, p. 697–699] Suppose that f(s) =
∑

ann
−s has abscissa

of convergence equal to 0. If an ∈ R, an ≥ 0 for all n then f does not extend
holomorphically to a neighborhood of s = 0.

Logically, the property that must account for the situation σc < σa is
cancellation among the coefficients {an}. Therefore, once we strictly limit
cancellation among the {an}, (2) should follow. A straightforward way to
do this is to require an ≥ 0, and the above theorem confirms this (note that
the absence of a holomorphic extension about s = 0 is stronger than (2)).
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It is a natural question to ask whether we could impose less strict condi-
tions on the {an} and still arrive at the same conclusion. A paper of Fekete
from 1910 states the following result.

Theorem 2. [7] Suppose that f(s) =
∑

ann
−s has abscissa of convergence

equal to 0. Write an = |an|e
iθn . If there is some γ > 0 such that cos θn ≥ γ

for all n, then f does not extend holomorphically to a neighborhood of s = 0.

This result generalizes Theorem 1. Another result, by Szász in 1922,
gives the following theorem.

Theorem 3. [14] Let F1(s) and F2(s) be the Dirichlet series whose coeffi-
cients are the real part, and imaginary part (respectively), of the coefficients
an. If either F1(s) or F2(s) has a singularity on the real line at σc(f), then
f has a singularity there as well.

Note that the result of Szász, together with Landau’s Theorem, implies
the result of Fekete. This is because, if cos θn ≥ γ, then ℜan is non-
negative and therefore (by Landau’s Theorem) F1 has a singularity at the
point σc(F1). Furthermore, the condition on θn implies γ|an| ≤ ℜan, which
in turn yields the middle inequality in this chain:

σc(f) ≤ σa(f) ≤ σc(F1) ≤ σc(f).

We see that F1 has a singularity at σc(f) and then by Szász’s theorem, f
has a singularity there.

Our result is along the same lines as these three theorems; we develop
a condition on the coefficients which will imply that f has a singularity on
the real line at its abscissa of absolute convergence. Our result generalizes
that of Fekete, although not the result of Szász.

In our result, the conditions on the {an} are expressed as certain re-
strictions on the sequence |an|, and related restrictions on the sequence
{cos(θn)}. We will see that as the restrictions on |an| are relaxed, the re-
strictions on cos(θn) become more strict. The theorem of Fekete falls on one
end of this spectrum, with no requirements on |an| and strict requirements
on cos(θn).

Let us fix M ∈ N. For ρ ∈ (0,∞), let us define the cone Bρ ⊂ [0,∞)M

by

Bρ =
{

β = (β1, . . . , βM ) ∈ [0,∞)M : β1 ≤ ρβ2 ≤ ρ2β3 ≤ · · · ≤ ρM−1βM

}

.
(3)

Note the inclusion

ρ1 < ρ2 =⇒ Bρ1 ⊂ Bρ2 .

The standard inner product in Euclidean space will be denoted x · y. We
will use the following notation for the negative of the polar cone of a convex
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cone C ⊂ RM :

C♯ = {x ∈ R
M : x · c ≥ 0 for all c ∈ C}.

Note that, if M = 1, then Bρ = Bρ
♯ = [0,∞) for any value of ρ.

Our main theorem is the following result.

Theorem 4. Suppose that f(s) =
∑

ann
−s has abscissa of absolute con-

vergence equal to 0. Write an = |an|e
iθn, and fix M ∈ N. Suppose that

there exists ρ > 0 and γ > 0 such that, for all l = 0, 1, . . ., we have

(|aMl+1|, |aMl+2|, . . . , |aMl+M |) ∈ Bρ (4)

(cos(θMl+1), cos(θMl+2), . . . , cos(θMl+M )) ∈ Bρ
♯ + γ(1, 1, . . . , 1). (5)

Then f does not have a holomorphic extension to a neighborhood of s = 0.

First, note that condition (4) is not a “global” growth or decay condition;
with M = 2 it is satisfied by ρ, 1, ρ, 1, . . .. Second, noting that

C1 ⊂ C2 =⇒ C2
♯ ⊂ C1

♯

we see that if ρ increases then Bρ becomes larger and therefore Bρ
♯ becomes

smaller. In this sense, (4) and (5) are “dual” to one another; the amount
of restriction on |an| is inversely proportional to the restriction on cos(θn).
Third, note that the purpose of requiring γ > 0 is to keep the cosine
vector inside the cone Bρ

♯ and bounded away from its boundary, the specific

value of γ does not otherwise affect the rest of the theorem (for further
explanation, see the sharpness result below). Fourth, note that if we take
M = 1, we obtain the equivalent version of the result of Fekete.

We discuss for a moment the hypothesis σc = 0 from Theorems 1 and 2,
which appears to differ from the hypothesis σa = 0 in our main Theorem.
The condition cos θn ≥ γ from Theorem 2 implies ℜan ≥ γ|an| and therefore

ℜ
∑

ann
−σ ≥ γ

∑

|an|n
−σ

from which it follows that σc = σa. So, although Theorems 1 and 2 are
stated with the hypothesis σc = 0, in fact the hypothesis on the coefficients
an implies that σc = σa and so each theorem could be equivalently stated
with the hypothesis σa = 0. Since we always have σc ≤ σa, stating the
theorems with the hypothesis “σa = 0” would be arguably more useful for
the reader who could use the theorem to immediately conclude σc = σa

without further analysis. Our main result has the same property that the
hypothesis on the coefficients, namely equations (4) and (5), in fact implies
σa = σc. We have stated our main theorem with the hypothesis σa = 0,
but we leave Theorems 1 and 2 in their historical form.

In Theorem 2, we saw that with no restrictions on the |an| we are free
to choose θn with cos(θn) ∈ [γ, 1]; applying this to a group of M terms, we
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are free to choose

(cos(θMl+1), cos(θMl+2), . . . , cos(θMl+M )) ∈ [γ, 1]M .

The M -dimensional volume of the set of admissable values of cosines is less
than or equal to 1M = 1, for Theorem 2. In Theorem 4, we have placed
restrictions on the sequence |an|. Therefore, Theorem 4 is only interesting
if we can considerably increase the freedom in choosing θn, beyond the
amount in Theorem 2. As mentioned above, the case M = 1 is equivalent
to Theorem 2, so we would like to show that we have additional freedom
in choosing θn when M ≥ 2. This is demonstrated in Section 4, where we
show that the volume of the set of admissable values of cosines is greater
than 1 for all M ≥ 2 and all ρ (the interested reader can further quantify
this result). Therefore, Theorem 4 provides more “freedom” in choosing
the θn, compared to Theorem 2.

We also obtain a sharpness result, in two parts. First, we cannot reduce
γ to zero. Second, if M ≥ 2, the cone giving the possible values for cos θn
cannot be made any “wider,” meaning that one cannot replace Bρ

♯ with

Bρ′

♯ for ρ′ < ρ (there is no such statement for M = 1 because every cone

Bρ
♯ equals [0,∞) when M = 1). Here, “∂X” denotes the boundary of the

set X .

Proposition 5. (I) (γ > 0 is sharp): Let M ∈ N, ρ ∈ (0,∞) be fixed. For
any
δ ∈ (∂Bρ

♯ ) ∩ [−1, 1]M , there exists {an} such that

•
∑

ann
−s has σa = 0.

• (|aMl+1|, |aMl+2|, . . . , |aMl+M |) ∈ Bρ.
• (cos(θMl+1), cos(θMl+2), . . . , cos(θMl+M )) = δ [This is (5) with γ =
0].

•
∑

ann
−s has a holomorphic extension to a neighborhood of s = 0.

(II) (Bρ, Bρ
♯ is sharp): For any M ≥ 2 and any 0 < ρ′ < ρ there exists

{an} and γ > 0 such that

•
∑

ann
−s has σa = 0.

• (|aMl+1|, |aMl+2|, . . . , |aMl+M |) ∈ Bρ.

• (cos(θMl+1), cos(θMl+2), . . . , cos(θMl+M )) ∈ Bρ′

♯ + γ(1, 1, . . . , 1).

•
∑

ann
−s has a holomorphic extension to a neighborhood of s = 0.

In Section 2, we examine the proof of Landau’s Theorem. In Section 3,
we prove Theorem 4. In Section 4, we estimate the amount of “freedom” in
choosing θn, and in Section 5 we prove the sharpness result in Proposition
5.
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2. Examining the Proof of Landau’s Theorem

Our result will build on a standard proof of Landau’s Theorem, so we
begin by reviewing this proof. There is a key step in the proof which will
become the starting point of our main result.

Proof of Theorem 1. We begin by supposing only that f(s) =
∑

ann
−s has

abscissa of absolute convergence equal to 0. The condition an ≥ 0 is not
yet assumed; when it is used, we will indicate this explicitly.

For contradiction, we assume that f does extend holomorphically to a
neighborhood of 0; suppose that f is holomorphic on D(0, 3ǫ), for some
ǫ > 0. We have

f(s) =

∞
∑

n=1

ann
−ǫn−(s−ǫ)

=

∞
∑

n=1

ann
−ǫ exp(−(s− ǫ) logn)

=
∞
∑

n=1

ann
−ǫ

{

∞
∑

k=0

(−1)k(logn)k(s− ǫ)k

k!

}

=

∞
∑

n=1

{

∞
∑

k=0

ann
−ǫ (−1)k(logn)k(s− ǫ)k

k!

}

.

This double series converges absolutely for |s− ǫ| < ǫ, since the sum of
the absolute values can be re-arranged to equal

∞
∑

n=1

|an|n
−(ǫ−|s−ǫ|)

which is finite by assumption. Therefore, we rearrange the double series
to obtain

f(s) =

∞
∑

k=0

{

(−1)k

k!

∞
∑

n=1

ann
−ǫ(logn)k

}

(s− ǫ)k.

We see that this is the power series for f about the point s = ǫ. We have
only asserted the convergence of this power series for |s− ǫ| < ǫ. However,
by the assumption that f is holomorphic on D(0, 3ǫ), it must be the case
that this power series in fact converges absolutely for |s − ǫ| < 3ǫ, since
D(ǫ, 3ǫ) ⊂

(

D(0, 3ǫ) ∪ {s : ℜs > 0}
)

. Therefore, in particular we have
finiteness of the expression

∞
∑

k=0

1

k!

∣

∣

∣

∣

∣

∞
∑

n=1

ann
−ǫ(logn)k

∣

∣

∣

∣

∣

(2ǫ)k. (6)
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We could obtain a contradiction if we could obtain finiteness of the
expression

∞
∑

k=0

1

k!

{

∞
∑

n=1

|an|n
−ǫ(log n)k

}

(2ǫ)k. (7)

This would create a contradiction because, if (7) were finite, then we
could rearrange (7) to obtain

∞
∑

n=1

|an|n
−(−ǫ) < ∞.

This would mean that
∑

ann
−s converges absolutely at s = −ǫ (for exam-

ple), a contradiction.
To complete the standard proof, let us now assume an ≥ 0. With this

requirement on the an, we note that

∞
∑

k=0

1

k!

∣

∣

∣

∣

∣

∞
∑

n=1

ann
−ǫ(log n)k

∣

∣

∣

∣

∣

(2ǫ)k =

∞
∑

k=0

1

k!

{

∞
∑

n=1

|an|n
−ǫ(log n)k

}

(2ǫ)k.

Therefore, we obtain finiteness of (7) and the proof is complete.
�

Examining this proof, we see that the condition an ≥ 0 is only used to
prove the finiteness of (7), given the finiteness of (6). Any other condition
which establishes this implication will also suffice to prove the theorem.
We will focus on a quite straightforward way to establish this implication,
namely if we have that the expression in (7) is less than or equal to a
constant C times the expression in (6) for all sufficiently small ǫ. In other
words, if there are constants C and ǫ0 such that

∞
∑

k=0

1

k!

{

∞
∑

n=1

|an|n
−ǫ(logn)k

}

(2ǫ)k

≤ C

∞
∑

k=0

1

k!

∣

∣

∣

∣

∣

∞
∑

n=1

ann
−ǫ(log n)k

∣

∣

∣

∣

∣

(2ǫ)k for all ǫ < ǫ0.

We will use an even simpler sufficient condition which implies the above
inequality. We will require a stronger statement where the absolute value
is replaced by the real part, and we will require the inequality to hold term-
by-term with a common constant. In other words, we require that there
are constants C and ǫ0 such that

∞
∑

n=1

|an|n
−ǫ(logn)k ≤ Cℜ

∞
∑

n=1

ann
−ǫ(log n)k for all k ≥ 0, for all ǫ < ǫ0.
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To summarize, we have the following theorem.

Theorem 6 (Landau and Fekete Theorems, Re-formulated). Suppose that
f(s) =

∑

ann
−s has abscissa of absolute convergence equal to 0. If there

are constants C and ǫ0 such that

∞
∑

n=1

|an|n
−ǫ(logn)k ≤ C ℜ

∞
∑

n=1

ann
−ǫ(logn)k

for all k ≥ 0 and for all ǫ < ǫ0

(8)

then f does not have a holomorphic extension to a neighborhood of 0.

We can see how both Landau’s and Fekete’s Theorems satisfy equation
(8): Landau’s Theorem assumes |an| = ℜan, and Fekete’s Theorem assumes
|an| ≤ γ−1ℜan.

3. Proof of the Main Theorem

In this section, we prove Theorem 4.
Our strategy is to show that (8) holds. Fix M ∈ N and write

∞
∑

n=1

ann
−ǫ(logn)k =

∞
∑

l=0

M
∑

j=1

aMl+j(Ml + j)−ǫ(log(Ml + j))k

which yields

ℜ

∞
∑

n=1

ann
−ǫ(logn)k

=

∞
∑

l=0

M
∑

j=1

ℜaMl+j(Ml + j)−ǫ(log(Ml + j) )k

=

∞
∑

l=0

M
∑

j=1

|aMl+j | cos(θMl+j)(Ml + j)−ǫ(log(Ml + j) )k.

We wish to show that conditions (4) and (5) on the group of coefficients
aMl+1, . . . , aMl+M will imply the existence of some c > 0 (independent of
k, l, ǫ) and some ǫ0 such that

M
∑

j=1

|aMl+j | cos(θMl+j)(Ml + j)−ǫ(log(Ml+ j) )k

≥ c
(

M
∑

j=1

|aMl+j |(Ml+ j)−ǫ(log(Ml + j) )k
)

for all ǫ < ǫ0 . (9)
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Once (9) holds, we have

ℜ

∞
∑

n=1

ann
−ǫ(log n)k ≥ c

∞
∑

n=1

|an|n
−ǫ(logn)k for all ǫ < ǫ0

which shows that (8) holds, and the proof of Theorem 4 is complete.
The next idea is that

(Ml + j)−ǫ = (Ml)−ǫ + small

and so we can obtain (9) from a simpler condition that does not involve
(Ml+ j)−ǫ, by applying the Taylor expansion of (Ml+ j)−ǫ to each side of
(9). (The simpler condition is (11)).

We begin with the right hand side of (9). By Taylor’s expansion, we
write

(Ml + j)−ǫ = (Ml)−ǫ +A, |A| ≤ ǫ(Ml)−ǫl−1

and therefore we have

M
∑

j=1

|aMl+j |(Ml + j)−ǫ(log(Ml + j))k

≤ (Ml)−ǫ
(

1 + ǫl−1
)

M
∑

j=1

|aMl+j |(log(Ml + j))k. (10)

Suppose that the following inequality held for γ independent of l, k:

M
∑

j=1

|aMl+j |(log(Ml+ j))k ≤ γ−1
M
∑

j=1

|aMl+j | cos(θMl+j)(log(Ml + j))k.

(11)
Applying the Taylor expansion to the left hand side in (9) (estimating
cos(θ) ≤ 1), we define

Ã = ǫ(Ml)−ǫl−1
M
∑

j=1

|aMl+j |(log(Ml+ j))k
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and we have

M
∑

j=1

|aMl+j | cos(θMl+j)(Ml + j)−ǫ(log(Ml+ j))k

≥ (Ml)−ǫ

M
∑

j=1

|aMl+j | cos(θMl+j)(log(Ml + j))k − Ã

≥ (Ml)−ǫγ

M
∑

j=1

|aMl+j |(log(Ml + j))k − Ã [by (11) ]

= (Ml)−ǫ
(

γ − ǫl−1
)

M
∑

j=1

|aMl+j |(log(Ml + j))k

≥
(

γ − ǫl−1
) (

1 + ǫl−1
)−1

M
∑

j=1

|aMl+j |(Ml + j)−ǫ(log(Ml+ j))k [by (10)].

With ǫ < 1 we have
(

γ − ǫl−1
) (

1 + ǫl−1
)−1

≥
(

γ − l−1
) (

1 + l−1
)−1

. We

may assume that an = 0 for all small n (since
∑∞

n=1 ann
−s has a holo-

morphic extension if and only if
∑∞

n=N ann
−s does), and therefore we may

assume that we are concerned only with large l. For l large (depending

only on γ) we have
(

γ − l−1
) (

1 + l−1
)−1

≥ γ/2, and therefore (9) holds
(with c = γ/2) for all sufficiently small ǫ, independent of k, l, as long as
(11) holds.

Therefore, we only need to show that conditions (4) and (5) imply in-
equality (11) and then the proof is complete.

First, in order to make use of condition (5), we will use a more direct
description of Bρ

♯ , by writing Bρ as the convex cone generated by a finite
point set.

Proposition 7. Let x(r) ∈ RM , r = 1, . . . ,M be defined by

x(r) = (0, . . . , 0, ρ−r, ρ−(r+1), . . . , ρ−M ).

Then Bρ equals the positive linear span of the {x(r)}.

Corollary 8.

Bρ
♯ =







y = (y1, . . . , yM ) :

M
∑

j=r

ρ−jyj ≥ 0 for all r = 1, . . . ,M







. (12)

Proof of Proposition. We see that x(r) ∈ Bρ is clear. If β ∈ Bρ then

β = ρ1β1x
(1) + ρ2(β2 − ρ−1β1)x

(2) + · · ·+ ρM (βM − ρ−1βM−1)x
(M).
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Each coefficient is positive, so we have written Bρ as a positive linear com-
bination of the x(r). �

To prove (11) we will use a summation-by-parts argument, in the follow-
ing form.

Proposition 9 (A Version of Summation by Parts). Suppose a1, . . . , aM
and b1, . . . , bM are given. Define RN =

∑M
j=N bj. Then

M
∑

j=1

aibi = a1R1 +

M
∑

j=2

(aj − aj−1)Rj .

Proof. The proof is a standard one. �

Theorem 4 assumes the existence of particular values of ρ and γ; these
are used below. Let us define

dj = |aMl+j |(log(Ml + j))kρj,

cj = cos(θMl+j)ρ
−j , Cj =

M
∑

r=j

cr,

gj = γρ−j, Gj =

M
∑

r=j

gr.

Condition (4) means that the sequence |aMl+j |ρ
j is nondecreasing, and

therefore dj is nondecreasing; this is how we use condition (4). Condition
(5) states that

(cos(θMl+1)− γ, . . . , cos(θMl+M )− γ) ∈ Bρ
♯ .

By (12), this means that

M
∑

j=r

ρ−j(cos(θMl+j)− γ) ≥ 0 for all r = 1, . . . ,M
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which we can write as Cj ≥ Gj for all r = 1, . . . ,M ; this is how we use
condition (5). We can now prove (11).

M
∑

j=1

|aMl+j | cos(θMl+j)(log(Ml + j))k =

M
∑

j=1

djcj

= d1C1 +

M
∑

j=2

(dj − dj−1)Cj

≥ d1G1 +

M
∑

j=2

(dj − dj−1)Gj {**}

=

M
∑

j=1

djgj

= γ

M
∑

j=1

|aMl+j |(log(Ml + j))k.

In line {**}, we use that dj is nondecreasing, and that Cj ≥ Gj .
This shows that conditions (4) and (5) imply the inequality (11), and so

the proof of Theorem 4 is complete.

4. Volume Calculation

As we mentioned, Theorem 4 is only interesting if the restrictions on θn
are broad enough to be a measurable improvement over the requirement
cos θn ≥ γ, which is the requirement in Theorem 2. As mentioned, taking
M = 1 in Theorem 4 yields an equivalent version of Theorem 2, so in this
section we only consider M ≥ 2. In Theorem 4, we require

(cos(θMl+1), . . . , cos(θMl+M )) ∈ Bρ
♯ + γ





1
. . .
1



 .

We want to answer the question: “How much freedom do we have in choos-
ing cos(θMl+1), . . . , cos(θMl+M )?” One way to answer this is to measure the
volume of the set of possible values for the vector (cos(θMl+1), . . . , cos(θMl+M )),
i.e.,

V olR
M







Bρ
♯ + γ





1
. . .
1







 ∩ [−1, 1]M



 .

Since this is continuous in γ, we will estimate

V olR
M
[

Bρ
♯ ∩ [−1, 1]M

]

. (13)
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We will compare this volume to the value 1, since the requirement cos θn ≥ γ
means

(cos(θMl+1), . . . , cos(θMl+M )) ∈ [γ, 1]M

and V olR
M [

[γ, 1]M
]

< 1. Here, we show that the volume is nondecreasing
in M , and then we carry out the estimate for M = 2; the interested reader
can extend the result.

For this particular discussion, we will specify the dimension of the cone
Bρ by writing it as Bρ,M . Examining equation (12) for dimension M+1 we
see that, if x1 ≥ 0 is fixed, the constraint for r = 1 is superfluous because

if
∑M+1

j=2 ρ−jxj ≥ 0 then
∑M+1

j=1 ρ−jxj ≥ 0 is also satisfied. However,
the remaining constraints specify that the point defined by the last M

coordinates be a member of Bρ,M
♯ . In other words,

Bρ,M+1
♯ ∩

(

R
+ × R

M
)

= R
+ ×Bρ,M

♯ .

Using this, one can show

Bρ,M+1
♯ ∩

(

[0, 1]× [−1, 1]M
)

= [0, 1]×
(

Bρ,M
♯ ∩ [−1, 1]M

)

.

The set on the left hand side of this equation is contained in Bρ,M+1
♯ ∩

[−1, 1]M+1. The set on the right hand side of this equation is a product set
and so its volume is easily calculated. Therefore we conclude

V olR
M+1

[

Bρ,M+1
♯ ∩ [−1, 1]M+1

]

≥ V olR
M
[

Bρ,M
♯ ∩ [−1, 1]M

]

which proves that the volume is nondecreasing in M .
Next, we calculate the volume if M = 2. Simplifying the constraints

defining Bρ
♯ ∩ [−1, 1]2, we see that it is defined by the equations

0 ≤x2 ≤ 1,

max (−1,−ρ−1x2) ≤x1 ≤ 1.

Geometrically, this region is the union of the square [0, 1] × [0, 1] with a
portion of the square [−1, 0]× [0, 1], and its volume is strictly greater than
one for any ρ ∈ (0,∞). The exact value is

V olR
2
[

Bρ
♯ ∩ [−1, 1]2

]

=

{

2− ρ/2 (ρ < 1)
1 + 1

2ρ (ρ ≥ 1)

}

.

5. Sharpness

We prove Proposition 5 by constructing counterexamples. Let ρ ∈ (0,∞)
andM ∈ N be fixed. In the following section, we will sometimes use “n” and
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“Ml + j” interchangeably, so xn = j means xMl+j = j, for example. The
counterexamples will have an = |an|e

iθn , with |an|, θn defined as follows:

(|aMl+1|, . . . , |aMl+M |) = l−1α,

(cos(θMl+1), . . . , cos(θMl+M )) = δ + γ(1, 1, . . . , 1),

sin(θMl+j) = (−1)l
√

1− cos2(θMl+j), (14)

where α ∈ Bρ, δ ∈ Bρ
♯ and γ ≥ 0 are yet to be determined (subject to the

requirement δj +γ ∈ [−1, 1]). We see that our construction already has the
following properties.

•
∑

ann
−s has σa = 0. [This is due to the factor l−1].

• (|aMl+1|, |aMl+2|, . . . , |aMl+M |) ∈ Bρ.

We now develop a sufficient condition on α, δ and γ under which
∑

ann
−s

has a holomorphic extension past s = 0. We will use Dirichlet’s test.

Proposition 10 (Dirichlet’s Test for Convergence). Let xn ≥ 0 and yn ∈

C. If x1 ≥ x2 ≥ · · · and xn → 0, and
∑N

i=1 yi has a uniform bound for all
N , then

∑

n

xnyn

converges.

Proof. The proof is a standard one and applies partial summation. �

We will prove both parts of Proposition 5 using the following proposition.

Proposition 11. Let ρ ∈ (0,∞) and M ∈ N be fixed. Let α, δ and γ ≥ 0
satisfy

M
∑

j=1

αjδj + γ

M
∑

j=1

αj = 0, (15)

δj + γ ∈ [−1, 1] for all j = 1, . . . ,M. (16)

Then, with an defined as in (14), the Dirichlet series
∑

ann
−s has a holo-

morphic extension to a neighborhood of s = 0.

Proof. We prove
∑

ann
−s has a holomorphic extension past s = 0 by

proving that
∑

ann
ǫ converges for some ǫ > 0. To prove this, the idea

is to apply Dirichlet’s test to
∑

ann
ǫ =

∑

(l−1nǫ)αje
iθn

with xn = l−1nǫ, yn = αje
iθn . However, l−1nǫ does not necessarily satisfy

the nonincreasing requirement, so we first compare
∑

ann
ǫ with the similar
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series defined by bn = Mn−1αje
iθn , i.e.,

∑

bnn
ǫ =

∑

(Mn−1nǫ)αje
iθn .

Let cn = an − bn. We have

|cn| =

(

1

l
−

M

Ml + j

)

αj =
j

l(Ml+ j)
αj = O

(

1

n2

)

and therefore
∑

cnn
ǫ converges for ǫ < 1, so

∑

ann
ǫ converges if

∑

bnn
ǫ

does.
We apply Dirichlet’s test to

∑

bnn
ǫ, with

xn = Mn−1+ǫ, yn = αje
iθn .

We see that xn is positive, nonincreasing (for ǫ ≤ 1), and converges to 0,
so we need to have a uniform bound on

N
∑

n=1

αje
iθn .

Since αj , e
iθn are periodic (with period 2M due to the (−1)l factor in

sin(θ)), it suffices to have the sum over each period equal to zero. Recalling
the definitions for cos(θn), sin(θn), the requirement is that

M
∑

j=1

αj

(

(δj + γ) + i(−1)1
√

1− cos2(θMl+j)
)

+

M
∑

j=1

αj

(

(δj + γ) + i(−1)2
√

1− cos2(θMl+j)
)

= 0.

The terms coming from sin(θ) will add to zero because of the factor of −1,

so the remaining requirement is
∑M

j=1 αj(δj + γ) = 0, which is satisfied by
the hypothesis, and the proof is complete. �

We can now prove Proposition 5.

Proof of Proposition 5 Part (I). The values for M,ρ, and δ ∈ (∂Bρ
♯ ) ∩

[−1, 1]M are given. Since δ ∈ ∂Bρ
♯ , we can choose α∗ ∈ Bρ such that

α∗ · δ = 0. We set γ = 0 and

• (|aMl+1|, |aMl+2|, . . . , |aMl+M |) = l−1α∗.
• (cos(θMl+1), cos(θMl+2), . . . , cos(θMl+M )) = δ.

The hypotheses of Proposition 11 are satisfied, therefore we have con-
structed a Dirichlet series with

•
∑

ann
−s has σa = 0.

• (|aMl+1|, |aMl+2|, . . . , |aMl+M |) ∈ Bρ.
• (cos(θMl+1), cos(θMl+2), . . . , cos(θMl+M )) ∈ Bρ

♯ .
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•
∑

ann
−s has a holomorphic extension past s = 0 [by Proposition

11].

and Part (I) is proved. �

Proof of Proposition 5 Part (II). Fix M ≥ 2 and 0 < ρ′ < ρ. Here, we
want to find {an} and γ > 0 which satisfy

•
∑

ann
−s has σa = 0.

• (|aMl+1|, |aMl+2|, . . . , |aMl+M |) ∈ Bρ.

• (cos(θMl+1), cos(θMl+2), . . . , cos(θMl+M )) ∈ Bρ′

♯ + γ(1, 1, . . . , 1).

•
∑

ann
−s has a holomorphic extension past s = 0.

To meet these four conditions, we choose {an} as in (14), with αj = ρ−j ,
and then it suffices to satisfy the third condition listed above and satisfy
the hypotheses of Proposition 11. Recalling that cos(θn) = δj+γ, the third
condition becomes

(δ1, . . . , δM ) + γ(1, 1, . . . , 1) ∈ Bρ′

♯ + γ(1, 1, . . . , 1)

which is

(δ1, . . . , δM ) ∈ Bρ′

♯ .

To satisfy the hypotheses of Proposition 11, we also need to choose δj and
γ ≥ 0 such that

M
∑

j=1

(ρ−j)δj + γ

M
∑

j=1

(ρ−j) = 0,

δj + γ ∈ [−1, 1],

(conditions (15) and (16), with αj = ρ−j).

Let us define x =
(

− (ρ′)−(M−1), 0, . . . , 0, 1
)

and δ = ǫx, where ǫ will be

a small positive number. We need to show that δ ∈ Bρ′

♯ and then we need

to find γ > 0 such that (15) and (16) are satisfied.

We see that
∑M

j=1(ρ
′)−jδj = ǫ

(

−(ρ′)−M + (ρ′)−M
)

= 0, and for r > 1
we have

M
∑

j=r

(ρ′)−jδj = ǫ(ρ′)−M > 0.

Therefore, by equation (12), δ ∈ Bρ′

♯ .

Examining the first term of equation (15), we have

M
∑

j=1

ρ−jδj = ǫ
(

−ρ−1(ρ′)−(M−1) + ρ−M
)

= ǫρ−1
(

ρ−M − (ρ′)−(M−1)
)

< 0.
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Therefore we can solve equation (15) for γ and we have

γ = −





M
∑

j=1

ρ−jδj



 /
M
∑

j=1

ρ−j = −ǫρ−1
(

ρ−(M−1) − (ρ′)−(M−1)
)

/
M
∑

j=1

ρ−j .

This choice of γ satisfies equation (15), we have γ > 0, and γ scales linearly
in ǫ. Therefore, by letting ǫ approach zero, we will satisfy (16) as well. This
completes the proof. �
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and divergence everywhere of Taylor and Dirichlet series, Real Analysis Exchange,
29.2 (2004), 557–586.

[4] H. F. Bohnenblust and E. Hille, On the absolute convergence of Dirichlet series,
Annals of Mathematics, 32.3 (1931), 600–622.
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