The configuration space of almost regular polygons

Satoru Goto, Kazushi Komatsu and Jun Yagi
(Received July 5, 2018)
(Revised February 3, 2020)

Abstract

For a given angle θ, consider the configuration space C_{n} of equilateral n-gons in \mathbf{R}^{3} whose bond angles are equal to θ except for two successive ones. We show that when $n \geq 8$ and θ is sufficiently close to the inner angle $\frac{n-2}{n} \pi$ of the regular n-gon, C_{n} is homeomorphic to the $(n-4)$-dimensional sphere S^{n-4}.

1. Introduction

Configuration spaces of n-gons in the Euclidean space \mathbf{R}^{d} have been studied from a topological, an algorithmic or a kinematic viewpoint (see, for example, [3], [9], [11], [12], [13], [14], [15], [17], [19]). In this paper, we fix an integer $n \geq 5$ and an angle θ with $\frac{n-3}{n-1} \pi<\theta<\frac{n-2}{n} \pi$, which we call the fixed bond angle, and consider the configuration space $C_{n}=C_{n}(\theta)$ of equilateral n-gons in \mathbf{R}^{3} whose bond angles are equal to θ except for two successive ones.

We give a precise definition of C_{n}. An n-gon is a graph embedded in \mathbf{R}^{3} with vertices $v_{0}, v_{1}, \ldots, v_{n-1}$ and bonds $\beta_{1}, \beta_{2}, \ldots, \beta_{n-1}, \beta_{0}$, where β_{i} connects v_{i-1} and $v_{i}(i=1,2, \ldots, n-1)$. (Indices are considered modulo n whenever we treat an n-gon.) We call the vector $\boldsymbol{\beta}_{i}:=v_{i}-v_{i-1}$ the i-th bond vector. An n-gon is said to be equilateral if all of its bonds have the same length, say 1 . The bond angle of an n-gon at the vertex v_{i} is defined to be the angle between the vectors $-\boldsymbol{\beta}_{i}$ and $\boldsymbol{\beta}_{i+1}$. We assume that every such equilateral n-gon is normalized so that $v_{0}=(0,0,0), v_{n-1}=(-1,0,0)$ and $v_{n-2}=(\cos \theta-1, \sin \theta, 0)$. Then the configuration space $C_{n}(\theta)$ is defined as follows.

Definition 1 ([6], [7], [8]). For $k=1, \ldots, n-2$, let $f_{k}:\left(\mathbf{R}^{3}\right)^{n-3} \rightarrow \mathbf{R}$ be the function defined by

$$
f_{k}\left(v_{1}, \ldots, v_{n-3}\right)=\frac{1}{2}\left(\left\|\boldsymbol{\beta}_{k}\right\|-1\right) .
$$

[^0]For $k=1, \ldots, n-3$, let $g_{k}:\left(\mathbf{R}^{3}\right)^{n-3} \rightarrow \mathbf{R}$ be the function defined by

$$
\begin{aligned}
& g_{1}\left(v_{1}, \ldots, v_{n-3}\right)=\left\langle-\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}\right\rangle-\cos \theta \\
& g_{k}\left(v_{1}, \ldots, v_{n-3}\right)=\left\langle-\boldsymbol{\beta}_{k+1}, \boldsymbol{\beta}_{k+2}\right\rangle-\cos \theta \quad(k=2, \ldots, n-3) .
\end{aligned}
$$

Here \langle,$\rangle denotes the standard inner product in \mathbf{R}^{3}$ and $\|\boldsymbol{x}\|$ the standard norm $\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}$. The configuration space $C_{n}=C_{n}(\theta)$ is defined by as follows:

$$
C_{n}=\left\{p \in\left(\mathbf{R}^{3}\right)^{n-3} \mid f_{1}(p)=\cdots=f_{n-2}(p)=g_{1}(p)=\cdots=g_{n-3}(p)=0\right\} .
$$

The maps f_{k}, g_{k} are called rigidity maps, and they determine bond lengths and angles of the n-gon in C_{n}. The n-gons in C_{n} are equilateral n-gons in \mathbf{R}^{3} with n vertices such that the bond angles are all equal to the given angle θ except for the two successive bond angles at the vertices v_{1} and v_{2}.

We have been interested in a mathematical model of n-membered ringed hydrocarbon molecules, and obtained the following results in [7]. If $n=5$ and $\theta=\frac{7}{12} \pi$, the average of bond angles of 5 -membered ringed hydrocarbon molecules, then $C_{n}(\theta)$ is homeomorphic to S^{n-4}. If $n=6,7$ and the fixed bond angle is tetrahedral angle $\theta=\cos ^{-1}\left(-\frac{1}{3}\right)$, the standard bond angle of the carbon atom, then $C_{n}(\theta)$ is homeomorphic to S^{n-4}. Moreover, these results were generalized in [6] as follows. If $n=5,6,7$ and the bond angle θ satisfies $\frac{n-4}{n-2} \pi<\theta<\frac{n-2}{n} \pi$, then $C_{n}(\theta)$ is homeomorphic to S^{n-4}. If $n=8$ and the bond angle θ satisfies $\frac{5}{7} \pi \leq \theta<\frac{3}{4} \pi$, then $C_{n}(\theta)$ is homeomorphic to S^{n-4}.

The purpose of this paper is to prove the following generalization of the results in [6] for all $n \geq 5$.

Theorem 1. For each integer $n \geq 5$, there exists θ_{0} such that the configuration space $C_{n}(\theta)$ is homeomorphic to the ($n-4$)-dimensional sphere S^{n-4} for every bond angle θ with $\theta_{0}<\theta<(n-2) \pi / n$.

Since the case where $5 \leq n \leq 8$ is already treated in the pervious papers, we assume $n>8$ throughout the paper.

This paper is arranged as follows. Section 2 is devoted to preliminaries for the proof of Theorem 1. Section 3 is devoted to the proof of Theorem 1.

2. Preliminaries

Lemma 1. Let n be an integer greater than 8 . Then there exists θ_{1} such that any n-gon in $C_{n}=C_{n}(\theta)$ satisfies the following (a)-(d) for any bond angle θ with $\theta_{1}<\theta<(n-2) \pi / n$.
(a) Any n-gon in C_{n} does not contain the local configurations of three successive bonds β_{2}, β_{3} and β_{4} with the relation $\boldsymbol{\beta}_{3}+\boldsymbol{\beta}_{4}=\gamma \boldsymbol{\beta}_{2}$, where $\gamma=$ $\pm \sqrt{2-2 \cos \theta}$ as in Figs. 1 and 2.

Fig. 1. The forbidden local configuration (a) for $\gamma>0$

Fig. 2. The forbidden local configuration (a) for $\gamma<0$

Fig. 3. The forbidden local configuration (b) for $\delta>0$

Fig. 5. The forbidden local configuration (c) with $\boldsymbol{\beta}_{k}=\boldsymbol{\beta}_{k+2}$
(b) Any n-gon in C_{n} does not contain the local configurations of three successive bonds β_{2}, β_{3} and β_{4} with the relation $\boldsymbol{\beta}_{3}-\lambda \boldsymbol{\beta}_{4}=\delta \boldsymbol{\beta}_{2}$, where $\lambda=2 \cos \theta$ and $\delta= \pm \sqrt{1+2 \lambda^{2}}$ as in Figs. 3 and 4.
(c) Any n-gon in C_{n} does not contain the local configurations of three successive bonds $\beta_{k}, \beta_{k+1}, \beta_{k+2}(k \neq 0,1,2)$ with the bond angles θ and with the relation $\boldsymbol{\beta}_{k}=\boldsymbol{\beta}_{k+2}$ as in Fig. 5, where indices are considered modulo n.
(d) Any n-gon in C_{n} cannot be contained in a plane.

We call a local configuration described in (a), (b) or (c) in the above lemma a forbidden local configuration.

Proof. We draw a regular n-sided polygon in the $x y$ plane as in Figs. 6, 7, 9 and 10 . Let P be the plane which intersects the $x y$ plane vertically in the dotted line, and fix a unit normal vector v to this plane as in Figs. 6, 7, 9 and 10 .

When n is odd, we fix the bond $\beta_{(n+3) / 2}$ as in Figs. 6 and 9 and consider all of the polygonal lines consisting of the bonds $\beta_{(n+3) / 2}, \ldots, \beta_{3}$. When n is even, we fix the bond $\beta_{(n+4) / 2}$ as in Figs. 7 and 10 and consider all of the polygonal lines consisting of the bonds $\beta_{(n+4) / 2}, \ldots, \beta_{3}$. Let $\operatorname{Arm}(\theta)$ denote such a nonclosed polygonal line with the bond angle θ.

Let δ_{k} denote the dihedral angle between the planes defined by bond pairs $\left\{\beta_{k-1}, \beta_{k}\right\}$ and $\left\{\beta_{k}, \beta_{k+1}\right\}$ respectively for $k=4,5, \ldots,\left[\frac{n+2}{2}\right]$, where $[x]$ denotes the largest integer less than or equal to x. Let $\operatorname{pArm}(\theta)$ denote the non-closed polygonal line with the bond angle θ where all dihedral angles δ_{k} are 0 . Note that $\operatorname{pArm}(\theta)$ is planar. Observe that, when the bond angle between the bonds

Fig. 6. $\operatorname{pArm}\left(\frac{n-2}{n} \pi\right)$ when n is odd $(n=9)$

Fig. 7. pArm $\left(\frac{n-2}{n} \pi\right)$ when n is even $(n=10)$

Fig. 8. All positions of v_{i+1} on the cone
β_{i} and β_{i+1} is equal to θ, the vertex v_{i+1} is on the cone centered on β_{i} with the apex at v_{i} as in Fig. 8.

First, we consider the case where the bond angle θ is $\frac{n-2}{n} \pi$. Then the vertex v_{2} is contained in the plane P only when the non-closed polygonal line is congruent to $\operatorname{pArm}\left(\frac{n-2}{n} \pi\right)$ in Figs. 6 and 7. By applying the same argument to the "right" side to n-gons in $C_{n}\left(\frac{n-2}{n} \pi\right)$, we see that any n-gon in $C_{n}\left(\frac{n-2}{n} \pi\right)$ is congruent to the regular n-polygon in the plane.

Next, assume that $\theta<\frac{n-2}{n} \pi$. Then $\operatorname{Arm}(\theta)$ can intersect the plane P. We take a sufficiently small $\varepsilon>0$ with $1-2 \varepsilon>0$. Then there exists θ_{ε} with $\theta_{\varepsilon}<\frac{n-2}{n} \pi$ such that the vertex v_{2} is contained in the plane $P+\varepsilon \cdot v=$ $\{p+\varepsilon \cdot v \mid p \in P\}$ only when $\operatorname{Arm}\left(\theta_{\varepsilon}\right)$ is congruent to $\operatorname{pArm}\left(\theta_{\varepsilon}\right)$ as in Figs. 9 and 10 .

In other words, the distance from v_{2} to $P+v$ is greater than or equal to $1-\varepsilon$, and equal to $1-\varepsilon$ only when $\operatorname{Arm}\left(\theta_{\varepsilon}\right)$ is congruent to $\operatorname{pArm}\left(\theta_{\varepsilon}\right)$ as in Figs. 9 and 10. Hence, for any $\operatorname{Arm}(\theta)$, the distance from v_{2} to $P+v$ is greater than $1-\varepsilon$ when $\theta_{\varepsilon}<\theta<\frac{n-2}{n} \pi$.

Fig. 9. $\operatorname{pArm}\left(\theta_{\varepsilon}\right)$ when n is odd $(n=9)$

Fig. 10. $\operatorname{pArm}\left(\theta_{\varepsilon}\right)$ when n is even $(n=10)$

Now we consider the non-closed polygonal line with the bond angle θ which consists of $n-1$ number of the bonds $\beta_{3}, \beta_{4}, \ldots, \beta_{n-1}, \beta_{0}, \beta_{1}$. By using the above argument for the end point v_{1}, we see that, when the non-closed polygonal line with the bond angle θ_{ε} forms a part of the boundary of a convex polygon, the distance along v between v_{1} and v_{2} is greater than or equal to $1-2 \varepsilon$ (cf. [5, p. 147, Corollary 8.2.4]). Hence, for any non-closed polygonal line with the bond angle θ, the distance along v between v_{1} and v_{2} is greater than $1-2 \varepsilon$ when $\theta_{\varepsilon}<\theta<\frac{n-2}{n} \pi$.
(a) We now prove the assertion (a).

Case $(\mathrm{a}-1) \gamma>0$. We add the bond β_{2} to $\operatorname{Arm}(\theta)$ at v_{2} to form the local configuration in Fig. 1. We replace the two bonds β_{2} and β_{3} with a new bond which connects v_{1} to v_{3}. Let $\bar{\beta}_{(2,3)}$ denote this new bond. As mentioned above, the distance from v_{2} to $P+v$ attains the minimum only when the resulting non-closed polygonal line with the bond $\bar{\beta}_{(2,3)}$ has a planar configuration where all dihedral angles are 0 . Note that this planar configuration is obtained by adding β_{2} to $\operatorname{pArm}(\theta)$ at v_{2} as in Fig. 1.

When $\theta=\frac{n-2}{n} \pi$, for $\operatorname{pArm}\left(\frac{n-2}{n} \pi\right)$ with the added bond β_{2} as in Fig. 1, we have $\left\langle\boldsymbol{\beta}_{2}, v\right\rangle<1$ with some computations. Then the distance from v_{1} to $P+v$ is equal to $1-\left\langle\boldsymbol{\beta}_{2}, v\right\rangle(>0)$. We put $\varepsilon=\frac{1}{4}\left(1-\left\langle\boldsymbol{\beta}_{2}, v\right\rangle\right)$. We see that a bond angle $\theta_{a_{+}}^{\prime}$ can be chosen so that, for any $\operatorname{pArm}(\theta)$ with the added bond β_{2} as in Fig. $1,\left\langle\boldsymbol{\beta}_{2}, v\right\rangle$ is less than $1-3 \varepsilon$ when $\theta_{a_{+}}^{\prime}<\theta<\frac{n-2}{n} \pi$.

Now we consider the non-closed polygonal line which consists of bonds $\beta_{3}, \beta_{4}, \ldots, \beta_{n-1}, \beta_{0}, \beta_{1}$, and add the bond β_{2} to the non-closed polygonal line at v_{2} to form the local configuration in Fig. 1. We put $\theta_{a_{+}}=$ $\max \left\{\theta_{a_{+}}^{\prime}, \theta_{\varepsilon}\right\}$.

When $\theta_{a_{+}}<\theta<\frac{n-2}{n} \pi$, the distance from the vertex v_{1} of β_{2} to $P+(1-\varepsilon) \cdot v$ is greater than $\varepsilon(>0)$. Hence the polygonal line with the added bond β_{2} as in Fig. 1 cannot form an n-gon when $\theta_{a_{+}}<\theta<$ $\frac{n-2}{n} \pi$.

Case (a-2) $\gamma<0$. We add the bond β_{2} to $\operatorname{Arm}(\theta)$ at v_{2} to form the local configuration in Fig. 2. We replace the union of the two bonds β_{2} and β_{3} with a new bond which connects v_{1} to v_{3}. Let $\bar{\beta}_{(2,3)}$ denote this new bond. As mentioned above, the distance from v_{2} to $P+v$ attains the minimum only when the resulting non-closed polygonal line with the bond $\bar{\beta}_{(2,3)}$ has a planar configuration where all dihedral angles are 0 . Note that this planar configuration is obtained by adding β_{2} to $\operatorname{pArm}(\theta)$ at v_{2} as in Fig. 2.

When $\theta=\frac{n-2}{n} \pi$, for $\operatorname{pArm}\left(\frac{n-2}{n} \pi\right)$ with the added bond β_{2} as in Fig. 2, we have $\left\langle\boldsymbol{\beta}_{2}, v\right\rangle<0$ with some computations. Then the distance from v_{1} to $P+v$ is greater than 1 . We see that a bond angle, $\theta_{a_{-}}^{\prime}$ can be chosen so that, for any $\operatorname{pArm}(\theta)$ with the added bond β_{2} as in Fig. $2,\left\langle\boldsymbol{\beta}_{2}, v\right\rangle<0$ when $\theta_{a_{-}}^{\prime}<\theta<$ $\frac{n-2}{n} \pi$.

Now we consider the non-closed polygonal line which consists of bonds $\beta_{3}, \beta_{4}, \ldots, \beta_{n-1}, \beta_{0}, \beta_{1}$, add the bond β_{2} to the non-closed polygonal line at v_{2} to form the local configuration in Fig. 2. We put $\varepsilon=\frac{1}{3}$ and $\theta_{a_{-}}=$ $\max \left\{\theta_{a_{-}}^{\prime}, \theta_{\varepsilon}\right\}$. When $\theta_{a_{-}}<\theta<\frac{n-2}{n} \pi$, the distance from the vertex v_{1} of β_{2} to $P+(1-\varepsilon) \cdot v$ is greater than $\varepsilon(>0)$. Hence the polygonal line with the added bond β_{2} as in Fig. 2 cannot form an n-gon when $\theta_{a_{-}}<\theta<$ $\frac{n-2}{n} \pi$.
(b) We now prove the assertion (b).

Case $(\mathrm{b}-1) \delta>0$. We add the bond β_{2} to $\operatorname{Arm}(\theta)$ at v_{2} to form the local configuration in Fig. 3.

When $\theta=\frac{n-2}{n} \pi$, for $\operatorname{pArm}\left(\frac{n-2}{n} \pi\right)$ with the added bond β_{2} as in Fig. 3, we have $\left\langle\boldsymbol{\beta}_{2}, v\right\rangle<1$ with some computations. Then the distance from v_{1} to $P+v$ is equal to $1-\left\langle\boldsymbol{\beta}_{2}, v\right\rangle(>0)$.

By an argument similar to the case $\gamma>0$ of (a), we can take $\theta_{b_{+}}$so that any n-gon in C_{n} does not have the local configuration as in Fig. 3 when $\theta_{b_{+}}<$ $\theta<\frac{n-2}{n} \pi$.

Case $(\mathrm{b}-2) \delta<0$. We add the bond β_{2} to $\operatorname{Arm}(\theta)$ at v_{2} to form the local configuration in Fig. 4.

When $\theta=\frac{n-2}{n} \pi$, for $\operatorname{pArm}\left(\frac{n-2}{n} \pi\right)$ with the added bond β_{2} as in Fig. 4, we have $\left\langle\boldsymbol{\beta}_{2}, v\right\rangle<0$ with some computations. Then the distance from v_{1} to $P+v$ is greater than 1 .

By an argument similar to that in the case $\gamma<0$ of (a), we can take $\theta_{b_{-}}$ so that any n-gon in C_{n} does not have the local configuration as in Fig. 4 when $\theta_{b_{-}}<\theta<\frac{n-2}{n} \pi$.

Fig. 11. A planar local configuration of the three successive bonds
(c) We consider the non-closed polygonal line with the bond angle θ consisting of the bonds $\beta_{3}, \beta_{4}, \ldots, \beta_{n-1}, \beta_{0}, \beta_{1}$. Assume that the non-closed polygonal line has one or more planar local configurations as in Fig. 5. Now, we choose the three successive bonds β_{k}, β_{k+1} and β_{k+2} having a planar local configuration as in Fig. 5. We replace the union of the two bonds β_{k} and β_{k+1} with a new bond which connects v_{k-1} to v_{k+1} along the dotted line in Fig. 5 or 11. Let $\bar{\beta}_{(k, k+1)}$ denote this new bond. When the bond angle between β_{k+2} and $\bar{\beta}_{(k, k+1)}$ is equal to $\frac{\pi+\theta}{2}$, the non-closed polygonal line having the local configuration of Fig. 5 can be identified with the non-closed polygonal line of $n-2$ bonds obtained by replacing the union of the two bonds β_{k} and β_{k+1} with the bond $\bar{\beta}_{(k, k+1)}$. Note that the end points of the non-closed polygonal line are v_{1} and v_{2}.

We consider the distance between the end points v_{1} and v_{2} of the nonclosed polygonal line obtained by replacing the union of the two bonds β_{k} and β_{k+1} with the bond $\bar{\beta}_{(k, k+1)}$. As mentioned above, when the non-closed polygonal line obtained by replacing the union of β_{k} and β_{k+1} with the bond $\bar{\beta}_{(k, k+1)}$ forms a part of the boundary of the convex $(n-1)$-sided polygon, the distance between v_{1} and v_{2} attains the minimum.

On the other hand, the distance between v_{1} and v_{2} of the original nonclosed polygonal line attains the minimum when the original non-closed polygonal line forms a part of the boundary of a convex n-sided polygon.

Then the three successive bonds β_{k}, β_{k+1} and β_{k+2} have a planar local configuration as in Fig. 11.

The non-closed polygonal line having the local configuration of Fig. 11 can be identified with the non-closed polygonal line of $n-2$ bonds obtained by replacing the union of the two bonds β_{k} and β_{k+1} with the bond $\bar{\beta}_{(k, k+1)}$ when the bond angle between β_{k+2} and $\bar{\beta}_{(k, k+1)}$ is equal to $\frac{-\pi+3 \theta}{2}$. Note that the resulting non-closed polygonal line forms a part of the boundary of a convex $(n-1)$-sided polygon when the bond angle between β_{k+2} and $\bar{\beta}_{(k, k+1)}$ is equal to $\frac{-\pi+3 \theta}{2}$ and the original non-closed polygonal line forms a part of the boundary of a convex n-sided polygon.

By applying Cauchy's arm lemma ([4, p. 229]) to convex ($n-1$)-sided polygons with a bond $\bar{\beta}_{(k, k+1)}$, we see that the distance between v_{1} and v_{2} is a monotonically increasing function of the bond angle between β_{k+2} and $\bar{\beta}_{(k, k+1)}$.

The distance between v_{1} and v_{2} is 1 when $\theta=\frac{n-2}{n} \pi$ and the bond angle between β_{k+2} and $\bar{\beta}_{(k, k+1)}$ is equal to $\frac{-\pi+3 \theta}{2}$. Then the distance between v_{1} and v_{2} is greater than 1 when $\theta=\frac{n-2}{n} \pi$ and the bond angle between β_{k+2} and $\bar{\beta}_{(k, k+1)}$ is equal to $\frac{\pi+\theta}{2}$.

We can take $\theta(k)$ so that, for any angle θ with $\theta(k)<\theta<\frac{n-2}{n} \pi$, the distance between v_{1} and v_{2} is greater than 1 when the bond angle between β_{k+2} and $\bar{\beta}_{(k, k+1)}$ is equal to $\frac{\pi+\theta}{2}$. By taking $\theta_{c}=\max _{k}\{\theta(k)\}$, the proof of Lemma 1 (c) is completed.
(d) Let θ_{c} be the angle in Lemma 1 (c) and consider n-gons in $C_{n}(\theta)$ when $\theta_{c}<\theta<\frac{n-2}{n} \pi$. We assume that there is an n-gon contained in a plane. By forgetting the bond β_{2} from the n-gon, we have a non-closed polygonal line with the end points v_{1}, v_{2}. By Lemma 1 (c), the three successive bonds form a planar local configuration as in Fig. 11. If the bond angle θ is not equal to $\frac{n-2}{n} \pi$, the distance between v_{1} and v_{2} is not equal to 1 . By contradiction, the proof of Lemma 1 (d) is completed.

By taking $\theta_{1}=\max \left\{\theta_{a_{+}}, \theta_{a_{-}}, \theta_{b_{+}}, \theta_{b_{-}}, \theta_{c}\right\}$, the proof of Lemma 1 is completed.

3. The proof of Theorem 1

By Lemma 1, we show the following Proposition 1:
Proposition 1. Let θ_{0} be the maximum of the angle θ_{1} in Lemma 1 and the solutions of the following equations:

$$
\frac{\sin (m x)}{\sin x}=1-2 \cos x \quad(1 \leq m \leq n-6, \pi / 2<x<(n-2) \pi / n) .
$$

Then the configuration space C_{n} is an orientable closed ($n-4$)-dimensional submanifold of $\mathbf{R}^{3 n-9}$ if the bond angle θ satisfies $\theta_{0}<\theta<(n-2) \pi / n$.

Proof. First, note that θ_{0} can be determined from the Chebyshev polynomials of second kind $\frac{\sin (m x)}{\sin x}=\sum_{j=0}^{[(m-1) / 2]}{ }_{m} C_{2 j+1}(\cos x)^{m-2 j-1}\left(\cos ^{2} x-1\right)^{j}$, where $[y]$ denotes the largest integer less than or equal to y. We define $F:\left(\mathbf{R}^{3}\right)^{n-3} \rightarrow \mathbf{R}^{2 n-5}$ by $F=\left(f_{1}, \ldots, f_{n-2}, g_{1}, \ldots, g_{n-3}\right)$. Then $C_{n}=F^{-1}(\{\mathrm{O}\})$ for $\mathrm{O}=(0, \ldots, 0) \in \mathbf{R}^{2 n-5}$.

We show that $\mathrm{O} \in \mathbf{R}^{2 n-5}$ is a regular value of F. It suffices to prove that gradient vectors $\left(\operatorname{grad} f_{1}\right)_{p}, \ldots,\left(\operatorname{grad} f_{n-2}\right)_{p},\left(\operatorname{grad} g_{1}\right)_{p}, \ldots,\left(\operatorname{grad} g_{n-3}\right)_{p}$ are linearly independent for any $p \in F^{-1}(\{\mathrm{O}\})=C_{n}$, where $(\operatorname{grad} f)_{p}=\left(\frac{\partial f}{\partial x_{j}}(p)\right)_{j}$. It is convenient to decompose the gradient vectors of f_{k} and g_{k} into 1×3 blocks as follows:

```
\(\left(\operatorname{grad} f_{1}\right)_{p}=\left(\boldsymbol{\beta}_{1}, \mathbf{0}, \ldots \ldots, \mathbf{0}\right)\),
\(\left(\operatorname{grad} f_{k}\right)_{p}=\left(\mathbf{0}, \ldots, \mathbf{0},-\boldsymbol{\beta}_{k}, \boldsymbol{\beta}_{k}, \mathbf{0}, \ldots, \mathbf{0}\right)\),
\(\left(\operatorname{grad} f_{n-2}\right)_{p}=\left(\mathbf{0}, \ldots \ldots, \mathbf{0},-\boldsymbol{\beta}_{n-2}\right)\),
\(\left(\operatorname{grad} g_{1}\right)_{p}=\left(-\boldsymbol{\beta}_{0}, \mathbf{0}, \ldots \ldots, \mathbf{0}\right)\),
\(\left(\operatorname{grad} g_{k}\right)_{p}=\left(\mathbf{0}, \ldots, \mathbf{0}, \boldsymbol{\beta}_{k+2}, \boldsymbol{\beta}_{k+1}-\boldsymbol{\beta}_{k+2},-\boldsymbol{\beta}_{k+1}, \mathbf{0}, \ldots, \mathbf{0}\right)\),
\(\left(\operatorname{grad} g_{n-4}\right)_{p}=\left(\mathbf{0}, \ldots, \mathbf{0}, \boldsymbol{\beta}_{n-2}, \boldsymbol{\beta}_{n-3}-\boldsymbol{\beta}_{n-2}\right)\),
\(\left(\operatorname{grad} g_{n-3}\right)_{p}=\left(\mathbf{0}, \ldots \ldots, \mathbf{0}, \boldsymbol{\beta}_{n-1}\right)\).
```

Here $\mathbf{0}=(0,0,0)$ and $\boldsymbol{\beta}_{k}(k=0, \ldots, n-1)$ denote the bond vectors of the n-gon corresponding to $p \in C_{n}$.

Assume that the gradient vectors $\left(\operatorname{grad} f_{1}\right)_{p}, \ldots,\left(\operatorname{grad} f_{n-2}\right)_{p},\left(\operatorname{grad} g_{1}\right)_{p}, \ldots$, $\left(\operatorname{grad} g_{n-3}\right)_{p}$ are linearly dependent. Then, for some $\left(c_{1}, \ldots, c_{2 n-5}\right) \neq(0, \ldots, 0)$, we have a linear relation:

$$
\begin{equation*}
\sum_{i=1}^{n-2} c_{i}\left(\operatorname{grad} f_{i}\right)_{p}+\sum_{i=1}^{n-3} c_{i+n-2}\left(\operatorname{grad} g_{i}\right)_{p}=(\mathbf{0}, \ldots, \mathbf{0}) . \tag{*}
\end{equation*}
$$

In what follows, we show, by using Lemma 1 (a), (b), (c), that, under this assumption, all vertices of the n-gon corresponding to p are contained in a single plane. Since two successive bond vectors not including $\boldsymbol{\beta}_{2}$ are linearly independent, we get $c_{2} \neq 0$. The first 1×3 block of the linear combination (*) implies that the bond vectors $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{2}$ are contained in a single plane. The second 1×3 block of the linear combination $(*)$ implies that the bond vectors $\boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}$ and $\boldsymbol{\beta}_{4}$ are contained in a single plane.

We show by induction $c_{k} \neq 0(n+1 \leq k \leq 2 n-5)$. First, we observe $c_{n+1} \neq 0$. In fact, the second and the third 1×3 blocks of the linear combination ($*$) imply $c_{n+1} \neq 0$ by Lemma 1 (a). Then the bond vectors $\boldsymbol{\beta}_{3}, \boldsymbol{\beta}_{4}$ and $\boldsymbol{\beta}_{5}$ are contained in a single plane.

We study $c_{\ell}(n+1 \leq \ell \leq k)$. Assume that $c_{\ell} \neq 0(n+1 \leq \ell \leq k-1)$. Then the bond vectors $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{k-n+3}$ are contained in a single plane. Observe, by using Lemma 1 (c), the relation $\boldsymbol{\beta}_{i}+\lambda \boldsymbol{\beta}_{i+1}+\boldsymbol{\beta}_{i+2}=\mathbf{0}(\lambda=2 \cos \theta)$
when $\boldsymbol{\beta}_{i}, \boldsymbol{\beta}_{i+1}, \boldsymbol{\beta}_{i+2}$ are contained in a single plane for $i \neq 0,1,2$. The third 1×3 block of the linear combination $(*)$ implies the equality $\left(c_{3}+c_{n}\right) \boldsymbol{\beta}_{3}-$ $\left(c_{4}+c_{n}\right) \boldsymbol{\beta}_{4}+c_{n+1} \boldsymbol{\beta}_{5}=\mathbf{0}$ with some computations.

Since $\boldsymbol{\beta}_{3}, \boldsymbol{\beta}_{4}, \boldsymbol{\beta}_{5}$ are contained in a single plane, we have the following relations for the coefficients:

$$
\begin{array}{ll}
c_{n+1}=c_{3}+c_{n}, & \left(R_{n+1,1}\right) \\
c_{4}=-c_{n}-\lambda c_{n+1} . & \left(R_{n+1,2}\right)
\end{array}
$$

With some computations, the $(j-n+2)$-th 1×3 block of the linear combination $(*)$ implies the equality

$$
\left(-c_{j-2}\right) \boldsymbol{\beta}_{j-n+1}+\left(c_{j-n+2}+c_{j-1}\right) \boldsymbol{\beta}_{j-n+2}-\left(c_{j-n+3}+c_{j-1}\right) \boldsymbol{\beta}_{j-n+3}+c_{j} \boldsymbol{\beta}_{j-n+4}=\mathbf{0} .
$$

We have the following relations $\left(R_{j, 1}\right)$ and ($R_{j, 2}$) among the coefficients of $\boldsymbol{\beta}_{j-n+2}$ and $\boldsymbol{\beta}_{j-n+3}$, respectively:

$$
\begin{array}{ll}
c_{j}=\lambda c_{j-2}+c_{j-1}+c_{j-n+2}, & \left(R_{j, 1}\right) \\
c_{j-n+3}=c_{j-2}-c_{j-1}-\lambda c_{j} . & \left(R_{j, 2}\right) \tag{j,2}
\end{array}
$$

We fix ℓ with $n+2 \leq \ell \leq k$. By adding the equalities $\left(R_{j, 1}\right)$ and $\left(R_{j, 2}\right)$ for $n+1 \leq j \leq \ell$, we have $c_{\ell}=-\lambda c_{\ell-1}-c_{\ell-2}+(1+\lambda) c_{n}+c_{3} \quad(n+2 \leq \ell \leq k)$. Put $d=(1+\lambda) c_{n}+c_{3}$. With some computations, we obtain the recurrence relations $\left(c_{\ell}-\alpha_{1} c_{\ell-1}\right)=\alpha_{2}\left(c_{\ell-1}-\alpha_{1} c_{\ell-2}\right)+d$, where α_{1} and α_{2} denote the two solutions of $x^{2}+\lambda x+1=0$. Note that $\alpha_{1}+\alpha_{2}=-\lambda$ and $\alpha_{1} \alpha_{2}=1$. From these recurrence relations, we have the following two equalities:

$$
\begin{aligned}
& \left(c_{k}-\alpha_{1} c_{k-1}\right)=\alpha_{2}^{k-n-1}\left(c_{n+1}-\alpha_{1} c_{n}\right)+d\left(\alpha_{2}^{k-n-2}+\alpha_{2}^{k-n-3}+\cdots+1\right), \\
& \left(c_{k}-\alpha_{2} c_{k-1}\right)=\alpha_{1}^{k-n-1}\left(c_{n+1}-\alpha_{2} c_{n}\right)+d\left(\alpha_{1}^{k-n-2}+\alpha_{1}^{k-n-3}+\cdots+1\right) .
\end{aligned}
$$

We prove that $c_{k} \neq 0$. Now, we assume to the contrary that $c_{k}=0$. We put $m=k-n-1(1 \leq m \leq n-6)$. By using the above two equalities and $c_{n+1}=c_{n}+c_{3}$, we obtain $A c_{3}+B c_{n}=0$. Here, $A=\left(\alpha_{2}^{m+1}-\alpha_{1}^{m+1}\right)+$ $\left(\alpha_{2}^{m}-\alpha_{1}^{m}\right)+\cdots+\left(\alpha_{2}-\alpha_{1}\right) \quad$ and $\quad B=\left\{\left(\alpha_{2}^{m+1}-\alpha_{1}^{m+1}\right)+\left(\alpha_{2}^{m-1}-\alpha_{1}^{m-1}\right)+\cdots+\right.$ $\left.\left(\alpha_{2}-\alpha_{1}\right)\right\}+\lambda\left\{\left(\alpha_{2}^{m}-\alpha_{1}^{m}\right)+\cdots+\left(\alpha_{2}-\alpha_{1}\right)\right\}$. It is easy to see that $A=\lambda B$. If $A \neq 0$ and $B \neq 0$, then we have $\lambda c_{3}+c_{n}=0$. The second 1×3 block of the linear combination ($*$) implies the equality $c_{2} \boldsymbol{\beta}_{2}-c_{3} \boldsymbol{\beta}_{3}+c_{n} \boldsymbol{\beta}_{4}=\mathbf{0}$. Since $\lambda c_{3}+c_{n}=0$, we have $c_{2} \boldsymbol{\beta}_{2}=c_{3}\left(\boldsymbol{\beta}_{3}-\lambda \boldsymbol{\beta}_{4}\right)$. Hence we obtain $A=B=$ 0 from Lemma 1 (b). Note that $\left(\alpha_{2}^{m+1}-\alpha_{1}^{m+1}\right)+\left(\alpha_{2}^{m}-\alpha_{1}^{m}\right)+\cdots+\left(\alpha_{2}-\alpha_{1}\right)$ $=\frac{1}{1+\lambda}\left(\alpha_{2}^{m+1}-\alpha_{1}^{m+1}\right)+\left(\alpha_{2}-\alpha_{1}\right)-\left(\alpha_{2}^{m+2}-\alpha_{1}^{m+2}\right)$. With some more computations, we have $B=\frac{1}{1+\lambda}\left\{-\left(\alpha_{2}^{m}-\alpha_{1}^{m}\right)+(1+\lambda)\left(\alpha_{2}-\alpha_{1}\right)\right\}$.

On the other hand, it is easy to check the following equality:

$$
\begin{aligned}
\frac{\alpha_{2}^{m}-\alpha_{1}^{m}}{\alpha_{2}-\alpha_{1}} & =\frac{1}{2^{m-1}} \sum_{j=0}^{[(m-1) / 2]}{ }_{m} C_{2 j+1}(-\lambda)^{m-2 j-1}\left(\lambda^{2}-1\right)^{j} \\
& =\sum_{j=0}^{[(m-1) / 2]}{ }_{m} C_{2 j+1}(\cos \theta)^{m-2 j-1}\left(\cos ^{2} \theta-1\right)^{j}
\end{aligned}
$$

where $[y]$ denotes the largest integer less than or equal to y. From the Chebyshev polynomials of second kind, we obtain $\frac{\alpha_{2}^{m}-\alpha_{1}^{m}}{\alpha_{2}-\alpha_{1}}=\frac{\sin (m \theta)}{\sin \theta}$. By the definition of θ_{0}, we have $\frac{\sin (m \theta)}{\sin \theta} \neq 1-2 \cos \theta\left(\theta_{0}<\theta\right)$. Thus we obtain $B \neq 0$, and $c_{k} \neq 0$ by contradiction. Therefore, all vertices of the n-gon corresponding to p are contained in a single plane. This contradicts Lemma 1 (d). As a result, the gradient vectors $\left(\operatorname{grad} f_{1}\right)_{p}, \ldots,\left(\operatorname{grad} f_{n-2}\right)_{p},\left(\operatorname{grad} g_{1}\right)_{p}, \ldots$, $\left(\operatorname{grad} g_{n-3}\right)_{p}$ are linearly independent for any $p \in C_{n}$. The proof of Proposition 1 is completed.

Proof of Theorem 1. We first show that C_{n} is non-empty when $n>8$. Consider the non-closed polygonal line with the bond angle θ which consists of the bonds $\beta_{3}, \beta_{4}, \ldots, \beta_{n-1}, \beta_{0}, \beta_{1}$. For $k=4,5, \ldots, n-1,0$, let δ_{k} denote the dihedral angle between the planes defined by the bond pairs $\left\{\beta_{k-1}, \beta_{k}\right\}$ and $\left\{\beta_{k}, \beta_{k+1}\right\}$ respectively, where all indices are considered modulo n. The distance between v_{1} and v_{2} is a continuous function of the dihedral angles $\delta_{4}, \delta_{5}, \ldots, \delta_{n-1}, \delta_{0}$. If the non-closed polygonal line is contained in the boundary of a convex polygon, that is, all dihedral angles δ_{k} are 0 , then the distance between v_{1} and v_{2} is less than 1 because $\frac{n-3}{n-1} \pi<\theta<\frac{n-2}{n} \pi$. If the non-closed polygonal line has the maximum span as in [1], [2], that is, all dihedral angles δ_{k} are π, then the distance between v_{1} and v_{2} is greater than 1 . Since the distance between v_{1} and v_{2} is a continuous function, the distance between v_{1} and v_{2} can be 1 . Hence C_{n} is non-empty.

Let θ_{0} be the angle in Proposition 1 and consider the configuration space C_{n} of n-gons having the bond angle θ with $\theta_{0}<\theta<\frac{n-2}{n} \pi$. We define $h: \mathbf{R} \times(\mathbf{R}-\{0\})^{2} \times\left(\mathbf{R}^{3}\right)^{n-4} \rightarrow \mathbf{R}$ by $h\left(v_{1}, \ldots, v_{n-3}\right)=\frac{x_{2}}{\sqrt{x_{2}^{2}+x_{3}^{2}}}$, where $v_{1}=$ $\left(x_{1}, x_{2}, x_{3}\right)$. Recall the extension of Reeb's theorem that a smooth connected closed manifold M is homeomorphic to a sphere if M admits a smooth function f with only two critical points (see [16, p. 25, REMARK 1], [18, p. 380, Lemma 1]).

We show that $\left.h\right|_{C_{n}}$ is a differentiable function on C_{n} with only two critical points. Note that $p \in C_{n}$ is a critical point of $\left.h\right|_{C_{n}}$ if and only if there exist $a_{i} \in \mathbf{R}$ such that $(\operatorname{grad} h)_{p}=\sum_{i=1}^{n-2} a_{i}\left(\operatorname{grad} f_{i}\right)_{p}+\sum_{i=1}^{n-3} a_{i+n-2}\left(\operatorname{grad} g_{i}\right)_{p}($ cf. $[10])$. We can easily check that $(\operatorname{grad} h)_{p}=\left(0, \frac{x_{3}^{2}}{\sin ^{3} \theta},-\frac{x_{2} x_{3}}{\sin ^{3} \theta}, 0, \ldots, 0\right)$. Note that the first 1×3 block $\left(0, \frac{x_{3}^{2}}{\sin ^{3} \theta},-\frac{x_{2} x_{3}}{\sin ^{3} \theta}\right)$ is orthogonal to $\boldsymbol{\beta}_{0}$ and $\boldsymbol{\beta}_{1}$. So, we have
$a_{2} \neq 0$ if $(\operatorname{grad} h)_{p}=\sum_{i=1}^{n-2} a_{i}\left(\operatorname{grad} f_{i}\right)_{p}+\sum_{i=1}^{n-3} a_{i+n-2}\left(\operatorname{grad} g_{i}\right)_{p} . \quad$ By the argument in the proof of Proposition 1, there exists a bond angle, such that, for the configuration of the n-gon corresponding to a critical point $p \in C_{n}=C_{n}(\theta)$, the vertices $v_{i}(i=1, \ldots, n-1)$ are contained in the plane $\operatorname{Span}\left\langle\boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}\right\rangle=$ $\operatorname{Span}\left\langle\boldsymbol{\beta}_{2}, \ldots, \boldsymbol{\beta}_{n-1}\right\rangle$.

By forgetting the bond β_{2} from the n-gon, we have a non-closed polygonal line with the end points v_{1}, v_{2}. Since the three successive bonds with the bond angle θ form a planar local configuration as in Fig. 11 by Lemma 1 (c), the vertices v_{2}, \ldots, v_{n-1} are uniquely determined. If three bonds β_{n-1}, β_{0} and β_{1} have a planar local configuration as in Fig. 11, the distance between v_{1} and v_{2} is less than 1. If three bonds β_{n-1}, β_{0} and β_{1} have a planar local configuration as in Fig. 5, the distance between v_{1} and v_{2} is greater than 1. We replace the union of the two bonds β_{0} and β_{1} with a new bond which connects v_{n-1} to v_{1}. Let $\bar{\beta}_{(0,1)}$ denote this new bond. We see that the resulting non-closed polygonal line forms a part of the boundary of a convex $(n-1)$-sided polygon. By applying Cauchy's arm lemma, we obtain that the distance between v_{1} and v_{2} is a monotonically increasing continuous function of the bond angle between β_{n-1} and $\bar{\beta}_{(0,1)}$. When the distance between v_{1} and v_{2} is 1 , the bond angle between β_{n-1} and $\bar{\beta}_{(0,1)}$ is uniquely determined. Thus the vertex v_{1} is uniquely determined and we can see, by using the restriction of the bond angle and length, that there are precisely two possible positions for the vertex v_{0}. These two are mirror symmetric with respect to the plane $\operatorname{Span}\left\langle\boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}\right\rangle$. As a result, we have just two configurations of n-gons corresponding to the critical points. The proof of Theorem 1 is completed.

Acknowledgement

The authors would like to express their sincere gratitude to the editor for a lot of valuable suggestions.

References

[1] Benbernou N., Fixed-angle polygonal chains: locked chains and the maximum span [Undergraduate thesis], Smith College, Northampton, Mass, USA, 2006.
[2] Benbernou N. and O'Rourke J., On the maximum span of fixed-angle chains, in Proceedings of the 18th Canadian Conference on Computational Geometry, Kingston, Canada, August (2006) 14-16.
[3] Crippen G. M. and Havel T. F., Distance Geometry and Molecular Conformation, Wiley, New York, 1988.
[4] Cromwell P. R., Polyhedra, Cambridge University Press, 1999.
[5] Demaine E. D. and O'Rourke J., Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge University Press, 2007.
[6] Goto S., Hemmi Y., Komatsu K. and Yagi J., The closed chains with spherical configuration spaces, Hiroshima Math. J. 42 (2012), 253-266.
[7] Goto S. and Komatsu K., The configuration space of a model for ringed hydrocarbon molecules, Hiroshima Math. J. 42 (2012), 115-126.
[8] Goto S., Komatsu K. and Yagi J., A remark on the configuration space of a model for ringed hydrocarbon molecules, Kochi J. Math. 7 (2012), 89-96.
[9] Havel T. F., Some examples of the use of distances as coordinates for Euclidean geometry, J. Symbolic Computation 11 (1991), 579-593.
[10] Kamiya H., Weighted trace functions as examples of Morse functions, Jour. Fac. Sci. Shinshu Univ. 7 (1971), 85-96.
[11] Kamiyama Y., On the level set of a function with degenerate minimum point, International Journal of Mathematics and Mathematical Sciences, (2015), 6 pages.
[12] Kapovich M. and Millson J., On the moduli space of polygons in the Euclidean plane, J. Diff. Geom. 42 (1995), 430-464.
[13] Lenhart W. J. and Whitesides S. H., Reconfiguring closed polygonal chains in Euclidean d-space, Jour. Discrete Comput. Geom. 13 (1995), 123-140.
[14] Milgram R. J. and Trinkle J. C., Complete path planning for closed kinematic chains with spherical joints, Internat. J. Robotics Res. 21 (2002), 773-789.
[15] Milgram R. J. and Trinkle J. C., The geometry of configuration spaces for closed chains in two and three dimensions, Homology, Homot., Appl. 6 (2004), 237-267.
[16] Milnor J., Morse Theory, Princeton University Press, Princeton, 1969.
[17] O'Hara J., The configuration space of equilateral and equiangular hexagons, Osaka Journal of Mathematics 50 (2013), 477-489.
[18] Rosen R., A weak form of the star conjecture for manifolds, Abstract 570-28, Notices Amer. Math. Soc. 7 (1960), 380.
[19] Shimamoto D. and Vanderwaart C., Spaces of polygons in the plane and Morse theory, American Math. Month. 112 (2005), 289-310.

Satoru Goto
Faculty of Pharmaceutical Sciences
Tokyo University of Sciences
Chiba 278-8510 Japan
E-mail: s.510@rs.tus.ac.jp
Kazushi Komatsu
Depertment of Mathematics
Faculty of Science and Technology
Kochi University
Kochi 780-8520 Japan
E-mail: komatsu@kochi-u.ac.jp

Jun Yagi
Depertment of Social Design Engineering
National Institute of Technology, Kochi College
Kochi 783-8508 Japan
E-mail: yagi@gm.kochi-ct.jp

[^0]: 2010 Mathematics Subject Classification. Primary 52C99; Secondary 57M50, 58E05, 92E10.
 Key words and phrases. Configuration space.

