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VOLUME OF A TETRAHEDRON

IN THE TAXICAB SPACE

H. Barış Çolakoğlu and Rüstem Kaya

Abstract. In this paper, we give the taxicab version of the Heron-
Tartaglia formula to calculate the volume of a tetrahedron using the taxicab
distance.

1. Introduction. The three dimensional taxicab space is constructed
by using the taxicab metric

dT (P, Q) = |x1 − x2| + |y1 − y2| + |z1 − z2|

in three dimensional Cartesian space instead of the well-known Euclidean
metric

dE(P, Q) =
[

(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2
]1/2

,

where P = (x1, y1, z1) and Q = (x2, y2, z2). In the taxicab space, the
taxicab distance dT between points P and Q is the length of one of the
shortest paths from P to Q composed of line segments, each parallel to a
coordinate axis. Since taxicab geometry has a distance function different
from that in Euclidean geometry, it is interesting to study the taxicab
analogues of topics that include the distance concept in Euclidean geometry
[1, 2, 3, 4, 5, 7]. Here, we study the following problem: How can one
compute the volume of a tetrahedron using the taxicab distance?

2. Preliminaries. In Euclidean geometry the well-known Heron’s
Formula, which expresses the area A of a triangle in terms of the lengths
of its edges a, b, c , can be given by

A2 =
1

16

(

2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4
)

or
A2 = p(p − a)(p − b)(p − c),

where p = (a + b + c)/2 which is the semiperimeter of the triangle. The
taxicab version of Heron’s Formula was given in [4] by Ozcan and Kaya.

The generalization of Heron’s Formula to the volume of a tetrahedron
is also well-known in Euclidean geometry: Let li, 1 ≤ i ≤ 6, denote the
the Euclidean lengths of the edges of tetrahedron ABCD such that l1 =
dE(B, C), l2 = dE(A, C), l3 = dE(A, B), l4 = dE(D, C), l5 = dE(D, A),



22 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

and l6 = dE(D, B) (see Figure 1). Then the volume V of tetrahedron
ABCD can be calculated by the formula

V 2 =
1

144

(l21l
2
5(l

2
2 + l23 + l24 + l26 − l21 − l25) + l22l

2
6(l

2
1 + l23 + l24 + l25 − l22 − l26)

+ l23l
2
4(l

2
1 + l22 + l25 + l26 − l23 − l24) − l21l

2
2l

2
3 − l21l

2
4l

2
6 − l22l

2
4l

2
5 − l23l

2
5l

2
6)

which is known as Heron-Tartaglia Formula [6]. The aim of this work is to
give a taxicab version of this formula.

Figure 1

3. Taxicab Version of Heron-Tartaglia Formula. In the taxicab
space, there are cases in which it is possible to construct infinitely many
tetrahedra having given taxicab lengths of its edges ti , 1 ≤ i ≤ 6, such
that no two have the same volume (see Example). Therefore, knowing only
the taxicab lengths of edges of a tetrahedron is not sufficient to calculate
its volume generally. Moreover, taxicab lengths of these edges are not
invariant, in general, under rotations and reflections. Thus, we use the
coordinates of vertices of the tetrahedron additionally to give a general
volume formula for the tetrahedron in taxicab geometry.

The following example refers to Figure 2, in which two different taxicab
circles are shown. Recall that a taxicab circle with center C and radius r is
the set of all points whose taxicab distance to C is r. This locus of points
is a square with center C, each side having slope ±1, and each diagonal
having length 2r. Just as for a Euclidean circle, the center C and one point
at a taxicab distance r from C completely determine the taxicab circle.

Example. Let a, b, and c be positive real numbers, and let B =
(0,−a, 0), C = (0, 0, 0), D = (0, 0, c), P = (0, b, 0) and P ′ = (−b, 0, 0) be
points in the taxicab space. Choose a point A in the line segment PP ′,
such that ABCD is a tetrahedron. Let C1 and C2 be taxicab circles in
the plane z = 0, with centers C and B, and with radius b and (a + b),
respectively (see Figure 2). Since A is on both C1 and C2, it is obvious
that dT (C, A) = b and dT (B, A) = a + b. Now, it is easy to see that if the
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point A moves on the line segment PP ′, the taxicab lengths of edges of
tetrahedron ABCD do not change, but the volume of tetrahedron ABCD
changes since the area of triangle ABC changes. Thus, there are infinitely
many tetrahedra ABCD having taxicab lengths of its edges dT (B, C) = a,
dT (A, C) = b, dT (A, B) = a + b, dT (D, C) = c, dT (D, A) = c + b, and
dT (D, B) = c + a, such that no two have the same volume.

Figure 2

The following theorem gives a general volume formula for the tetrahe-
dron in the taxicab space.

Theorem. The volume V of tetrahedron ABCD with the vertices A =
(a1, a2, a3), B = (b1, b2, b3), C = (c1, c2, c3), and D = (d1, d2, d3) in the
taxicab space, can be calculated by the formula

V 2 =
1

144

((α1t1)
2(α5t5)

2((α2t2)
2 + (α3t3)

2 + (α4t4)
2 + (α6t6)

2 − (α1t1)
2 − (α5t5)

2)

+ (α2t2)
2(α6t6)

2((α1t1)
2 + (α3t3)

2 + (α4t4)
2 + (α5t5)

2 − (α2t2)
2 − (α6t6)

2)

+ (α3t3)
2(α4t4)

2((α1t1)
2 + (α2t2)

2 + (α5t5)
2 + (α6t6)

2 − (α3t3)
2 − (α4t4)

2)

− (α1t1)
2(α2t2)

2(α3t3)
2 − (α1t1)

2(α4t4)
2(α6t6)

2

− (α2t2)
2(α4t4)

2(α6t6)
2 − (α3t3)

2(α5t5)
2(α6t6)

2),
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where

α1 =





3
∑

j=1

(bj − cj)
2





1/2

/

3
∑

j=1

|bj − cj | ,

α2 =





3
∑

j=1

(aj − cj)
2





1/2

/

3
∑

j=1

|aj − cj | ,

α3 =





3
∑

j=1

(aj − bj)
2





1/2

/

3
∑

j=1

|aj − bj | ,

α4 =





3
∑

j=1

(cj − dj)
2





1/2

/

3
∑

j=1

|cj − dj | ,

α5 =





3
∑

j=1

(aj − dj)
2





1/2

/

3
∑

j=1

|aj − dj | ,

α6 =





3
∑

j=1

(bj − dj)
2





1/2

/
3

∑

j=1

|bj − dj | ,

and t1 = dT (B, C), t2 = dT (A, C), t3 = dT (A, B), t4 = dT (D, C), t5 =
dT (D, A), t6 = dT (D, B).

Proof. Let ABCD be a tetrahedron in the taxicab space with vertices
A = (a1, a2, a3), B = (b1, b2, b3), C = (c1, c2, c3), D = (d1, d2, d3) such
that the taxicab lengths of its edges t1 = dT (B, C), t2 = dT (A, C), t3 =
dT (A, B), t4 = dT (D, C), t5 = dT (D, A), t6 = dT (D, B) (see Figure 3).
Let li be Euclidean lengths of the edges with taxicab lengths ti, 1 ≤ i ≤ 6,
respectively.

Figure 3

The following equation, which relates the Euclidean distance to the
taxicab distance between two points in the Cartesian space, can be easily
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derived by a straightforward calculation with the coordinate definitions of
dE(P, Q) and dT (P, Q) given in Section 1. If the line through P and Q has
direction vector 〈p, q, r〉, then

dE(P, Q) =
[

(

p2 + q2 + r2
)1/2

/(|p| + |q| + |r|)
]

dT (P, Q).

Since 〈b1 − c1, b2 − c2, b3 − c3〉 is a direction vector of the line through
B = (b1, b2, b3) and C = (c1, c2, c3), one can obtain using the last equation
that

dE(B, C) =











3
∑

j=1

(bj − cj)
2





1/2

/

3
∑

j=1

|bj − cj |






dT (B, C).

Thus, l1 = α1t1, where

α1 =





3
∑

j=1

(bj − cj)
2





1/2

/
3

∑

j=1

|bj − cj | .

Similarly, one obtains that

li = αiti, 1 ≤ i ≤ 6,

where each αi is as in the statement of the theorem. Replacing li with
αiti, 1 ≤ i ≤ 6, in the Heron-Tartaglia Formula, one gets the equation in
the statement of the theorem, which is the taxicab version of the Heron-
Tartaglia Formula.

Remark. Every convex polyhedron can be thought of as the union of
a finite number of tetrahedra with a common vertex and with bases in the
faces of the polyhedron. Therefore, the volume of any convex polyhedron
given by its vertices in the taxicab space can be calculated using the taxicab
version of the Heron-Tartaglia Formula.

Considering the Remark, one can easily obtain the volume formula for
the taxicab sphere in terms of the length of its edge or its radius, using the
taxicab version of the Heron-Tartaglia Formula, as follows.

The volume V of the taxicab sphere with radius r (see Figure 4) can
be calculated by the formula

V =
4

3
r3 or V =

1

6
l3,

where l is the taxicab length of an edge of the taxicab sphere.
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Figure 4
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