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ABSTRACT. We estimate the misclassification probability of a Euclidean distance-based
classifier in high-dimensional data. We discuss two types of estimator: a plug-in type
estimator based on the normal approximation of misclassification probability (newly
proposed), and an estimator based on the well-known leave-one-out cross-validation
method. Both estimators perform consistently when the dimension exceeds the total
sample size, and the underlying distribution need not be multivariate normality. We
also numerically determine the mean squared errors (MSEs) of these estimators in finite
sample applications of high-dimensional scenarios. The newly proposed plug-in type
estimator gives smaller MSEs than the estimator based on leave-one-out cross-validation
in simulation.

1. Introduction

We discuss a discrimination problem that allocates a given object x to one
of two populations, G; and G,. Here x is a continuous random vector (such
as an observation vector) represented by a set of features (xi,x2,...,xp).

We assume a training data set (Xji,Xi2,. .., X1, X21,X22, . . ., X2y, ), Where
X/; is a p-dimensional continuous observation vector from the /-th population
Gy, and we calculate

ny

ny
ViecpaXe =n'Y X Sy=(n = 1) (x5 = Xo) (x5 — X/)"
Jj=1 J=1

When p < n; +mny —2 and the population covariance matrices are equal, the
data are often distinguished by Fisher’s linear discriminant rule. In this paper,
we examine a discrimination procedure that accommodates p > max{n;,n,}
and heteroscedastic covariance matrices. Recently, Chan and Hall [3] and
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Aoshima and Yata [1] studied a Euclidean distance-based classifier for the high-
dimensional multiclass problem with different class covariance matrices. They
introduced the following Euclidean distance discriminant function:

W={2x— (X; + %)} (X —Xp) + 17 tr(Sy) — ny ! tr(S,). (1.1)

They also obtained a distance discriminant rule that assigns a new observation
x to Gy if W >0, and to G, otherwise.

Here, we estimate the misclassification probability of the distance dis-
criminant rule. The performance accuracy of the discriminant rule is repre-
sented by the resulting pair of misclassification error probabilities, defined
as

e(2]1) =Pr(W <0|x ~ Gy),e(1]2) =Pr(W > 0|x ~ Gy).

Here, the notation “x ~ G,” means that x is generated from G,. Our main
objective is to propose a consistent and asymptotically unbiased estimator of
the misclassification probability in high-dimensional settings. To this end, we
show the consistencies of two estimators in these settings. The first estimator
is based on the well-known leave-one-out cross-validation (CV) method; the
second is a plug-in estimator based on the normal approximation. We also
compare the mean squared errors (MSEs) of these estimators in simulation
studies.

The remainder of this paper is organized as follows. In Section 2, we
derive plug-in estimator based on the normal approximation, and show the
consistency of this estimator and the estimator based on leave-one-out CV in
high-dimensional settings. In Section 3, we numerically validate the proposed
estimators in several high-dimensional scenarios, in which p far exceeds the
sample size. The paper concludes with Section 4. Some auxiliary lemmas
and proofs are presented in the Appendix.

2. [Estimators of misclassification probability

2.1. Statistical model. Assuming fixed ¢,¢9’€{1,2} and ¢’ #g, we let

X = E;/zz +p,.  We further assume that Vc(12) je(1,2...n)X5 = 2, ZZ/J' +u,.

Here, 2, is positive-semi-definite, and the random vectors z, zi1,Z12,...,Zin,,
21,22,...,2, are independent and identically distributed (i.i.d.) random
vectors such that E(z) =0 and var(z) =1I,. We denote z= (z1,22,...,2,),

and consider two cases, (C1) and (C2), as follows.
(Cl) E(z}) =w4+3 < o0, E(z}2}) = 1, and E(z;,2,2;,2;,) =0 (iy # ia, i3,
is).
(C2) =zi,23,...,2, are mutually independent, and E(z}) = x4 + 3 < 0.
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The condition (C1) means that each {z;}7 | has a kind of pseudo-independence
among its components. Obviously, if (C2) holds, then (C1) is trivially true.
Note that (C1) and (C2) include multivariate normal populations.

2.2. Normal approximation of misclassification. In this subsection, we discuss
the normal approximation of the misclassification probability. The misclassi-
fication probability is approximated as follows:

e(g'lg) ~ D(—p/ay), (2.1)

where @(-) is the cumulative distribution function of the standard normal
distribution. From Lemma A.2 (see Appendix), we have

u=E{(=1)""w}=06"s,

05 =var(W) =4{6"Z,0 + n;l tr(Zj) + ngil tr(Z12,) + ngilﬁTEg/é}

2
+ 22{”/(1’1/ - 1)}_1 tr(z/z),
/=1

where 0 = u; — p,.

The normal approximation is justified under some assumptions. For each
/¢ e€{1,2}, let n, be a function of p, ie., n, =n,(p). For any /e {1,2}, let
0'2,6 and tr{(Z, 2 6T21/2) o l/zééT 1/2)} be a function of p. For any
/,/" € {1,2} and any re {1,2}, let tr{(2,%,)"} be a function of p. Then we
use the following conditions:

(A0) For all 7€ {1,2}, lim,_., n/(p) = 0.
) For all /€ {1,2}, tr(Z})/{tr(ZH)}° = o(1), tr(Z12,)/tr(Z?) € (0, 0).
2) 0'%, Jfo(ng«af})
) 5T2 d=0(5).
4) tr{(Z I/Za(stl/z) O (Z)2067Z)7)} = o(ag).
Here, “4 ® B” denotes Hadamard product of same size matrices 4 and B, for
a function f(-), “f(p) € (0,0) as p — co” implies liminf, ., f(p) >0 and
limsup,_., f(p) < oo, and

2
Oy =4{n, " tr(Z2) +n, tr(Z122)} +2> {ns(ne — 1)} (7).
/=1

The following theorem represents the asymptotic normality of (—1)ngl w.
THEOREM 2.1. We assume (A0)—(A2). Then (i) and (ii) hold.
(i) Under (C1) and (A3), {(~1)*"'w — u}/og ~» A(0,1) as p — oo.
1

(ii) Under (C2) and (A4), {(-1)*"'w — ut/og ~> A(0,1) as p — oo.
Here, ~~ denotes that the convergence in distribution.
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Proor. Statement (i) has been demonstrated by Aoshima and Yata [1].
The proof of statement (ii) is given in Appendix B.

Note that under (A2) and (A3), g, =0, +0(d,). Thus we obtain the
following corollary.

COROLLARY 2.1. Under (C1) and (A0)—(A3), {(—1)"'W —u}/g, ~
A(0,1) as p — o0.

From Theorem 2.1 and Corollary 2.1, we propose the following proposition.
This result represents the accuracy of approximation (2.1).

ProOPOSITION 2.1.  We assume (A0)—(A2) and p/oy; = O(1). Then (i) and

(i1 hqld o(1)  under (Cl) and (

(1) elg'ly) = P(=u/o,) = { O(1) under (C2) and (A4).
i) etlo) ~ o(-ufa) = { )
REMARK 2.1. We assume (Cl) or (C2).

o(1).

From Remark 2.1, we assume a sufficient condition that guarantees a non-
zero limit value of the misclassification probability, ie., x/o, = O(1).

Under pjoy — o0, e(g'lg) =

2.3. Estimator of misclassification probability and its consistency. Based
on Proposition 2.1, we approximate the misclassification probability as
&(—u/o,). To estimate the unknown values in x and o,, we apply unbiased
estimators.

Let /,/ € {1,2} and ¢ #/'. Preliminarily, we introduce the unbiased
estimators of u, tr(X1X5), tr(X?) and 6" 2,0 as follows:

A= (X — %) (X1 — %) —ny tr(Sy) — ny' tr(Sy),
tr(Z12,) = tr(SSy),

— n, — n, — n, — 2 , 2 — Ny ,
tr(Zf) _ (n, — 1)[(n, 1)51//(”/2_);&:;)_4'35“1?(5/)} /K/]?
20U, _ tI‘(SlSz)
(ny = 1)(n, —2) ny:
L 2K~ (ny — D{tr(S,)}* — (n, — 1)* tx(S2)
ny(ny —2)(ns — 3) 7

0" X6 = (X —%,) Ss(Xp — X)) —

where
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ny

K= (= 1)y {(xg = %) (x5 = %)},
=

Ur =Y (R = %) (x4 = X0) (x4 = X0) " (x5 = X0).
J=1
The unbiased estimator £ has been used in the L?> norm based on two-sample
test (see for example Chen and Qin [4] or Aoshima and Yata [2]). The
unbiased estimator tr(/E\f) was proposed by Himeno and Yamada [6]. The
unbiased estimator é'X,d is newly derived in the present paper. To show
the consistency of the plug-in estimator based on the normal approximation,
we investigate the leading variance term of these estimators (see Lemma A.3
in Appendix A).
These estimators provide the following estimator of aj:

62 = 4{max (0,07 £,0) + n; ' tr(X2) +n; r(£1Z2) + ;' max(0,67 X,0)}
2 —
+23 {ni(n — 1} r(Z)).
/=1

. 2 . .
Rilﬂacmg the unknown values p and o, by their estimators, we propose

e(g'lg) = ©(—4i/6,). The consistency of the estimator e(g’|g) is demonstrated
in the following proposition.

ProposITION 2.2. We assume (A0)—(A2) and pj/o, = O(1). Then

—= . [elg'lg) +0,(1) under (C1) and (A3).
e(g'lg) = {e(g’|g) +0,(1) under (C2) and (A4).

ProOF. See Appendix C.

—

From |e(g'lg) — e(g'|g)| < 1 and Proposition 2.2, we obtain the following
corollary.

COROLLARY 2.2. We assume (A0)—(A2) and p/o, = O(1). Then

—t . _ Jeld'lg) +o(l) under (C1) and (A3).
Helglo = {e(g’lg) +o(1) under (C2) and (A4).

2.4. Leave-one-out cross-validation method and its consistency. In this sub-
section, we consider the leave-one-out CV method, which is popularly used
for estimating prediction errors in small samples. For je{l,2,...,n,}, we
consider the set

-Jj) — . .
Xf] ) — (xgl,xgz,...,xg,_l,xg,+1,...,xgny).
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This set denotes the leave-one-out learning set, which is a collection of data
with observation x,; removed. In a prediction problem, CV calculates the
probability of misclassifying a sample from all other observations in the
sample. We define the discriminant function by

W = (2% — Ry + %)} Ry — %)

+{(ng — 1) tr(Sy) — nyt tr(Syn)},

where X,_;) and S;_; are calculated by the procedures in (1.1) using the
learning set Xé’f). The CV-based estimator is then given by

"y
c(g'lg) = n," > I(W,S T <0),
j=1
where the function I(A4) is the indicator function defined as

1 if A4 is true,
0 if A4 is false.

1) = {
By straightforward calculation, we obtain
E{c(g'l9)} = Pr(W,; " <0),
var{c(g'|9)} = Pr(W,"" <0, W < 0) — {Pr(WV < 0)}?
+ o, {Pr(W) < 0) = Pr(W V) <0, w2 < 0)}.
Note that ¢(g’|g) is consistent when
Pr(W7) < 0) — Pr(W, < 0) = o(1),
Pr(w D <0, W, < 0) — {Pr(w"V) < 0)}* = o(1).

To confirm this statement in a high-dimensional setting, we must investigate
the distribution of Wg(_l) and the joint distribution of (Wg(_])7 Wg(_z))T. The
joint asymptotic normality of the random vector (VVg(_l), Wg(_z))T is given by
the following lemmas:

LemMA 2.1. Under (C1) and (A0)-(A3),

(W, = 1) 09, (W) = 1) 8g)" ~> H3(0, ).
Proor. For the proof, see Appendix D.
LEmMA 2.2. Under (C2), (A0)-(A2), and (A4),

(W, —w) oy, (WS = @) /ay)" ~ A3(0,1).
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Proor. For the proof, see Appendix E.
From Lemmas 2.1 and 2.2, we obtain the following proposition.
PROPOSITION 2.3.  We assume (A0)—(A2), and u/o, = O(1). Then

o [elg'lg)+0p(1) under (C1) and (A3).
ko) = {e(g/|g) +0p(1) under (C2) and (A4).

3. Numerical results

In Monte Carlo simulations, we investigated the numerical performance of
the approximation based on Proposition 2.1, and compared the consistencies of
the estimators e(2|1) and ¢(2|1).

3.1. Accuracy of normal approximations. First, we investigate the accuracy of
the normal approximations:

(1) : @) S(—f3), (1) : e2]1) ~ B(—p/on).

Approximation (I) was proposed in Aoshima and Yata [1], and approximation
(II) is newly proposed in the present paper. The asymptotic property of these
approximations is shown in (i) and (ii) of Proposition 2.1. The misclassifi-
cation probability e(2|1) was calculated in 100,000 replications of the Monte
Carlo simulations. In each step, the data-sets were generated as

1/2 1/2
Ve (oom Xy = 2172541, VieqomXy = 25 0 +

where #; = 0. In p,, the first [y/tr(Z7)] elements are v/3n; /4 and all other
elements are 0. Moreover,

2, =B(03"hB, X, =12B(0.3"/HB.

(/1 1A\ 1 2 2 1 p \?
B—dlag<<§+p—+1) ’(§+p—+l> ""’(§+—p+1) .

We considered the following four distributions of z, = (z,;). Note that the
fourth moment of z,; exists.

(A) Standard normal distribution: z,; ~ .A47(0,1),

(B) Standardized chi-squared distribution with 10 degrees of freedom:

Zgij = (Ugy — 10)/‘/2_0 for ug; ~ Zios
(C) Standardized ¢ distribution with 10 degrees of freedom:

Zgij = Ugii/\/5/4  for ug; ~ t,

Here,
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(D) Standardized skew normal distribution:
zap = {1=9/(57)} " ugy = 3/V5m)  for ug; ~ SN (3).

Setting  p € {50, 100,200,400,800} and (n;,n,) € {(20,40), (30, 30), (40,20),
(40, 80), (60, 60), (80,40)}, we compared the e(2|1) values calculated by the
simulation, approximation (I), and approximation (II). The results are shown
in Table 1. Comparing the tabulated approximations, we observe that in most

Table 1. Comparison of approximations

(n1,m2)
» (20,40)  (30,30)  (40,20)  (40,80)  (60,60)  (80,40)
50 e(2|1) (A) 0.2071 0.2354 0.2696 0.2270 0.2529 0.2846
(B) 0.2057 0.2332 0.2686 0.2246 0.2530 0.2847
(©) 0.2025 0.2332 0.2685 0.2272 0.2507 0.2856
(D) 0.2038 0.2355 0.2678 0.2251 0.2555 0.2842
approx D 0.1212 0.1590 0.2117 0.1199 0.1579 0.2102
(Im) 0.2072 0.2351 0.2682 0.2268 0.2542 0.2830
100 e(2|1) (A) 0.1908 0.2243 0.2616 0.2072 0.2385 0.2739
(B) 0.1898 0.2185 0.2598 0.2071 0.2360 0.2694
(©) 0.1915 0.2238 0.2584 0.2096 0.2369 0.2710
(D) 0.1884 0.2234 0.2623 0.2087 0.2386 0.2708
approx (I 0.1283 0.1662 0.2186 0.1269 0.1651 0.2171
(Im) 0.1922 0.2224 0.2595 0.2084 0.2382 0.2712
200 e(2|1) (A) 0.1689 0.2049 0.2478 0.1842 0.2178 0.2562
(B) 0.1685 0.2033 0.2439 0.1861 0.2151 0.2529
(©) 0.1686 0.2024 0.2456 0.1859 0.2154 0.2547
(D) 0.1695 0.2045 0.2451 0.1846 0.2162 0.2530
approx (I 0.1218 0.1597 0.2123 0.1205 0.1585 0.2108
(Im) 0.1709 0.2031 0.2439 0.1842 0.2162 0.2534
400  e2)  (A) 0163 01982 02393 0.1745 02092  0.2471
(B) 0.1623 0.1986 0.2427 0.1742 0.2061 0.2495
(©) 0.1641 0.1996 0.2402 0.1747 0.2079 0.2481
(D) 0.1624 0.1949 0.2438 0.1727 0.2072 0.2493
approx (I 0.1286 0.1666 0.2189 0.1273 0.1654 0.2174
(Im) 0.1639 0.1976 0.2412 0.1740 0.2075 0.2479
800 e2]1) (A) 01468  0.1849 02299 01569 01893  0.2350
(B) 0.1492 0.1821 0.2289 0.1537 0.1909 0.2331
(©) 0.1500 0.1850 0.2299 0.1561 0.1927 0.2355
(D) 0.1490 0.1835 0.2296 0.1543 0.1905 0.2345
approx (I 0.1220 0.1598 0.2125 0.1207 0.1587 0.2110
(

—
==
=

0.1484 0.1832 0.2293 0.1560 0.1908 0.2343
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Table 2. Comparison of MSE x 10? of estimators

(n1,m)

» (20,40)  (30,30)  (40,20)  (40,80)  (60,60)  (80,40)
50 (A) e2)l)  3.961 3.600 4.413 1.982 1.768 2.130
c(2]1) 6.515 5.493 5.956 3.361 2.786 2.980

B)  e2)  3.939 3.636 4.394 1.996 1.784 2127
@) 6486 5.517 5911 3.373 2.833 2.990

©)  e@)  4.024 3.637 4435 2012 1.819 2132
c(21) 6.501 5.481 5.948 3.366 2.787 2.982

(D) e[l) 3939 3.569 4432 1.985 1.776 2120
c(2]1) 6.476 5.449 5.977 3.371 2.807 2.965

100 (A)  e@l) 3748 3.555 4.459 1.963 1.786 2.156
1) 6.296 5.445 6.047 3.293 2772 2.988

B)  e2) 3786 3.520 4.448 1.982 1.803 2177
c(21) 6.308 5.375 5.960 3.266 2.780 2.981

©)  e@l) 3758 3.665 4.464 1.984 1.802 2.163
c(21) 6.280 5.389 5.955 3.316 2.770 2.991

(D) e1)  3.79 3.556 4.388 1.984 1777 2.163
c(2|1) 6.352 5.389 5.926 3.321 2.771 2.953

200 (A) e2]l) 3453 3.337 4264 1.842 1.690 2.105
c(21) 6.023 5.179 5.831 3.123 2.621 2912

B) 1) = 3.37 3.509 4303 1.885 1.730 2.120
c(21) 5.997 5.180 5.766 3.106 2.643 2.870

€  e@]l) 3432 3.365 4327 1.852 1.707 2.109
c(21) 5.950 5.161 5.842 3.122 2.619 2.883

(D)  e2l) 3431 3.374 4275 1.866 1.718 2.120
c(2|1) 5.977 5.168 5.766 3.082 2.640 2.893

400 (A e2) 3703 3.274 4346 1.781 1.69 2.155
c(2]1) 5.922 5.176 5.890 3.043 2.624 2.935

(B)  e(2]l) 3283 3.279 4270 1.793 1714 2.150
c(21) 5.910 5.194 5.836 3.039 2.627 2.925

©  e2) = 3273 3.285 4263 1.776 1.708 2.121
c(2|1) 5.894 5.187 5.876 3.050 2.635 2.903

D)  e2l) 3312 3.359 4.406 1.785 1.706 2.138
c(21) 5.956 5.234 5.834 3.055 2.622 2.922

800 (A) e(/ZTl ) 2.972 3.034 4.118 1.616 1.620 2.079
c(21) 5.628 4.928 5.723 2.853 2.525 2.840

(B) e(/2|\1 ) 2.961 3.106 4.124 1.6378 1.627 2.090

c(2]1) 5.575 4.953 5.672 2.868 2.540 2.864

©)  e@ll) 2917 3.053 4117 1.620 1.603 2.083
c(21) 5.538 4.955 5.707 2.835 2.513 2.846

(D) @) 2927 3.060 4128 1.618 1.607 2.092
c(21) 5.575 4.958 5.725 2.832 2.504 2.862
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cases, approximation (IT) more closely approaches e(2|1) than approximation
(I). In addition, approximation (II) exhibits high stability when we vary the
population distribution.

3.2. Accuracy of the estimators. Next, we computed the MSEs of the
proposed estimator e(2[1) and the previous estimator ¢(2[1). The MSEs of
both estimators are listed in Table 2. In all cases, the estimator e(2|1) gives
a smaller MSE than the estimator ¢(2[1). Based on these simulation experi-
ments, we therefore recommend estimator e(2|1).

4. Conclusion

We proposed consistent and asymptotically unbiased estimators of mis-
classification probabilities in high-dimensional settings. Our proposed estima-
tor was obtained by using a normal approximation of the misclassification
probability. We confirmed the consistency of the proposed estimator under
variance heterogeneity and non-normality (Proposition 2.2). We also showed
the consistency of an estimator based on the leave-one-out CV method (Prop-
osition 2.3). The MSEs of the two estimators were compared in numerical
simulations. The estimator based on the normal approximation proved more
accurate than the estimator based on leave-one-out CV.

Appendix

A. Preliminary. In this Appendix, we state some preliminary results.

Lemma A.l. Let 21,2,...,2, be i.id random vectors that satisfy (C1) or
(C2), and Z=n"" ;':1 z;. Then for any p x p real symmetric matrix A, it
holds that
(1) Viepo nE{(e]2)"} = n7(ka + 3n),

(i) E{(z]AZ)’} =n ks tr(A O A) + n 2{tr(A)}* + 2n72 tr(A?),
(i) E{(z{ Az1)’} = k4 tr(A O A) + {tr(A)}” + 2 tr(A?),
(iv)

iv)  E{(z] Azz)*} = 6 tr(A*) + 3{tr(A%)}* + 614 tr(A2 O A?) + 12 tr{(A O A)*}.

==

ProoF. The proof is routine and hence omitted here.

2

LemMA A.2.  The variance of W is a,.

ProoF. Define (g,9') € {(1,2),(2,1)}. Lety=x—p, and y,, =X/ — p,
for / €{g,9’}. Then, (=1)’"'W can be expressed as (—1)™'W = u+ W, +
W,, where
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W, = 2(_1)g+16Ty + z(yg - yg’)Tyv

nq/
_ -1 ‘
W, = (*UgZ&Tyg' + {ny (ny — 1)} Z ygT’jlyg’jz
Jui=Lj1#jh
—1 z
—{ny(ny — 1)} Z ygle Yoin-
Jusi=lL 1 #ja

Here, y, = X, —u,. Since E(W;) = E(W>) =0, we obtain E(W) = (—=1)* 4.
Also, it can be shown that

var(W)) = 4{6' X0 +n, ' tr(Z7) +n,! tr(Z1X7)},
var(Wa) = 2[{ny(ny — D)} " te(Z7) + {ng(ng — 1)} ' e(27) 4 2n,'67 2,6,
and cov(Wy, W,) = 0. O

LemMA A.3 (The variance of some estimators). We assume (C1) or (C2).
Then (1)—(iv) hold.

(i) Under (A0)~(A2), var(a) = o(07).

(ii) Under (AO) and (Al), v (tr(Zlfz)) = o(nj,ag),
(iii) Under (AO) and (Al), v (tr 2)) o(na?),
(iv)  Under (A0) and (Al), var(é 5TE, 2/0) = o(a?).

Proor. (i) is obtained by Section 6.1 in Chen and Qin [4]. (iii) is obtained
by Lemma 1 in Himeno and Yamada [6]. (ii) is obtained by same route as (iii).
We present only the proof of (iv). Let y, =Xz —p, and y,; =X, — pyr.
The statistic 6' 2,6 can be expressed as é' X6 = 3.2, 4,, where

ny

-1
Ay =A{ns(n, = 1)(n, — 2)} Z Y/le Yszy;jly/jy
Jij2 3=l
JL#E T 2# 3, J3# )1

ns

-1
Ay = —{n/(ns — 1)(ns = 2)(n, — 3)} > LYYV
JUo 2,03, ja=1
NFERFJ3FJ4
J3#E 1 #JaF#

ny
—1 —
Az ==2{n/(n, = D} D VLY 5Y

Ji,i2=1
J1#j2
1 -
Ay =2{ns(n, = 1)(n, — 2)}~ > YV
Juj2 3=l

J1# T2 #7373 # )i
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ny nt

-1
As = 2{1’1/71//(71(' - 1)} Z Z y//Tlefljzyijly/'.is’
=12, /3=1
2 #J3

nyr

A = —2{}’1/( ny — l)l’l/ (n/' _1 }_ Z Z y/j]y/]3y/]2y//47

Jua=1]3, ja=1
N#p 3#Js

ny

Az =2{n(n, = YD (=) Y50

Ji,ja=1
J#]

ny

-1 T
As = =2{n/(n, — 1)(n, — 2)} S (=m0 Y55V
Jtj2s =1
N FEJ2 2 # 303 F 1

= —2n;" Z —u) Y/*jy/ij/’a

ny

-1 T _
Ao = 2{ns(n, — 1)} Z (1, — my1) y/j]Y/szy/'a
Ji,2=1
N#h

An =n, Z — 1) Y3y — ),

ny

Ap = —{n/(n, — 1)}_1 Z (w—m)" Y/,lym( —uy).

Ji2=1
N#J2

The expectations of A, are derived as E(4,) =0 (x# 11) and E(4;) =

0'2,6. The variances of A, are derived as follows:

var(4;) = <{tr22)}2 + tr(24)>, var(4;) = O (_{tr(i})}2>7

’;
”/ n,

var(4s) tr(Z7) tr(Z,2,) \/tr () \/ t{(Z,Z)°
3 n/n/r nyny

tr(X) (2,2,
var(A4s) = (r r(Z /)),
n/n//

var(As)
}’lﬂ’l

0<{tr Z 2P | {5 })7

//
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PV A \Jtr(ZHe T X6
var(Aﬁ:O(tr( /)g /6+ ( ; ’ ;
n; 7

25T
var(A4g) = 0<tr(2,)§2/5>7
ny
5506758 \Jrl(ZE) 0T 5
Var(A9):0(tr( 12)0 /5+ {2y Z,) 0 2 |
nengt ng

var(Ai) = 0(@) var(4;;) = 0(@)7

nin, ny
Ty &2
var(A4y) = 0<(6 22/5) )
ny
Thus var(4,) = o(a;) for all xe{1,2,...,12}. ]

B. Proof of Theorem 2.1. Under conditions (C2) and (A0)-(A2), W, in the
proof of Lemma A.2 is negligible. Thus {(—1)/"'w — wjog =" €+ o0p(l),
where ¢; = 2{(—1)’"'6 + (¥, - yy,)}TE:,/zeiZi/Ug- Here,

i

e;=(0...010...0)".

Defining %y = 0{y,,¥,} and Zi|=0{¥,,¥,21,22,---,zi-1} (2<1i), it is
straightforward to show that E(¢;) =0 and E(¢;|#;-1) = 0. Thus, ¢ is a mar-
tingale difference sequence. To show the asymptotic normality of > 7 ¢, we
adapt the martingale difference central-limit theorem (see Shiryaev [7] or Hall
and Heyde [5]). Now let 034 = E(e?|#i-1). To apply the martingale central-
limit theorem, we need to show that (a): ’ aji =1+0y(1) and (b):
1 E(e}) = o(1).

To show (a), we evaluate o, = A=)+ (3, - yg,)}TE;/zei]z/ag,

and

N 62, =40,2{87 2,6 +2(~1)""' R + Ry},
i=1
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Here, R; =0 X,(y, —¥,) and R, = (5, — ¥,)) Z4(¥, — ¥,). Since E(R;) =0
and E(R;) = tr(Eé)/ng +tr(ZyZy)/ny, we obtain

P
E (Z aj,i> =40,{0" 20+ n, tr(E3) +n) tr(Z122)} =1+ 0(1).
i=1

To check (a), we need to show that var(R;) = o(c,) and var(Ry) = o(a}).
From Lemma A.l, these variances are given as follows:

var(R;) = O(n; !

S (ENSTE 0 + 0, {(Z,2,) 10T E,0),

var(Ry) = O(n,? tr(Z3) + n,* tr{(Z,Zy)7}).

Hence, under (Al), var(R;) = o(o;) and var(R,) = o(c;). Thus, under (Al),
(a) holds.

To show (b), we decompose ¢ into the sum of three parts, ¢ =
2{( )q+ €1; + €p — 6,'3}/0'9, where €] — 5T2;/zei2i, € — y;Z;/zeizi, and €3 =
¥, 2} eiz;i. Then, we need to show that -7 E(e}) = o(c?) for /e {1,2,3}.
These expectations are given as follows:

)4
Z E(e}) = O(tr{(Z)/007 2)%) © (Z)00 T 2)/%)}),

Z E(c}) = O(n,” w(Zy)), Y Elef) = O(n, u{(Z,24)%}).

Thus, 7 E(e}
and 337 E(e})

C. Proof of Proposition 2.2. We assume (Cl) or (C2). From Lemma A.3,
under (A0)-(A2),

g

) = o(g;) under (A4). Also, under (A1), Y7 E(e}) = o(a;)
= (a;‘). These results complete the proof. ]

A= i+ 0p(ay), (A. 1)
tr(Z12,) (21 2) tr(Z?)  tw(Z?)
= +0p(a2), 90 =1 4 0,(c2). (A. 2)
ng/ I’lgr I’lg ng

We also note that |max(0,0'X,0) —d'X,0| < |0’ 2,0~ X,0| as. From
this result and (iv) in Lemma A.3, we get

E{(max(O,éT/E\gé) —0'2,0)°} < Var(éT/\Egé) = 0(03).
Hence,

max (0,87 £,8) = 87 2,0 + 0(02). (A. 3)
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From (A. 1), i=pu+o0y(0,). From (A. 2) and (A. 3), 67 = 0] +0,(0;).
Thus, under (A0)—(A2),

Wy = Wy + 0,(wy), (A. 4)

where wy = —u/o, and W, = —f/é,.

We note that le(g'lg) — @(it,)| < [e(g'lg) — B(w,)| + [B(i,) — B(w,)].
From Proposition 2.1, |e(g'|g) — @(wy)| = o(1). Hence, it is sufficient to
show that |®@(i,) — @(w,)| = 0,(1). From (A. 4), we obtain w, = w,; + 0,(1).
By the continuous mapping theorem, we then get |@(W,) — @(w,)| = 0,(1).

O

D. Proof of Lemma 2.1. We assume (Cl) or (C2). Let k,k'e{l,2} and
k #k'. Then we decompose W, X — 4 as Wg(l_k) + W(](Z_k), where

,k _ _
W =2{(=1)18 — 5, + (ny — 2)/(ng = DFy 1.2} ¥t

—k ~1 1= _
W;z )= 2(ng — 1) ygT1Yg2 —2(ng — 1) ygT(fl,fz)quk/ + 2(_1>96Tyg’
n(’/

-1
+Hng(ng =1} > vV,

Juh=Lj#)

"y

~1
—{(ng = 1)(ny —2)} Z ygTj,yg/2~
JuiR=1#p g1, #1,2
Then it holds that W, " — = W™ + 0,(d,) under (A0)-(A2).
For non-random constants ¢; and c¢;, we define 7T = ¢ ng )+02 Wg(fz).
Then

(/WD =) + (W = @)} o, = T/, + o(1).

The asymptotic normality of 7" would imply Lemma 2.1. ,
Especially, under (Cl) and (A0)—(A2), T/o, = Z}Z’T”"/_ & + 0p(1), where

2y ey, +c
LGN Tk /o) Vie{l,2,...,n,—2},

o — d4(ny — 1)
7 ZyT,_ a1y, + 2y
_79 ”g“( ol ) Vie{n, — L,ng,...,.ng+ny —2}.
dgny
Define

N

/:0{y917~~-7yg,'+2} (OSang—Z),

% = G{yglv s 7ygnﬁayg/la s 7yg/j—n¢,+2} (I’lg -1< ])
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Then it is straightforward to show that E(g) =0 and E(g|#-1) =0. To
apply the martingale central-limit theorem, we need to show that

ng+n, =2 ng+ng —2
S E@IF ) =G+ d o), S EE)=o(l). (A 5)
Jj=1 Jj=1

First, we check the first part in (A. 5). Note that
ng+ng —2

E(&]|75-1) = (¢ + ¢3) = 0,2 (Vi + Va) + 0p(1),

Jj=1
where

4(n, — 2
v = ”{(aygl T ayp) Ey(eryy + avp) — (& + ) w(E2)),
-

4
V) = Z{(QYgl + Cngz)TZg’(ﬁ%l +ayp) - (Clz + Cg) tr(ZyZy)}-
9

Under (Al),
var(V1) = O(n, 2 tr(Z4) = 0(0)),  var(V2) = O(n,” tr{(Z,Zy)°}) = 0(0).

Thus, the first part of (A. 5) holds.
Next, we show the second part of (A. 5). Note that, under (A0),

Bty = | 00 el 2 m -2}
/ O(n,?) Vje{ng—1ng,....ng+ny —2}.

Thus the second part of (A. 5) holds. From these results, the proof is
complete. O

E. Proof of Lemma 2.2. Under (C2) and (A0)—(A2), the random variable T’
in section D can be factorized as T'/o, = > 7 | &, where

& =20, el{(=1)""10 =3, + (g = 2)/(ny = D3, } 2} Peizgn
+ 20—9_102{(_1)g+16 - yg’ + (n(/ - 2)/(”9 - l)yg}TE;/zeiZgi%

here zy1 = ez, zjo = ¢/2p, and §, =¥, . The asymptotic normality
of T would imply Lemma 2.2. Define

e?'70 = U{yg’vyg}v

Fi1 = 0{Yy: Yy Zglls - - 5 Zgi115 Zg125 - - -5 Zgi-12} (2 <.
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Thus, ¢&; is a martingale difference sequence. To apply the martingale central-
limit theorem, we need to show that

)4 P

S E(EG|Fi) =i+ +0,(1), D EE) =o(1). (A. 6)
=1 =1
To this end, we show the first part of (A. 6). Note that

)4
> E(E —(F+3) =4(cf + 21" P + Py} ol +0,(1),
i=1

where
Py =5T2g{(ng_2)/( =y, =¥

P2:{(”41_2)/(ng_1)5’g—yg/} Zy{(ng—2)/(ng — 1)y, =¥, }
- {n;1 tr(Eﬁ) + ng’,1 tr(Z122)}.

These variances are evaluated as

var(P;) = O(n;!

SV (ENSTZ0 + ny e {(Z,2,) 7107 Z,0) = o(ad),

g

var(Py) = O(ng_2 tr(E;‘) + ng_,2 tr{(Z,Z,)*}) = o(ag).

Thus, under (Al), the first part of (A. 6) holds.
We decompose ¢; into the sum of three parts, & =2{(—1)9""¢,;+
(ng —2)/(ng — 1) — i3}/ 0y, Where

Ty1/2 <Ty1/2
1 =29 Eg/ ei(c1zgi + C2zgin), o =Y, Eg/ ei(c1zgi + Cazgn),
T y1/2
& = Ygrzg/ ei(c1zgi1 + 2z4i2).

Then, we need to show that .7 E(é;)zo(ag) for /€ {1,2,3}. These
expectations are given as follows:

)4
Z E(&)) = O(tr{(Z)?06" X)) © (Z)/06" Z)/)}),
i=1

SR - 002 w(zh), S CEE) = 002 u{(Z,5,)%).

i=1 i=1
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Thus, under (A4), >0 | E(&}) = o(a?). Also, under (A1), -7 | E(&}) = o(a?)
and Y7 E(&) = 0(03). This proves the second part of (A. 6). From these
results, the proof is complete. O
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