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REAL COMPACT OPERATORS IN FACTORS OF TYPE I,
II, AND IIIλ, 0 < λ < 1
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Abstract. In the present paper the real ideals of relatively compact
operators of W ∗-algebras are considered. Similar to the complex case, a
description (up to isomorphism) of the real two-sided ideal of relatively
compact operators of the complex W ∗-factors is given.

1. Introduction. Let B(H) be the algebra of all bounded linear
operators on a complex Hilbert space H . A weakly closed ∗-subalgebra M

with identity element 1 in B(H) is called a W ∗-algebra. Let P (M) be the
set of all projections of M , I be the ideal of all operators with the finite
range projection relative to M , J = I be the ideal of compact operators
relatively to M . It is known [2], that I and J are proper if and only if M
is infinite; and that J is the maximal two-sided ideal of M without infinite
projections. The compact operators relative to M were defined by Sonis [6]
(in the case of the algebras with Segal measure, i.e. for finite W ∗-algebras)
as the operators which are mapping bounded sets into relatively compact
sets. In [4], an analogous notion of finiteness and compactness in purely
infinite W ∗-algebras was introduced and considered.

In the present paper we introduce and consider the ideal of compact
operators relative to a real W ∗-algebra. In a manner similar to the complex
case, a description and classification (up to isomorphism) of the real two-
sided ideal of the relatively compact operators is given.

2. Preliminary Information. A real ∗-subalgebra R with 1 in B(H)
is called a real W ∗-algebra if it is closed in the weak operator topology and
R
⋂
iR = {0}. A real W ∗-algebra R is called a real factor if its center

Z(R) contains only elements of the form {λ1}, λ ∈ R. We say that a real
W ∗-algebra R is of the type Ifin, I∞, II1, II∞, or IIIλ (0 ≤ λ ≤ 1) if the
enveloping W ∗-algebra U(R) = R+̇iR has the corresponding type in the
ordinary classification of W ∗-algebras [1].

A linear mapping α with α(x∗) = α(x)∗ of the algebra R into itself is
called

-an ∗-automorphism if α(xy) = α(x)α(y);
-an ∗-antiautomorphism if α(xy) = α(y)α(x),
-an involutive if α2(x) = α(α(x)) = x, for all x, y ∈ R.
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A trace on a (complex or real) W ∗-algebra N is a linear function τ on
the set N+ of positive elements of N with values in [0,+∞], satisfying the
following condition:

τ(uxu∗) = τ(x), for an arbitrary unitary u and x in N.

The trace τ is said to be finite if τ(1) < +∞; semifinite if given any
x ∈ N+ there is a nonzero y ∈ N+, y ≤ x with τ(y) < +∞.

Let R ⊂ B(H) be a real W ∗-algebra, M = R + iR be the enveloping

W ∗-algebra for R. Let τ be a semifinite trace on R. Subspace K of H with
KηR, i.e. PK ∈ R, is called

-finite relative to τ if τ(PK ) < ∞, where PK projection of H on K;
-compact relative to τ if K is an approximate of the bounded sets from
relatively finite subspaces.

Real operator x of H (i.e. x ∈ R) is called real compact relative to τ if
it is the operator mapping bounded sets into relatively compact sets.

3. Compact Operators in Semifinite Real Factor. Let I(R) be
the set of all relatively compact operators of R.

Theorem 1. Let R be a semifinite real factor. Then I(R) is a unique
(nonzero) uniformly closed two-sided ideal of R.

Proof. See [5] for details.

Theorem 2. Let R be a semifinite real factor, U = R+̇iR is its en-
veloping factor. Let I(U) be a unique (nonzero) uniformly closed two-sided
ideal of U . Then

I(U) = I(R)+̇iI(R).

Proof. Since I(R) is a uniformly closed two-sided ideal, then
I(R)+̇iI(R) is also a uniformly closed two-sided ideal. In fact, let {cn =
an + ibn} be a Cauchy sequence in I(R)+̇iI(R), i.e. ‖cn − cm‖ → 0 as
n,m → ∞. Then ‖(an − am) + i(bn − bm)‖ → 0 as n,m → ∞. Using
Lemma 1.1.3 (iii) from [1] we have

max{‖an − am‖, ‖bn − bm‖} ≤ ‖(an − am) + i(bn − bm)‖.

Therefore, ‖an − am‖ → 0 and ‖bn − bm‖ → 0 as n,m → ∞. Thus, {an}
and {bn} are Cauchy sequences in I(R). Hence, they converge to a and b

in I(R), respectively. Thus, cn = an + ibn → a+ ib in I(R)+̇iI(R), which
is thus uniformly closed. Now, if x = a+ ib ∈ U , y = c+ id ∈ I(R)+ iI(R),
then xy = (ac−bd)+i(ad+bc) ∈ I(R)+̇iI(R). Similarly, yx ∈ I(R)+̇iI(R).
Therefore, I(R)+̇iI(R) is a uniformly closed two-sided ideal of U . Thus,
we have proved that I(R)+̇iI(R) ⊂ I(U). Now, since for x ∈ I(U) we have
x = a+ ib, a, b ∈ R, let I(U) = A+̇iB, for some A,B ⊂ R. But, for a ∈ A,
b ∈ B we have ab, ba ∈ I(U). Therefore, ab, ba ∈ A, hence, A = B, i.e.,
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I(U) = A+̇iA. Then I(R) ⊂ A as A, I(R) ⊂ R. Let {an} be a Cauchy
sequence in A ⊂ I(U). Since I(U) is uniformly closed, {an} converges to
a ∈ I(U). But, R is also uniformly closed. Therefore, a ∈ R. Then a ∈ A.
Now, let x ∈ A, y ∈ R. Since I(U) is a two-sided ideal of U , xy, yx ∈ I(U),
i.e. xy, yx ∈ A as xy, yx ∈ R. Therefore, A is a uniformly closed two-sided
ideal of R with I(R) ⊂ A. Then by Theorem 1 we have A = I(R). This
completes the proof of the theorem.

4. Real Ideals of Compact Operators of Factors of Type IIIλ,
(λ 6= 1). Let us recall [3] the notion of the crossed product of a W ∗-algebra
by a locally compact topological group by its ∗-automorphism. Let N

be a (complex or real) W ∗-algebra in B(H), γ:G → Aut(M) be a group
homomorphism such that each map g → γg is strongly continuous. Let
L2(G,H) be the Hilbert space of all H-valued square integrable functions
on G. We consider a ∗-algebra U ⊂ B(L2(G,H)), generated by operators
of the form: πγ(a)(a ∈ M) and u(g)(g ∈ G), where

(πγ(a)ξ)(h) = γ−1
h (a)ξ(h), (u(g)ξ)(h) = ξ(g−1h),

ξ = ξ(h) ∈ L2(G,H), g, h ∈ G.

The algebra U is called crossed product of M by G, and denoted
by W ∗(M,G) (or M ×γ G). Moreover, there exists a canonical em-
bedding πγ:M → πγ(M) ⊂ U . Each element x ∈ U has the form:
x =

∑
g∈G πγ(x(g))u(g), where x(·) is an M -valued function on G.

Let θ be a ∗-automorphism of N . For the action {θn} of the group Z

on N we denoted by W ∗(θ,N), (or N ×θ Z) the crossed product of N by θ.
Now, let R be a factor of type IIIλ, (λ 6= 1). Then by [7], either

-there exist a real factor F of type II∞ and an automorphism θ of F
such that R is isomorphic to the crossed product F ×θ Z or
-there exist a complex factorN of a type II∞ and an antiautomorphism
σ of N such that R is isomorphic to ((N ⊕Nop)×σ Z, β), where Nop

is the opposite W ∗-algebra for N , β(x, y) = (y, x), for all x, y ∈ N .

In the first case, let I(R) be the norm closure of span{x ∈ R+ | E(x) ∈
I(F )}, where E:R → F is a unique faithful normal conditional expectation.

In the second case, let I(R) be the norm closure of span{x ∈
R+ | E(x) ∈ I(N ⊕ Nop)}, where E is a unique faithful normal condi-
tional expectation from M to N ⊕Nop.

If we now apply Theorem 1 and use the scheme of proof of Theorem 6.2
from [4], then we prove a real analogue of the theorem of Halpern-Kaftal.

Theorem 3. In each case I(R) is a unique (nonzero) uniformly closed
two-sided ideal of R.

Similar to Theorem 2, we can prove the following theorem.
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Theorem 4. Let M be an injective factor of type IIIλ, 0 < λ < 1, R
and Q are non-isomorphic real factors with the enveloping factor M , i.e.
R+̇iR = Q+̇iQ = M . If I(M) is a (nonzero) uniformly closed two-sided
ideal of M , then

I(M) = I(R)+̇iI(R) and I(M) = I(Q)+̇iI(Q),

where I(R) and I(Q) are non-isomorphic unique uniformly closed two-sided
ideals of R and Q, respectively.

5. Main Result. Let M be a factor, α - an involutive ∗-
antiautomorphism of M . Then from [1], the set R = {x ∈ M : α(x) = x∗}
is a real factor and the enveloping W ∗-algebra U(R) of R coincides with
M , and conversely, given an arbitrary real factor R there exists a unique
involutive ∗-antiautomorphism αR of the W ∗-algebra U(R) such that
R = {x ∈ U(R) : α(x) = x∗}. Moreover, R1 and R2 are two real ∗-
isomorphic factors if and only if the enveloping factors U(R1) and U(R1)
are ∗-isomorphic and the involutive ∗-antiautomorphism αR1

and αR2
are

conjugate, i.e. αR1
= θ · αR2

· θ−1, for some ∗-automorphism θ.
It is known [1] that

-in factor of type In, n even, there exists unique conjugacy class on
involutive ∗-antiautomorphism;
-in factor of type In, n odd or n = ∞, there exist exactly two conjugacy
classes on involutive ∗-antiautomorphism;
-in injective factor of type II1 there exists unique conjugacy class on
involutive ∗-antiautomorphism;
-in injective factor of type II∞ there exists unique conjugacy class on
involutive ∗-antiautomorphism;
-in injective factor of type IIIλ, 0 < λ < 1, there exist exactly two
conjugacy classes on involutive ∗-antiautomorphism;
-in injective factor of type III1 there exists unique conjugacy class on
involutive ∗-antiautomorphism.

Hence, from Theorems 1 and 3 we obtain the following theorem.

Theorem 5. Let M be a factor.

1) IfM has type In, n even, then inM there exist two (nonzero) uniformly
closed two-sided real ideals up to isomorphisms;

2) If M has type In, n odd or n = ∞ , then in M there exist three
(nonzero) uniformly closed two-sided real ideals up to isomorphisms;

3) If M is an injective factor of type II1 or type II∞, then in M there
exist two (nonzero) uniformly closed two-sided real ideals up to iso-
morphisms;

4) If M is an injective factor of type IIIλ (0 < λ < 1), then in M there
exist three (nonzero) uniformly closed two-sided real ideals up to iso-
morphisms.
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