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ILLUSTRATING THE PRIME NUMBER THEOREM

VIA MATHEMATICA

Werner Horn

Abstract. This paper gives an introduction to the Prime Number Theorem

via the use of a computer algebra system. Special consideration is given to the fact

that the results might mislead the unsuspecting person to expect an asymptotically

linear relationship. The article is accessible to anyone who had two semesters of

calculus.

1. Introduction. Two intriguing questions prompted the investigation below.

The first one is a mathematical question, namely, if one picks a 10-digit integer at

random, what is the probability that this integer is a prime number? This question

can be answered by just counting the number of primes with 10 or fewer digits and

dividing the result by 1010. While this is an arduous process, a computer algebra

system such as Mathematica will certainly help us do this. Before such luxuries,

mathematicians were searching for quick approximations for the answer to this

and related questions. These approximations are collectively known as the Prime

Number Theorem, which was conjectured in the last decade of the 18th century.

The second even more intriguing question is, how could Gauss and Legendre

guess the correct approximate answer to the first question based on the empirical

evidence available at this time? Or, loosely speaking, can we read what was on

the mind of the teenager Gauss 200 years ago? While it is impossible to know the

correct answer to these questions we will give some indications how Gauss might

have arrived at his result.

Unfortunately, a rigorous treatment of the Prime Number Theorem is reserved

to advanced students of mathematics. However, with the use of computer algebra

systems the content (not the proof) of this theorem is accessible to anyone who

had two semesters of calculus. The computer algebra system will therefore allow

us to get a taste of the beauty of higher mathematics. Furthermore, it will show

the interested student a use of calculus which is beyond the usual examples in

every book. We will use Mathematica to illustrate the Prime Number Theorem

and to introduce several special functions. The example was used in a class where

mathematics students were introduced to the use of computer algebra systems.

Most of the students had just finished a second semester of calculus before taking

this class. The class consisted of ten projects where computer algebra systems were
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used. The Prime Number Theorem was one of the last projects. The project at

least raised the awareness of students to this subject.

2. The Function π(x) and the Statement of the Prime Number The-

orem. Most often the Prime Number Theorem is stated in terms of the function

π(x), which is defined for positive real numbers and is simply the number of primes

which are less than or equal to x. So, for example, π(3.5) = 2, since there are two

primes, 2 and 3, which are less than or equal to 3.5. π(4.9) = 2 and π(5) = 3, i.e.

the function jumps at 5, or at any prime number for that matter; and π(1010)/1010

is the explicit answer to the first of the questions of the introduction. In general,

π(x) is an upper-semi-continuous step function, which has a jump of magnitude

one at each prime number. Another commonly used function is the function P (n),

which denotes the nth prime number, so P (1) = 2 and P (4) = 7, etc. The domain

of P (n) is the positive integers.

P (n) and π(x) are closely related; indeed one has π(P (n)) = n and if p is a

prime number one also has P (π(p)) = p (i.e. these functions are inverses of each

other when restricted to the primes).

The Prime Number Theorem gives asymptotic expressions for the functions

π(x) and P (n). We say that f(x) ≈ g(x) (f is asymptotic to g), if limx→∞

f(x)
g(x) = 1.

Using this we can state the different forms of the Prime Number Theorem.

1. Gauss’ Statement:

π(x) ≈

∫ x

2

1

ln t
dt .

2. Legendre’s Statement:

π(x) ≈
x

lnx− 1.08366
.

3. Modern Statement:

π(x) ≈
x

lnx
.

4. Statement for P (n): P (n) ≈ n lnn.

The fourth statement says that the nth prime number is approximately of size n lnn

for large n, e.g. the 10,000th prime is approximately as big as 10,000 ln 10,000 =

92,103.4 (actually the 10,000th prime is 104,729).
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It is a worthwhile exercise in the use of l’Hospital’s Rule to prove the equiva-

lence of the first three statements. To show that the last statement is equivalent to

the first three is a little more difficult.

While the names of C. F. Gauss and A. M. Legendre are both connected to

this theorem, neither actually proved it. Both developed their conjectures in the

last decade of the 18th century (when Gauss was still a teenager), based on the

empirical evidence for x < 1, 000, 000. This conjecture was driving the development

of mathematics, especially complex analysis, for most of the 19th century. The

theorem was finally proven independently by J. Hadamard and C. J. de la Vallee-

Poussin in the last decade of the 19th century. Both proofs relied on earlier works

by Chebychev and Riemann. In 1949 A. Selberg and P. Erdős came up with a new

(elementary) proof of the Prime Number Theorem. Here, elementary means not

requiring complex analysis. The interested reader can find a proof of the theorem

in [4] and additional information in [1, 2, 5, 6].

The right hand side of Gauss’ statement is closely related to another special

function, the logarithmic integral function li(x) defined by:

li(x) =

∫ x

0

dt

ln t
.

Using this the Prime Number Theorem can be stated as

π(x) ≈ li(x)− li(2) .

3. The use of Mathematica. All the necessary functions are available as

special functions in Mathematica. The expressions

PrimePi[x], Prime[k], LogIntegral[x],

will produce π(x), P (k), and li(x), respectively.

However, Mathematica will actually use some asymptotic algorithms to evalu-

ate π(x) and P (k) for large values of x and k [7]. These asymptotic algorithms are

somewhat more sophisticated than just the Prime Number Theorem, however, the

results for very large values of x should still be considered with care. But since we

only want to use the data produced by Mathematica as an illustration we should

not be too concerned with this fact. To achieve some peace of mind we compared

the results of

PrimePi[x]
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for some values of x ≤ 100, 000, 000 with the tabulated exact values. Mathematica

did produce the exact answer in the cases we checked. One of the advantages of

using Mathematica is that we can represent the results graphically which should

give us an edge over the tables which were available to Gauss and Legendre. To

obtain the graph of the function P (n) one uses the command

ListPlot[Table[Prime[n], {n,200}]]

which first tabulates the first 200 primes and then represents them in a coordinate

system. The result of this is shown in Figure 1. However, this method of plotting

functions, which is defined on the integers becomes very time and memory consum-

ing if we want to allow large domains, i.e. when 200 is replaced by 1,000,000 or any

other huge number.

Figure 1: The first 200 primes; the graph Figure 2: The graph of π(x) for

of P (n) for n ≤ 200. 1 ≤ x ≤ 100.

To get a quicker graphical representation we extend the function P (n) to all

real numbers, which are greater or equal to one via F (x) = P ([x]), where the

bracket denotes the usual greatest integer function. In Mathematica one writes

F[x−]:=Prime[Floor[x]];

For functions like F (x), π(x), or li(x), which are defined on the positive real num-

bers, the usual Plot command of Mathematica can be applied. This command

samples the function values over the interval of plotting and interpolates the func-

tion between the sampling points. The function is only evaluated at a few hundred

points. If we used ListPlot for n ≤ 1, 000, 000, P (n) would be evaluated at

1,000,000 points. The interpolation process will also produce a smoother graph

than one would obtain via ListPlot. The command Plot was used to obtain the

graph of π(x) for 1 ≤ x ≤ 100 shown in Figure 2. However, since we are only in-

terested in the large scale behavior, the smoother graph contains all the necessary

information.
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4. The Large Scale Behavior of π(x) and P(n). In this section we

want to represent the behavior of π(x) and P (n) for very large values of x and

n, respectively. In particular, we will try to follow Gauss and Legendre and guess

the asymptotic behavior of these functions. We will make use of our technological

advantage over the late 18th century and use more data than Gauss or Legendre

could ever dream. Figure 3 shows the graph of π(x) for 1 ≤ x ≤ 1, 000, 000, 000 (1

billion!). Figure 4 shows P (n) for 1 ≤ n ≤ 50, 000, 000 (the 50 millionth prime is

around 1 billion).

Figure 3: The graph of π(x) for Figure 4: The graph of P (n) for

x ≤ 1.0× 109. n ≤ 5.0× 107.

Looking at Figures 3 and 4 the untrained eye will detect straight lines. To

study the large scale behavior closer, we list 10 values of x and π(x) with x between

10,000,000 and 100,000,000 in Table 1.

Gauss himself introduced a method of finding the line of best fit for a given

set of data. Applying the method of linear regression to the values of x and π(x)

in Table 1, we obtain that the line y = ax+ b with a = 0.05654 and b = 149, 975.67

is the line of best fit for these data. A good fit of a line is indicated by a coefficient

of correlation ρ which is close to 1. The coefficient of correlation of the above

data is ρ = .99988! This will convince most students that π(x) ≈ ax + b, i.e. the

function π(x) is approximately linear for large values of x. This would also mean

that the density of primes is approximately constant for large numbers, i.e. there

is approximately the same number of primes in every interval of equal length with

large lower bounds. For example, the interval [2 × 107, 2.5 × 107] should contain

approximately the same number of primes as the interval [1.0× 1010, 1.0 × 1010 +

5.0× 106]. Of course, this is not correct but an extremely tempting conjecture. A

similar investigation for P (n) will yield similar results.
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We close this section by graphically representing two statements of the Prime

Number Theorem. First we consider the modern statement. To plot this we enter

Plot[PrimePi[x]/(x/Log[x]), {x,10,100000000}]

x π(x) x π(x)
10,000,000 664,579 60,000,000 3,562,115
20,000,000 1,270,607 70,000,000 4,118,064
30,000,000 1,857,859 80,000,000 4,669,382
40,000,000 2,433,654 90,000,000 5,216,954
50,000,000 3,001,134 100,000,000 5,761,455

Table 1. Some values of x and π(x).

Figure 5: The graph of π(x) ln(x)/x Figure 6: The graph of π(x)(ln x−

for x ≤ 1.0× 108. 1.08366)/x for x ≤ 1.0× 108.

This will produce the graph shown in Figure 5. It certainly seems that the function

in Figure 5 is converging and that its limit is greater or equal to 1. However, the

conclusion that the limit is equal to 1 seems to be impossible from that graph.

Neither Gauss nor Legendre considered the limit of

π(x) ln x

x

which is shown in Figure 5. Legendre considered the limit of

π(x)(ln x− 1.08366)

x
.
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It is easy to see that the constant 1.08366 will lower the graph and show quicker

convergence. This is shown in Figure 6.

5. Gauss’ Statement of the Prime Number Theorem. In this section

we investigate the statement

π(x) ≈

∫ x

2

1

ln t
dt,

which is due to the teenage Gauss. The sequence of commands

M:=LogIntegral[2];

Plot[PrimePi[x]/(LogIntegral[x]-M), {x,10,100000000}]

will produce the graph of

π(x)∫ x

2
1

ln t
dt

shown in Figure 7.

Figure 7. The graph of π(x)/
∫ x

2
dt
ln t

for x ≤ 1.0× 108.
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The graph is oscillating quite rapidly, however, when considering the scale of

the vertical axis, one sees that this expression is converging quicker than either of

the previous expressions. The oscillations are the same as the ones in Figure 6.

They are due to π(x) which is in both graphs. These oscillations are also present

in Figure 5, but not visible due to the scale. An interesting question connected

with this is how Gauss could have come up with such a “weird” expression. The

logarithmic integral is usually not on the top of one’s mind even if one looks at

prime numbers. However, maybe Gauss did not even look at the function π(x) at

all, but at rates of change. In his letter to Encke [3] (in German) or [6] (translated)

he writes, “I soon observed that for all oscillations this frequency is on the average

near an inverse ratio to the logarithm, so that the number of all primes under a

given n is determinable approximately by integral

∫
dn

logn
,

where we mean the natural logarithm.” He says in this sentence that he investi-

gated the frequencies of primes, which would be the derivative of π(x), if it were

differentiable.

n P (10,000(n+1))−P (10,000n)
10,000 lnP (10, 000n) lnP (10, 000(n+ 1))

1 12.0008 11.5591 12.3227
2 12.564 12.3227 12.7668
3 12.9532 12.7668 13.0814
4 13.2044 13.0814 13.3244
5 13.482 13.3244 13.5235
6 13.5604 13.5235 13.6904
7 13.8002 13.6904 13.8357
8 13.9144 13.8357 13.9635
9 14.0186 13.9635 14.0777

10 14.134 14.0777 14.1809

Table 2. Difference quotients for P (n).
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To further investigate this subject consider the expression

P (m)− P (n)

m− n
,

which is a difference quotient for the function P (n). It signifies the average rate of

change for this function between n and m. In the terminology of prime numbers

it is the average difference of two consecutive primes between the nth and the

mth prime. This expression can be easily computed from a list of prime numbers,

however, we will use Mathematica to save some time. The command line

Table [N[(Prime[10000*(n+1)]-Prime[10000*n])/10000,{n,10}]

produces a list containing the values of this expression for m − n = 10, 000 and

n = 10, 000, 20, 000, · · · 100, 000. The results of this computation are shown in

the second column of Table 2.

One sees that this difference quotient is slowly increasing with n. In the third

and fourth column of Table 2, we listed ln(10, 000n) and ln(10, 000(n + 1)) for

comparison. We see that for the few examples in the table we have

lnP (n) ≤
P (m)− P (n)

m− n
≤ lnP (m).

If m and n are large and not too far apart, lnP (m) and lnP (n) are rather close.

The table shows this even for n ≤ 100, 000. One can imagine the conjecture that the

average difference of two consecutive primes P (n+1)−P (n) is approximately equal

to the lnP (n). The word average is important here since the actual differences can

vary a lot.

Now, if we use the inverse function relationship between P (n) and π(x) we get

lnx ≤
y − x

π(y)− π(x)
≤ ln y,

or reciprocally

1

ln y
≤

π(y)− π(x)

y − x
≤

1

lnx
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i.e. the rate of change for π(x) is approximately equal to 1
ln x

. From this “differ-

ential” statement of the Prime Number Theory it is an easy step to the integral

statement

π(x) ≈

∫ x

2

1

ln t
dt.

6. Conclusion. The above exposition shows the difficulty of finding a good

asymptotic expression for a function even with a large amount of data. The graph

of π(x) for 2 ≤ x ≤ 1, 000, 000, 000 would mislead most of us to a linear relationship.

However, if one considers a “differential” statement, i.e. a look at the local behavior

of π(x) the correct asymptotic behavior of π(x) is more plausible. Neither Gauss

nor Legendre had the means of plotting π(x) for an interval containing hundreds

of thousands of primes, all they had was a table, which was probably viewed one

page at a time. Instead of looking at the entire set they would only see the “local”

behavior of a few hundred primes. The difference between the first prime and the

last prime on one page would certainly increase as the page number increases and

show a similar behavior as in Table 2. The lack of modern methods likeMathematica

may actually have been a blessing in disguise, because they never saw Figure 3 and

was not tempted by the straight line.
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