
SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions,
or new insights on old problems are always welcomed by the problem editor.

173. Proposed by Mohammad K. Azarian, University of Evansville, Evansville,
Indiana.

Show that

∞
∑

n=1

xn

xn−1

=
7

2
,

provided

xn−1(x
2
n−2 + xn−1xn−3) − 6xn−3(x

2
n−1 − xnxn−2) = 0, n ≥ 3,

and x0 = x1 = x2 = 1.

Solution by Panagiotis T. Krasopoulos, Athens, Greece. First, let us observe
that from the statement of the problem it is assumed implicitly that xk 6= 0
for any k ≥ 0. This fact will be proved in the process of the following proof.

Let us assume that xk 6= 0 for any 0 ≤ k ≤ n − 1. We divide the given
equation by the product xn−1xn−2xn−3 and we define an = xn/xn−1, so
we obtain

an−2 + an−1 − 6an−1 + 6an = 0 if and only if 6an − 5an−1 + an−2 = 0,

where n ≥ 3 and a1 = a2 = 1. This is a linear homogeneous difference
equation with constant coefficients and can be solved directly by using its
characteristic equation. After some algebraic calculations we have

an = 8

(

1

2

)n

− 9

(

1

3

)n

for n ≥ 1.

It can easily be seen that 8

9
>
(

2

3

)n
for n ≥ 1 and so an > 0. Since an > 0

and x0 = x1 = x2 = 1 > 0, by induction we obtain that xk > 0 for any

88 VOLUME 23, NUMBER 1



SOLUTIONS

k ≥ 0 and so the division by xk is allowed. Now the result follows directly
since

∞
∑

n=1

xn

xn−1

=

∞
∑

n=1

an = 8

∞
∑

n=1

(

1

2

)n

− 9

∞
∑

n=1

(

1

3

)n

= 8 − 9 ·
1

2
=

7

2
.

We have used the infinite geometric series

∞
∑

n=1

(

1

2

)n

= 1 and
∞
∑

n=1

(

1

3

)n

=
1

2
.

The proof is complete.

Also solved by Shang Nina, Shandong University of Technology, Zibo, China;
Mihai Cipu, Institute of Mathematics of the Romanian Academy, Bucharest,
Romania; G. C. Greubel, Newport News, Virginia; Kandasamy Muthuvel,
University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; Kenneth B. Dav-
enport, Dallas, Pennsylvania; Dr. Louis Scheinman, Toronto, Canada; and
the proposer.

174. Proposed by Ovidiu Furdui, Cluj, Romania.

Let k ≥ 1 and p ≥ 0 be two nonnegative integers. Find the sum

S(p) =
∞
∑

m1,...,mk=1

1

m1m2 · · ·mk(m1 + m2 + · · · + mk + p)
.

Solution by Paolo Perfetti, Dipartimento di Matematica, Università degli
studi “Tor Vergata” Roma, Italy. We write

1

m1 + · · · + mk + p
=

∫ 1

0

xm1+···+mk+p−1 dx

FEBRUARY 2011 89



MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

and then

S(p) =

∞
∑

m1,...,mk=1

1

m1m2 · · ·mk

∫ 1

0

xm1+···+mk+p−1 dx

=

∫ 1

0

xp−1 dx
∞
∑

m1,...,mk=1

xm1+···+mk

m1m2 · · ·mk

=

∫ 1

0

xp−1(−1)k(ln(1 − x))k dx

= (−1)k

∫ 1

0

(1 − x)p−1(ln x)k dx.

Set p = 0. The integral is

(−1)k

∫ 1

0

(1 − x)−1(ln x)k dx =

∞
∑

n=0

(−1)k

∫ 1

0

xn(ln x)k dx

=

∞
∑

n=0

(−1)k

(

xn+1

n + 1
(ln x)k

∣

∣

∣

∣

1

0

−
k

n + 1

∫ 1

0

xn(ln x)k−1 dx

)

=

∞
∑

n=0

(−1)k

(

−
k

n + 1

∫ 1

0

xn(ln x)k−1 dx

)

.

This means that if we define

In,k =

∫ 1

0

xn(ln x)k dx,

we have In,k = −k
n+1

In,k−1 which implies

In,k =
(−1)kk!

(n + 1)k
In,0 =

(−1)kk!

(n + 1)k+1
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and yields

S(0) =
∞
∑

n=0

k!

(n + 1)k+1
= k!ζ(k + 1).

Let p ≥ 1. The integral is

(−1)k

p−1
∑

n=0

(

p − 1

n

)
∫ 1

0

(−x)n(ln x)k dx

= (−1)k

p−1
∑

n=0

(

p − 1

n

)

(−1)n (−1)kk!

(n + 1)k+1

=

p−1
∑

n=0

(

p − 1

n

)

(−1)n k!

(n + 1)k+1
.

The proof is complete.

Also solved by G. C. Greubel, Newport News, Virginia and the proposer.

175. Proposed by N. J. Kuenzi, Oshkosh, Wisconsin.

The positive integer 45 can be written as a sum of five consecutive positive
integers (SCPI): 45 = 7 + 8 + 9 + 10 + 11; furthermore, 45 can be written
as a SCPI in exactly five ways, namely, 45 = 22 + 23 = 14 + 15 + 16 =
7+8+9+10+11 = 5+6+7+8+9+10 = 1+2+3+4+5+6+7+8+9+10.
Is there a positive integer that can be written as a sum of 2009 consecutive
positive integers and which can be written as a SCPI in exactly 2009 ways?

Solution by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh,
Wisconsin. We shall generalize the given problem as follows.

Prove that 3s, where s > 1, can be written as a sum of s consecutive
positive integers and which can be written as a sum of consecutive positive
integers in exactly s ways. In particular, 32009 can be written as a sum
of s consecutive positive integers and which can be written as a sum of
consecutive positive integers in exactly 2009 ways.
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Proof. We say that a + (a + 1) + · · · + (a + n) = 3s is solvable if a and n
are positive integers. We shall show that a + (a + 1) + · · ·+ (a + n) = 3s is
solvable if and only if n = 3t−1 for some positive integer t with 1 ≤ t ≤ s/2,
or n = 2 · 3t − 1 for some integer t with 0 ≤ t < s/2.

Suppose that n = 3t − 1 for some positive integer t with 1 ≤ t ≤ s/2.
Let

a =
3s

n + 1
−

n

2
.

Clearly a is an integer and

a =
3s

3t
−

(3t − 1)

2
=

2 · 3s − 32t + 3t

2 · 3t
≥

2 · 3s − 3s + 3t

2 · 3t
> 0.

Suppose that n = 2 · 3t − 1, for some integer t with 0 ≤ t < s/2. Let

a =
3s

n + 1
−

n

2
.

Clearly

a =
3s−t − 2 · 3t + 1

2

is an integer. Since 2t < s, 2t ≤ s − 1 and

a =
3s

2 · 3t
−

2 · 3t − 1

2
=

3s − 2 · 32t + 3t

2 · 3t

≥
3s − 2 · 3s−1 + 3t

2 · 3t
=

3s−1 + 3t

2 · 3t
> 0.

Hence a + (a + 1) + · · · + (a + n) = 3s is solvable if n = 3t − 1 for some
positive integer t with 1 ≤ t ≤ s/2 or n = 2 · 3t − 1 for some integer t with
0 ≤ t < s/2.
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Conversely, suppose that a + (a + 1) + · · ·+ (a + n) = 3s is solvable. Since

3s = a + (a + 1) + · · · + (a + n) =
(n + 1)(2a + n)

2
,

a =
3s

n + 1
−

n

2
.

Consider the case that n is even. Since a and n/2 are positive integers,
n + 1 divides 3s and hence n = 3t − 1 for some 1 ≤ t. Thus,

a =
3s

3t
−

3t − 1

2
=

2 · 3s−t − 3t + 1

2
> 0 is an integer

implies 2 · 3s−t − 3t + 1 > 1 which implies 2 · 3s−t − 3t > 0 which implies
2 > 32t−s which implies 2t − s ≤ 0 which implies t ≤ s/2.

Consider the case that n is odd. Since

a =
3s

n + 1
−

n

2
=

2 · 3s − n(n + 1)

2(n + 1)
,

n + 1 divides 2 · 3s. Consequently, n+1

2
= 3t for some 0 ≤ t. Thus,

a =
3s

2 · 3t
−

2 · 3t − 1

2
=

3s−t − 2 · 3t + 1

2
> 0 is an integer

implies 3s−t − 2 · 3t + 1 > 1 which implies 3s−t − 2 · 3t > 0 which im-
plies 2 < 3s−2t which implies s − 2t > 0 which implies t < s/2. Hence
if a + (a + 1) + · · · + (a + n) = 3s is solvable, then n = 3t − 1, for some
positive integer t with 1 ≤ t ≤ s/2 or n = 2 · 3t − 1, for some integer t with
0 ≤ t < s/2.

It is easy to see that the cardinality of the set

{s :n = 3t − 1, for some positive integer t with 1 ≤ t ≤ s/2 or

n = 2 · 3t − 1, for some integer t with 0 ≤ t < s/2}
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is s. This completes the solution of the generalized problem. �

Also solved by Calvin A. Curtindolph, Black River Falls, Wisconsin and
the proposer.

176. Proposed by José Luis Dı́az-Barrero, Universidad Politécnica de
Cataluña, Barcelona, Spain.

Let a, b, c be the lengths of the sides of a triangle ABC with altitudes
ha, hb, and hc, respectively. Prove that

1

3

∑

cyclic

a2

bc(b + c − a)
≥

ha + hb + hc

aha + bhb + chc

.

Solution by Panagiotis T. Krasopoulos, Athens, Greece. Let E be the area
of the triangle. Then aha = bhb = chc = 2E. The inequality then becomes

∑

cyclic

a3

abc(b + c − a)
≥

3

6E
(ha + hb + hc)

or

∑

cyclic

a3

(b + c − a)
≥

3

6E
(2Ebc + 2Eac + 2Eab) = bc + ac + ab.

Now, since the triangle is not degenerate, b + c − a > 0, a + c− b > 0, and
a+b−c > 0 holds. We multiply both sides by (b+c−a)(a+b−c)(a+c−b) >
0. After some algebraic calculations we obtain

(a3 + b3 + c3 + 3abc − a2b − a2c − b2a − b2c − c2a − c2b)(a + b + c)2 ≥ 0.

It is enough to prove that

a3 + b3 + c3 + 3abc − a2b − a2c − b2a − b2c − c2a − c2b ≥ 0,

or equivalently

a(a − b)(a − c) + b(b − a)(b − c) + c(c − a)(c − b) ≥ 0.
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The last inequality holds directly from Schur’s inequality, i.e.,

at(a − b)(a − c) + bt(b − a)(b − c) + ct(c − a)(c − b) ≥ 0,

for non-negative real numbers a, b, c and for t = 1. This completes the
proof.

Also solved by Kee-Wai Lau, Hong Kong, China; Mihai Cipu, Institute
of Mathematics of the Romanian Academy, Bucharest, Romania (2 solu-
tions); Oleh Faynshteyn, Leipzig, Germany; and the proposer.
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