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THE DECEPTIVE PRIMES TO 2 · 107

Richard Francis and Timothy Ray

Abstract. It has been shown that any prime number p > 5 divides the repunit
number Rp−1. The question of whether there are composite numbers n such that
n|Rn−1 has been answered (n = 91 is the first such number). We investigate the
distribution of these composite numbers, called deceptive primes, for n ≤ 2 · 107,
and the conjectures and questions that arise from our search.

1. Introduction. Various tests for primality appear in the literature, in-
cluding such obvious tests as the sieve of Eratosthenes and Wilson’s Theorem [4].
The lack of a clear and discernible pattern in the distribution of the primes makes
the quest of primality determination one of immense intrigue. It has recently led
mathematicians in diverse paths of numerous conjectures, analytic methods, and
probabilistic techniques. Arbitrarily long gaps between consecutive primes, the
erratic appearance of twin primes, Bertrand’s Conjecture, and limited prime gen-
erating expressions all heighten the question of primality classification.

Within the last two centuries, the attention on false primes, composites that
have properties in common with primes, has provided a new avenue of exploration.
Composite numbers, appearing as counterexamples to the converse of a theorem
which necessitates primality in its hypothesis, may provide a key to a further un-
locking of the secret of the primes. If, in fact, such counterexamples are relatively
scarce, application of the converse generates a class of numbers which are over-
whelmingly prime. One such theorem of this kind is often labeled Fermat’s “Little
Theorem.”

Theorem. (Fermat) Let p be prime. If (a, p) = 1, then ap−1 ≡ 1 (mod p).

The first published proof of the theorem was the work of Euler (1736).
Although congruence notation is attributed to Gauss (as in his Disquisitiones

Arithmeticae of 1801), Fermat’s Little Theorem, in some rhetorical-symbolic form,
was known to mathematicians of the ancient Orient. Leibniz conjectured the va-
lidity of its converse. In 1819, however, it was discovered that the composite 341
(= 11 ·31), is a counterexample to this converse for a = 2 (i.e. 2340 ≡ 1 (mod 341)).
Such a number is called a pseudoprime to base 2. The French number theorist,
Pierre Frederic Sarrus discovered this counterexample, and other pseudoprimes to
base 2 soon followed.

The sporadic appearance of these numbers suggests that n is “probably” prime
provided n satisfies the condition 2n−1 ≡ 1 (mod n). Significantly, pseudoprimes
may appear to any base (e.g. 390 ≡ 1 (mod 91) and 724 ≡ 1 (mod 25)). (The
term pseudoprime (without a mention of base) is commonly understood to mean
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pseudoprime to base 2 [15]. For brevity, we will refer to the set of pseudoprimes to
an arbitrary base as pseudoprimes, and will specify pseudoprime to base a when
alluding to a specific base.) The essential point is that of the relative scarcity of
pseudoprimes (though the set is infinite) in which case an argument of probable
primality emerges. Today refined tests are well established, including the Lucas
Pseudoprime Test, Miller’s Test, and Rabin’s Probabilistic Primality Test. Some
tests are likewise conjectured and include an analytic number theory consequence
of the Generalized Riemann Hypothesis.

An unexplored area of primality, paralleling many of the techniques above, is
found within the simply described set of repunits.

Definition 1. A repunit, Rn, is an integer consisting entirely of n “ones” in its
decimal representation. It is defined algebraically as

Rn =
10n − 1

9
.

For example, R2 = 11 and R7 = 1, 111, 111. Note that the set of factors of
repunits contains all primes except 2 and 5.

The only known repunit primes are R2, R19, R23, R317, and R1031; the car-
dinality of the set of repunit primes is unknown. The cardinality of the set of
composite numbers Rp for prime p is also unknown. Obviously, the primality of Rn

implies the primality of n, but the converse does not hold (e.g. R3 = (3)(37) and
R5 = (41)(271)). Moreover, a|b if and only if Ra|Rb.

A corollary to Fermat’s Little Theorem establishes our course.

Corollary 2. If p > 5 is prime, then p|Rp−1.

Proof. Let p > 5 be prime. By Fermat’s Little Theorem, with a = 10,
10p−1 ≡ 1 (mod p). Thus, p|10p−1 − 1, and since 10p − 1 = 9999 · · ·9, the number
composed of (p− 1) “nines”, then p|9(1111 . . .111), and therefore p|Rp−1.

The fact that p|Rp−1 for all primes p > 5 permits another look at the infini-
tude of the primes, a fact established in ancient times by Euclid and by others
of the modern era (as in Dirichlet’s Theorem, the Euler Phi-Function Proof, and
Tchebychef’s Theorem). The more recent proof by Francis is of an indirect kind
and first restricts S to the set of primes greater than 5. Suppose that S is finite
with a greatest element pn. Consider n, the number represented by

n = R3(p1−1)(p2−1)(p3−1)···(pn−1).

That is, let n be the triple of a multiple of all primes which exceed 5. Consider
next the number n+2 (= 11111 . . .1113). Either n+2 is prime or it is composite. If
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n+2 is prime, then a prime larger than pn has been constructed (a contradiction).
If n + 2 is composite, then by the Fundamental Theorem of Arithmetic, it has a
prime factor pk. Yet no prime in S can divide n + 2 as a remainder of 2 results
each time. Nor can 2, 3 or 5. Accordingly, n+ 2 is neither prime nor composite (a
contradiction). Therefore the set of primes is infinite.

As noted above, if p > 5 is prime then p|Rp−1. Does the converse prove valid?
This question is strongly reminiscent of the earlier one that provided an ultimate
focus on pseudoprimes. Again, the converse is not true; the first counterexample is
91 = 7 · 13 (91|R90). We label these numbers according to the convention adopted
by Francis [9].

Definition 2. A composite number n satisfying the condition n|Rn−1 is called
a deceptive prime.

After 91, the next few deceptive primes are 259, 451, 481, 703, and 1729 (which
is also a pseudoprime to base 2).

The set of deceptive primes forms an infinite set and again identifies a point of
comparison with the pseudoprimes. Consider any deceptive prime n. As n|Rn−1,
it is also the case that n|10Rn−1. That is, n|(Rn − 1). Accordingly, Rn|R(Rn−1).
A highly useful theorem follows.

Theorem 3. If n is a deceptive prime, then Rn is also a deceptive prime.

Such a theorem guarantees not only the infinitude of the set of deceptive primes,
but also the infinitude of the set of repunit deceptive primes. Moreover, the proof is
constructive, allowing the calculation of a larger deceptive prime. Here the number
of “ones” in the deceptive prime’s representation is composite, but not all repunit
deceptive primes are generated by this construction (e.g., R5, R13, and R17). Other
possibilities stem from direct use of prime subscripts as suggested in the previous
three examples.

Theorem 4. If p 6= 3 is prime and Rp is composite, then Rp is a deceptive
prime.

Proof. Let p 6= 3 be prime. If p = 2, Rp = 11 which is prime. If p = 5
then R5 = 41 · 271, and using direct computation we verify below (see page 5)
that R5|RR5−1. If p > 5, then p|Rp−1 which implies that Rp|RRp−1

, which in turn
implies that Rp|R(Rp−1). Therefore, Rp is either a prime or a deceptive prime. Such
a construction will generate infinitely many deceptive primes if the cardinality of
{Rp : p 6= 3 is prime, and Rp is composite } is infinite.

This result is somewhat analogous to the fact that any Fermat number Fn =
22

n

+1 is either prime or pseudoprime for whole number values of n. Interestingly,
the set of repunit primes and the set of Fermat primes are both unclassified as to
cardinality (with only five known in each case). Since only five repunit primes Rp
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exist for p < 20, 000, it follows that Rp is a deceptive prime for all primes p such
that 1 < p < 20, 000 and p 6= 2, 19, 23, 317, and 1031.

Importantly, Rn may be a deceptive prime even if n is not itself a deceptive
prime (such as R91), nor a repunit (such as RR91

), nor an actual prime (such as
R7). The number R10 is an example (i.e. 1111111111|R1111111110).

Definition 3. A prime p is called a primitive divisor of Rn if p|Rn but p 6 |Rm

for all m < n. For example, 11 is a primitive divisor of R2. Also, 11|R10 but, since
11|R2, 11 is not a primitive divisor of R10. Note that 9091 is a primitive divisor of
R10.

It can be shown that every repunit greater than R1 = 1 has a primitive divisor.
Let c be a primitive divisor of Rm and d a primitive divisor of R2m. Of course,
c|R2m also. Consequently, cd|R2m. Since c|Rc−1 and d|Rd−1, c − 1 is a multiple
of both m and 2m and d − 1 is a multiple of 2m. It follows that c ≡ 1 (mod 2m)
and d ≡ 1 (mod 2m). Multiplication yields cd ≡ 1 (mod 2m). This means that
2m|(cd − 1). The relationships cd|R2m and R2m|Rcd−1 lead by transitivity to the
conclusion that cd|Rcd−1. Thus, the following is established.

Theorem 5. Let m > 3 be an integer. If c is a primitive divisor of Rm and d is
a primitive divisor of R2m, then cd is a deceptive prime.

This, of course, gives another argument that the set of deceptive primes is
infinite. Note the illustration in which 41 is a primitive divisor of R5 and 9091 is
a primitive divisor of R10. As 372, 731 = 41 · 9091 is a divisor of R10 and 10 is a
divisor of 372, 730 (= 41 · 9091− 1), then 372, 731 is a divisor of R41·9091−1. This
shows that there are infinitely many deceptive primes of exactly two prime factors.

Other modes of constructing deceptive primes exist. The following is proved in
a manner quite similar to the above (i.e., replacement of the factor 2 by the factor
1).

Theorem 6. Let p and q be any two distinct primitive divisors of Rn, where
n > 3 is odd. Then their product, pq, is a deceptive prime.

Such a theorem is illustrated nicely by the numbers 41 and 271 which are the
two primitive divisors of R5. Their product 11111 is clearly a divisor of R11110.

2. Deceptive Primes Less Than 2 · 107. There are 924 deceptive primes
less than 2 · 107. The algorithm employed to find these was a two-step process.

1. Find an odd composite number n using the sieve of Eratosthenes.
2. Using divisibility tests for several small prime factors p, eliminate any n that

has such a prime factor p and that fails the corresponding divisibility test. Any
remaining numbers n are tested directly with the definition.
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Table 1 lists a summary of the results for the deceptive primes between 0 and
2 · 107, including a tally of the number of factors for each deceptive prime.

Number of Factors
x D(x) 2 3 4 5
102 1 1 0 0 0
103 5 5 0 0 0
104 20 14 6 0 0
105 62 32 26 4 0
106 219 110 69 40 0
107 668 290 208 157 13

2 · 107 924 399 276 228 21

Table 1. D(x), the number of deceptive primes n ≤ x.

The algorithm was written in ANSI-C. Accordingly, each number n tested using
the definition of deceptive primes required O (n) integer divisions (we generate the
repunit Rn−1 one digit at a time as we divide by n). (In Knuth, The Art of
Computer Programming, volume 2, Seminumerical Algorithms, the binary method
for exponentiation is stated in algorithm form (Algorithm A, Section 4.6.3). This
method is of order less than O (n), but requires words of length n. Our algorithm
works with any C compiler on any computer for numbers n up to the largest integer
allowed by the compiler.) In order to speed up the algorithm, we note that if m is
the smallest number such that n|Rm, then every m digits of Rn−1 that are divided
by n, the remainder is 0. This gives us the following theorem.

Theorem 7. Let n be any odd positive integer, and let α[n] be the integer such
that n|Rα[n] but n/|Rm if m < α[n]. n is a deceptive prime if and only if α[n]|n− 1.
If α[n] does not exist for some n, n is not a deceptive prime. For example, R5|R5

and 5|R5 − 1 = 11110, so R5 is a deceptive prime.

This will speed up the algorithm only if α[n] < n−1. To measure the decrease
in run time we recorded α[n] for each deceptive prime n as we tested it. Computing
the factor n/α[n] provides a quantity that indicates the speed up of the algorithm
due to the above theorem.

Once a list of deceptive primes is compiled, natural questions arise concerning
subsets of this collection. For pseudoprimes, Euler pseudoprimes, strong pseudo-
primes and Carmichael numbers are commonly investigated along with pseudo-
primes. We define analogous numbers for deceptive primes.

Definition 4. If n is a deceptive prime, and if n is an Euler pseudoprime to
base 10, that is, if (n, 10) = 1 and if 10(n−1)/2 ≡

(

10
n

)

(mod n), where
(

10
n

)

is the
Jacobi symbol, then n is called an Euler deceptive prime.
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Definition 5. If n is a deceptive prime, and if n is a strong pseudoprime to
base 10, that is, for s and d such that n− 1 = d · 2s, d odd, if 10d ≡ 1 (mod n), r
if 10d·2

r

≡ −1 (mod n) for some r, 0 ≤ r < s, then n is called a strong deceptive
prime.

Definition 6. If n is a deceptive prime, and if n is a Carmichael number, that is,
if n is a pseudoprime to base a for every a prime to n, then n is called a Carmichael
deceptive prime.

The first Euler deceptive prime is 91, which is also the first strong deceptive
prime. (It has been shown that if n is a strong pseudoprime to base a, then n is
an Euler pseudoprime to base a (one proof occurs in [16]). The first Carmichael
deceptive prime is 1729. A summary of the number of these three types of numbers
is shown in Table 2.

x D(x) DE(x) DS(x) DC(x)
102 1 1 1 0
103 5 2 1 0
104 20 8 6 4
105 62 25 14 11
106 219 92 59 34
107 668 278 155 89

2 · 107 924 397 217 119

Table 2. The number of Euler deceptive primes (DE(x)),
strong deceptive primes (DS(x)),

and Carmichael deceptive primes (DE(x)).

Another obvious question that arises concerns repeated factors. There are
only three primes p < 232 for which p2|10p−1 − 1: 3, 487, and 56, 598, 313.[13] Of
these, 4872 = 237169 and 56, 598, 3132 = 3, 203, 369, 034, 445, 969 are both decep-
tive primes (4872|R486 and 56, 598, 3132|R56,598,312). Clearly, any other n = p2

where p is prime and p|10p−1 − 1 is a deceptive prime. It is not known if there are
any deceptive primes with a factor pk, where p is prime and k ≥ 3.

3. Comparison with Pseudoprimes. As shown earlier, a deceptive prime
d has the property that d|10d−1− 1. That is, 10d−1 ≡ 1 (mod d). Accordingly, any
number n such that 3/|n and which satisfies 10n−1 ≡ (mod n) is a deceptive prime.
Such limited pseudoprimes to base ten generate the entirety of the set of deceptive
primes.

This result, summarized below, provides a concise look at the comparison
between deceptive primes and pseudoprimes.
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Theorem 8. If n is a deceptive prime, then n is a pseudoprime to base 10.

Proof. Since n is composite and n|Rn−1, then n|9Rn−1. That is, n|10
n−1 − 1.

Accordingly,
10n−1 ≡ 1 (mod n).

As the set of deceptive primes is infinite, the set of pseudoprimes to base 10
proves infinite. (The set of pseudoprimes to base a is infinite for any a, a result
which was known prior to the classification of the set of Carmichael numbers as an
infinite set). The discovery of the existence of Carmichael numbers (see Definition
6) was made in 1909 by the American number theorist Robert Daniel Carmichael
(1879–1967) [5].

Thus, the deceptive prime test for primality becomes more significant than the
pseudoprime test as it rejects multiples of 3 (such as the Carmichael number 561
which is a pseudoprime to every base relatively prime to it, including two and ten).
Such a test is even more impressive in the event the set of Carmichael numbers
which are multiples of 3 is infinite. (The set of Carmichael numbers is infinite.
[1] It is not known whether the set of Carmichael numbers with 3 as a factor is
infinite.)

A comparison of the deceptive primes, pseudoprimes to base 10, and pseudo-
primes to base 2 is given in Table 3. The Carmichael deceptive primes are also
included, along with Carmichael numbers.

Deceptive Primes Pseudoprimes
x D(x) DE(x) DS(x) DC(x) P2(x) P10(x) C(x)
102 1 1 1 0 0 4 0
103 5 2 1 0 3 11 1
104 20 8 6 4 22 31 7
105 62 25 14 11 78 90 16
106 219 92 59 34 245 271 43
107 668 278 155 89 750 766 105

2 · 107 924 397 217 119 1016 1048 141

Table 3. Comparison of deceptive primes and their variations with
pseudoprimes to base 2 (P2(x)), pseudoprimes to base 10 (P10(x)),

and Carmichael numbers (C(x)).

It appears that there is a widening gap between the size of the set of deceptive
primes and the sizes of the sets of pseudoprimes. In the event that the set of
pseudoprimes to base 10 with either 3 or 5 as a factor is infinite, this gap will
increase without bound.
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Further evidence for the superiority of the deceptive prime test can be found
by noting that many deceptive primes are also pseudoprimes to base 2. (In the
event that the set of pseudoprimes to base 10 that have either 3 or 5 as a factor
is infinite, which seems likely, it is more natural to compare deceptive primes with
pseudoprimes to base a, where a 6= 10. Due to the frequency of pseudoprimes to
base 2 in the literature, we choose these for our comparison.) By collecting these
(there are 202 deceptive primes less than 2 · 107 that are also pseudoprimes to base
2), we can plot the difference P2 (x)−D (x) versus x, where x is in the intersection
set.

Although the amount of data is small (possibly invoking the ‘strong law of
small numbers’ [11]), the abundance of pseudoprimes to base 2 over the deceptive
primes seems to be monotonically increasing.

Finally, in addition to the quantitative data pointing to the usefulness of de-
ceptive primes, qualitative evidence comes from studying perfect numbers.

Definition 7. A number n is called perfect if it equals the sum of its positive
divisors, excluding itself. If we denote the sum of all the divisors of n (including
n) by σ (n), then n is perfect if σ (n) = 2n. In addition, n is called deficient if
σ (n) < 2n, and is called abundant if σ (n) > 2n.

A prime number p has only two divisors, namely p and 1, so σ (p) = p+ 1 for
all primes p. Thus, the set of prime numbers are the ‘most deficient’ of all positive
integers, since 2p − σ (p) = p − 1. A qualitative measure could therefore be made
by comparing the deficiency of other sets of positive integers. The set of deceptive
primes is the most deficient of all the sets (the set of Carmichael numbers is hard to
make a comparison due to the small number of values). Qualitatively, this displays
the usefulness of deceptive primes.

Application of the pseudoprime to base 2 test and the deceptive prime test
in conjunction may offer some promise in a more reliable classification of primes.
Building on randomly based pseudoprime testing in a combined setting resulted
in the Lehmer-Solovay-Strassen probabilistic test [17]. Such a powerful test rests
on the fact that n, a tested composite number, will be classified as composite
for at least one-half of the base values in the interval from 1 to n. Thus, by a
haphazard choice of many bases and utilization of the pseudoprime test each time,
the probability of a false classification becomes remarkably small. An allied matter
concerns the various base possibilities applied separately. In particular, is there a
preferred base in pseudoprime testing (in terms of the comparative frequency in
which pseudoprimes appear)?

4. Properties of repunits and deceptive primes. The fertile ground
from which deceptive primes grow is the set of repunits. Accordingly, properties of
this fundamental class are of immediate consequence in the generating of the allied
set of deceptive primes. Some concern parallels to other notable number sets and
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touch on the diverse subjects of distribution, sums of divisors, digital patterns, and
repetition of factors.

1. It is well known that between any prime and its double, another prime appears
(Corollary to Bertrand’s Conjecture-Tchebychev’s Theorem). The correspond-
ing statement for deceptive primes is false. Note that between 91 and 259, no
deceptive primes appear. Likewise for 703 and 1729.

2. Infinitely many deceptive primes are of the form 4k + 3. This follows by the
theorem shown earlier that if n is a deceptive prime, then Rn is also a deceptive
prime. Yet all repunits Rn(n > 1) are of the form 4k + 3.

3. A deceptive prime may have a larger multiple which is also a deceptive prime
(e.g. 1729 is a multiple of 91 and 63973 is a multiple of 1729). Moreover, it
is possible for two deceptive primes to have a deceptive prime product (e.g.
91 · 451 = 41041).

4. Infinitely many deceptive primes are imperfect. As any odd perfect number
must be of the form 4k+1, yet there is no largest deceptive prime of the form
4k + 3, infinitely many deceptive primes are thus abundant or deficient.

5. The set of deficient deceptive primes is infinite. As shown earlier, there are in-
finitely many deceptive primes of exactly two odd prime factors. Such numbers
are known to be deficient.

6. No even perfect number can have a deceptive prime divisor. This is obvious as
an even perfect number has exactly one odd prime divisor (by the Euclid-Euler
characterization). Yet all deceptive primes admit at least two prime divisors.

7. Infinitely many repunits are abundant. It is known that 7 · 11 · 13 · 17 ·
· · · · 67 · 71 · 73 = 1357656019974967471687377449 is abundant. Hence,
Rn = R6·10·12·16·····66·70·72 is divisible by (7)(11)(13)(17) · · · (67)(71)(73). As
any multiple of an abundant number is abundant, Rn is likewise abundant.
Of course, if Rn is abundant, then Rkn (a multiple of Rn) is as well. Accord-
ingly, the set of abundant repunits is infinite. This automatically raises the
question about the possibility of abundant deceptive primes. Examples similar
to the one above could be obtained by use of the odd abundant numbers
(11)(13)(17)(19) · · · (137)(139)(149) and (13)(17)(19)(23) · · · (233)(239)(241).
In all these illustrations, the ellipsis denotes consecutive primes.

8. There are no twin deceptive primes less than 2 · 107. The smallest difference
between two deceptive primes, so far, is 8 (6533 and 6541). The pseudoprimes
to base 2 do contain twins (4369 and 4371 are the first pair).

9. If (6k + 1), (12k + 1), and (18k + 1) are each prime numbers, their product
(6k + 1)(12k + 1)(18k + 1) is a deceptive prime. It is fairly easy to show that
the product (6k + 1)(12k + 1)(18k + 1) is a divisor of R(6k+1)(12k+1)(18k+1)−1

in which case the divisor itself is a deceptive prime. The result also follows as
a consequence of the fact that (6k + 1)(12k + 1)(18k + 1) is known to be an
absolute pseudoprime if each of the three factors is prime. A restriction on k so
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as to generate only primes in each case poses today an unsolved problem. Nor
does Dirichlet’s Theorem guarantee the infinitude of the set. Note: a simple
example is obtained by letting k = 1 in which case the deceptive prime 1729
is formed (also a Carmichael number).

5. Deceptive Primes to Other Bases. We can talk about deceptive primes
to other bases, by defining generalized repunits. Rn is a repunit to base a [6] if

Rn =
an − 1

a− 1
.

A composite n is called a deceptive prime to base a if n|Rn, where Rn is a
repunit to base a. Of course, the a− 1 in the denominator of the above definition
causes prime factors p to fail the deceptive prime test if p|a− 1. (We already have
the fact that primes p such that (p, a) 6= 1 also fail the test by Fermat’s Little
Theorem.) Table 4 counts the number of deceptive primes to base a for a ≤ 100.

Table 4. Da(x), the number of deceptive primes n ≤ 2 · 104 to base a.

a Da(2 · 10
4) a Da(2 · 10

4) a Da(2 · 10
4)

2 36 17 33 32 80
3 33 18 47 33 35
4 58 19 49 34 36
5 27 20 31 35 22
6 30 21 18 36 42
7 23 22 30 37 51
8 71 23 47 38 45
9 50 24 42 39 25
10 29 25 45 40 33
11 22 26 25 41 35
12 42 27 54 42 29
13 25 28 29 43 39
14 30 29 28 44 48
15 17 30 52 45 28
16 58 31 27 46 45

Table 4a. Da(x) for 2 ≤ a ≤ 46.
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a Da(2 · 10
4) a Da(2 · 10

4) a Da(2 · 10
4)

47 44 65 35 83 52
48 52 66 21 84 37
49 53 67 41 85 29
50 29 68 81 86 27
51 29 69 31 87 48
52 31 70 29 88 38
53 36 71 23 89 50
54 33 72 38 90 28
55 31 73 36 91 19
56 25 74 41 92 34
57 37 75 48 93 58
58 33 76 32 94 36
59 45 77 25 95 30
60 33 78 20 96 30
61 35 79 32 97 42
62 50 80 50 98 58
63 31 81 57 99 41
64 92 82 54 100 43

Table 4b. Da(x) for 47 ≤ a ≤ 100.

6. Conjectures. Various conjectures arise as the set of repunits and the
associated set of deceptive primes are explored. Many are simply stated and include
the following.

1. The intersection of the set of deceptive primes and the set of pseudoprimes
(base two) is infinite.

2. Almost all deceptive primes have a terminal digit of 1.
3. Infinitely many deceptive primes are of the form 4k + 1.
4. Any deceptive prime is a divisor of a still larger deceptive prime (in which case

it divides infinitely many).
5. A deceptive prime exists having exactly n distinct prime divisors for all n other

than 1.
6. All deceptive primes are deficient.
7. Numbers of the form 22

n

+ 1, n! + 1, and 2n − 1 where n is prime cannot be
elements of the set of deceptive primes.

8. For all n greater than 1, a deceptive prime exists having exactly n digits.
9. Infinitely many deceptive primes n exist in which n divides no repunit smaller

than Rn−1.
10. Though the set of twin primes is unclassified as to cardinality, there are no

twin deceptive primes (see properties #9).
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11. Arbitrarily long intervals between consecutive deceptive primes exist. Of
course, this conjecture has a proven counterpart in the case for primes.

As frequently noted in any of the diverse areas of mathematics, the proving
of a theorem gives rise to extended questions. A quest for deceptive primes is no
exception. The continued quest leads into scattered areas of pursuit. Conjectures
such as the above are but the tip of the proverbial iceberg.

7. Conclusion. Deceptive primes concern an area of number theory in which
the pseudoprime concept, though highly relevant, makes a scarcely recognizable
appearance. Accordingly, probable prime predicaments subtly surround the notion.

Several advantages of the deceptive prime testing technique stand out. Such
a technique yields a dividend immediately, namely a repunit, as opposed to the
Fermat converse which requires raising a number to a formidable power. The
method leads to an easy generation of other numbers of its kind and has an apparent
probabilistic edge over the conventional pseudoprime tests used separately. Of
course, the deceptive prime method admits a quick and uncomplicated description
of its steps and is thus marked by simplification attempts which are quite suggestive
of elementary arithmetic.
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7. P. Erdŏs, “On the Converse of Fermat’s Theorem,” American Mathematical

Monthly, 56 (1949), 623–624.

8. R. L. Francis, “Probable Prime Predicaments,” Missouri Journal of Mathe-

matical Sciences, 7 (1995), 132–138.

9. R. L. Francis, “Mathematical Haystacks: Another Look at Repunit Numbers,”
The College Mathematics Journal, 19 (1988), 240–246.

10. R. K. Guy, Unsolved Problems in Number Theory, 2nd Ed., Springer-Verlag,
New York, 1994.

11. R. K. Guy, “The Strong Law of Small Numbers,” American Mathematical

Monthly, 95 (1988), 697–712.

12. D. H. Lehmer, “Test for Primality by the Converse of Fermat’s Theorem,”
Bulletin of the American Mathematical Society, 33 (1927), 327.

13. P. L. Montgomery, “New Solutions of ap−1 ≡ 1 (mod p2),” Mathematics of

Computation, 61 (1993), 361–363.

14. R. G. E. Pinch, “The Carmichael Numbers Up to 1015,” Mathematics of Com-

putation, 61 (1993), 381–391.

15. C. Pomerance, “Lecture Notes on Primality Testing and Factoring,” MAA

Notes Number 4, 1984.

16. C. Pomerance, J. L. Selfridge and S. S. Wagstaff, Jr., “The Pseudoprimes to
25 · 109,” Mathematics Computation, 35 (1980), 1003–1026.



158 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

17. R. Solovay and V. Strassen, “A Fast Monte Carlo Test for Primality,” SIAM

Journal of Computing, 6 (1977), 84–85.

18. H. C. Williams, “On Numbers Analogous to the Carmichael Numbers,” Cana-

dian Mathematics Bulletin, 20 (1977), 133–143.

19. S. Yates, “Peculiar Properties of Repunits,” Journal of Recreational Mathe-

matics, 2 (1969) 139–146.

20. S. Yates, “Factors of Repunits,” Journal of Recreational Mathematics, 3 (1970)
114–119.

Richard Francis
Department of Mathematics
Southeast Missouri State University
Cape Girardeau, MO 63701

Timothy Ray
Department of Mathematics
Southeast Missouri State University
Cape Girardeau, MO 63701
email: timray@image.semo.edu


