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Abstract. We study non-isotrivial families of K3 surfaces in positive characteristic p

whose geometric generic fibers satisfy rb 21� 2h and hb 3, where r is the Picard

number and h is the height of the formal Brauer group. We show that, under a mild

assumption on the characteristic of the base field, they have potential supersingular

reduction. Our methods rely on Maulik’s results on moduli spaces of K3 surfaces and

the construction of sections of powers of Hodge bundles due to van der Geer and

Katsura. For large p and each 2a ha 10, using deformation theory and Taelman’s

methods, we construct non-isotrivial families of K3 surfaces satisfying r ¼ 22� 2h.

1. Introduction

We study the variation of heights in non-isotrivial families of K3 sur-

faces in characteristic p > 0 whose geometric generic fibers have large Picard

number. Recall that a K3 surface X over a field is a projective smooth surface

with trivial canonical bundle and H 1ðX ;OX Þ ¼ 0. Let k be an algebraically

closed field of positive characteristic p > 0. For a K3 surface X over k, let

hðXÞ be the height of the formal Brauer group. (When k is not algebrai-

cally closed, the height of X is defined to be the height of X
k
:¼ X nk k.) We

have 1a hðX Þa 10 or hðX Þ ¼ y: When hðX Þ0y, the Artin-Mazur-Igusa

inequality

rðX Þa 22� 2hðX Þ

is satisfied [1, Theorem 0.1], where rðXÞ is the Picard number of X . A K3

surface X over k is called supersingular if hðX Þ ¼ y: The Tate conjecture for

K3 surfaces [5], [12], [16], [18], [21], [22] implies that X is supersingular if and

only if rðX Þ ¼ 22. (See also [4, Corollaire 0.5], [9, Corollary 17.3.7].)

Let C be a proper smooth curve over k with function field K :¼ kðCÞ.
Let X be a K3 surface over K . Let v A C be a closed point where X has

potential good reduction. We say the height of X jumps at v (resp. X has
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potential supersingular reduction at v) if there exist a finite extension L=K and

a valuation w of L extending the valuation of v, and a smooth family of

K3 surfaces X over the valuation ring Ow such that XnOw
LFX nK L, and

hðXsÞ > hðXÞ (resp. hðXsÞ ¼ y). Here, Xs is the special fiber of X. We say

X is non-isotrivial if there does not exist a K3 surface Y over k such that

X nK KFY nk K .

The first main result of this paper is as follows.

Theorem 1.1. Let k be an algebraically closed field of characteristic p > 0,

C a projective smooth curve with function field K :¼ kðCÞ. Let X be a non-

isotrivial K3 surface over K that admits an ample line bundle L of degree 2d.

Assume that p > 18d þ 4 and 3a hðXÞa 10. Then the height of X jumps at

some closed point v A C.

As a direct consequence of Theorem 1.1 and the Artin-Mazur-Igusa

inequality ra 22� 2h, we have the following corollary.

Corollary 1.2. Under the assumptions of Theorem 1.1, assume moreover

that rðXKÞb 21� 2hðXÞ. Then X has potential supersingular reduction at some

closed point v A C.

The following theorem is the second main result of this paper. We shall

prove the existence of non-isotrivial K3 surfaces over function fields with

r ¼ 22� 2h if hb 2.

Theorem 1.3. Let p be a prime number and h a positive integer with

2a ha 10. There exist non-isotrivial K3 surfaces X over function fields of

characteristic p satisfying rðX Þ ¼ 22� 2hðXÞ and hðXÞ ¼ h if at least one of the

following conditions holds:
� p ¼ 3 and h ¼ 10, or
� pb 5.

Remark 1.4. When pb 3, Jang and Liedtke independently proved that

there do not exist non-isotrivial K3 surfaces X with rðXÞ ¼ 22� 2hðX Þ and

hðXÞ ¼ 1 [11, Theorem 3.7], [14, Theorem 2.6]. See also Theorem 4.2.

Remark 1.5. The main reason why we assume conditions on prime p in

Theorem 1.1 and Theorem 1.3 is that we do not currently know the existence

of potential semistable reduction of K3 surfaces over discretely valued fields.

For the precise statement we need, see [15, Assumption (?)]. If we assume

[15, Assumption (?)], we can show Theorem 1.1 for pb 3 and Theorem 1.3 for

any p. See also Remark 5.4.

The outline of this paper is as follows. We recall the results of van der

Geer-Katsura [7] and Maulik [18] on the variation of heights in families of K3
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surfaces in Section 2. The proof of Theorem 1.1 is given in Section 3. In

Section 4, using deformation theory, we show Theorem 1.3 comes down to

show the existence of K3 surfaces X over Fp satisfying rðXÞ ¼ 22� 2hðX Þ and

hðXÞ ¼ h. Assuming semistable reduction, Taelman conditionally proved the

existence of K3 surfaces over finite fields with given L-function, up to finite

extensions of the base field; see [28]. When the characteristic of the base field

is not too small, the author recently proved that Taelman’s results hold

unconditionally; see [10]. Using these results, in Section 5, we construct K3

surfaces X over Fp satisfying rðX Þ ¼ 22� 2hðXÞ and hðXÞ ¼ h for large p and

each 2a ha 10; see Proposition 5.2. Then we achieve Theorem 1.3.

2. The variation of heights in families of K3 surfaces

Let X be a K3 surface over an algebraically closed field k of charac-

teristic p > 0. The following functor from the category Artk of local artinian

k-algebras with residue field k to the category of abelian groups

F2
X : Artk ���! ðAbelian groupsÞ

R ���! kerðH 2
�eetðX nk R;GmÞ ! H 2

�eetðX ;GmÞÞ

is pro-representable by a smooth one-dimensional formal group scheme cBrBrðXÞ
[3]. The height of X is defined to be the height of cBrBrðX Þ

hðXÞ :¼ hðcBrBrðX ÞÞ:

We have 1a hðXÞa 10 or hðX Þ ¼ y. When hðXÞ ¼ y, we say X is

supersingular. When hðXÞ0y, Artin proved the following inequality

rðXÞa 22� 2hðX Þ;

where rðX Þ is the Picard number of X [1, Theorem 0.1]. The Tate conjecture

for K3 surfaces [5], [12], [16], [18], [21], [22] implies that X is supersingular

if and only if rðXÞ ¼ 22. (See also [4, Corollaire 0.5], [9, Corollary 17.3.7].)

When k is not algebraically closed, the height of X is defined to be the height

of X nk k.

We say f : X ! S is a family of K3 surfaces if S is a scheme, X is an

algebraic space, and f is a proper smooth morphism whose geometric fibers are

K3 surfaces. A polarization (resp. quasi-polarization) of f : X ! S is a section

x A PicðX=SÞðSÞ of the relative Picard functor whose fiber xðsÞ at every

geometric point s ! S is a polarization (resp. quasi-polarization), which means

an ample (resp. big and nef ) line bundle on the K3 surface Xs. We say a

section x A PicðX=SÞðSÞ is primitive if, for every geometric point s ! S, the

cokernel of the inclusion hxðsÞi ,! PicðXsÞ is torsion free. For an integral
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scheme S over k, we say a family of K3 surfaces f : X ! S is non-isotrivial

if there do not exist a K3 surface Y over k and a finite flat morphism S 0 ! S

such that X�S S 0 FY �Spec k S
0.

For a positive integer db 1, let M2d (resp. M �
2d ) be the moduli functor

that sends a Z-scheme S to the groupoid consists of tuples ð f : X ! S; xÞ,
where f : X ! S is a family of K3 surfaces and x A PicðX=SÞðSÞ is a primitive

quasi-polarization (resp. primitive polarization) of degree 2d (i.e. for every

geometric point s ! S, ðxðsÞÞ2 ¼ ðxðsÞ; xðsÞÞ ¼ 2d, where ð ; Þ denotes the inter-

section pairing on Xs).

The following theorem is well-known.

Theorem 2.1 ([23, Theorem 4.3.4], [18, Proposition 2.1]). The moduli

functors M2d and M �
2d are Deligne-Mumford stacks of finite type over Spec Z,

and smooth over Spec Z½1=2d �.

In the following, we fix an algebraically closed field k of characteristic

p > 0 and a positive integer db 1 such that p does not divide 2d. We work

with the moduli stacks M2d;k :¼ M2d nZ k and M �
2d;k :¼ M �

2d nZ k. Let

p : X ! M2d;k be the universal family.

Now we recall the results of van der Geer and Katsura on the description

of the locus

M
ðhÞ
2d;k ¼ fs A M2d;k j hðXsÞb hg

for 1a ha 11. The locus M
ðhÞ
2d;k is a closed substack of M2d;k. The locus

M
ð11Þ
2d;k is called the supersingular locus. The loci M

ðhÞ
2d;k ð1a ha 11Þ form the

so-called height stratification of the moduli stack M2d;k.

Let l :¼ p�ðW2
X=M2d; k

Þ be the Hodge bundle on M2d;k. For each 1a ha

10, van der Geer and Katsura constructed an O
M

ðhÞ
2d; k

-linear morphism of line

bundles

fh : ðR2p�OXÞðp
hÞj

M
ðhÞ
2d; k

! R2p�OXjM ðhÞ
2d; k

on M
ðhÞ
2d;k such that the locus where fh vanishes coincides with M

ðhþ1Þ
2d;k

[7, Theorem 15.1]. Here, ðR2p�OXÞðp
hÞ is the pullback of R2p�OX by the

h-th power of the absolute Frobenius morphism F : M2d;k ! M2d;k. There-

fore, for each 1a ha 10, there is a global section

gh A GðM ðhÞ
2d;k; l

nðph�1ÞÞ

on M
ðhÞ
2d;k whose zero locus coincides with M

ðhþ1Þ
2d;k .

When pb 5, Maulik showed the following important theorem in [18].

Madapusi Pera proved it when pb 3 in [16].
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Theorem 2.2 ([16, Corollary 5.16], [18, Theorem 5.1]). Assume pb 3.

Then the Hodge bundle l is ample on the polarized locus M �
2d;k. Further-

more, for any morphism g : C ! M2d;k from a proper smooth curve C over k

such that
� C is not contracted in the map to the coarse moduli space, and
� C meets the polarized locus M �

2d;k nontrivially,

the pullback of the Hodge bundle l on M2d;k to C has positive degree.

The following corollary is stated in [7, Theorem 15.3], [18, Corollary 5.5]

in the polarized case, but we can prove it in the quasi-polarized (and generically

polarized) case in a similar way.

Corollary 2.3. Assume pb 3. Let C be a proper smooth curve over k,

and f : X ! C a non-isotrivial family of K3 surfaces with a primitive quasi-

polarization x of degree 2d such that the generic fiber ðXh; xðhÞÞ is a polarized

K3 surface. Then, either
� the heights of the geometric fibers Xt are not constant, or
� all geometric fibers Xt are supersingular.

Proof. If the heights of the geometric fibers Xt are constant, and they are

equal to h (1a ha 10), then the image of C is contained in M
ðhÞ
2d;knM

ðhþ1Þ
2d;k .

The pullback of lnðph�1Þ to C is trivial since the pullback of gh is a global

section which is everywhere nonzero on C. However the pullback of l to C

has positive degree by Theorem 2.2, which is absurd. r

Remark 2.4. The polarized locus M �
2d;k is separated [23, Theorem 4.3.3],

but M2d;k is not separated. The non-separatedness of M2d;k is related to the

existence of flops; see [18, last paragraph in p. 2362]. So we do not expect

M
ðhÞ
2d;knM

ðhþ1Þ
2d;k is ‘‘quasi-a‰ne’’ in a reasonable sense. However, it does not

cause any problem to obtain Corollary 2.3 thanks to Theorem 2.2. Compare

the proof of Corollary 2.3 with the proof of [7, Theorem 15.3].

3. Proof of Theorem 1.1

In this section, for a discretely valued field L, we denote its valuation ring

by OL, the generic point by h A Spec OL, and the closed point by s A Spec OL.

Let k be an algebraically closed field of characteristic pb 5, and C a

proper smooth curve over k with function field K ¼ kðCÞ. Let ðX ;LÞ be a

non-isotrivial primitively polarized K3 surface over K of degree 2d with

p > 18d þ 4 and 3a hðXÞa 10. Then there exist a non-empty Zariski open

set U � C and a family of K3 surfaces

XU ! U

71Existence of supersingular reduction for families of K3 surfaces



with a polarization xU of degree 2d which extends ðX ;LÞ. The set of closed

points outside U is denoted by CnU ¼ fv1; . . . ; vmg. Take a closed point

vi A CnU . We put Ki :¼ K and consider it as a discretely valued field with

respect to the valuation defined by vi.

First, we shall extend XU to a quasi-polarized family of K3 surfaces

over C, after replacing C by a finite covering of it. This step is now well-

understood thanks to Maulik’s work [18]. We briefly recall his argument with

a minor modification; see Remark 3.3. In [18, Section 4.3], Maulik con-

structed a projective scheme

X 0
i ! Spec OK 0

i
;

after taking the base change to a finite extension K 0
i =Ki, which satisfies the

following conditions:

(1) X 0
i is Cohen-Macaulay, Q-factorial, and regular away from finitely

many points,

(2) the generic fiber X 0
i;h is isomorphic to XK 0

i
:¼ X nKi

K 0
i ,

(3) the closed fiber X 0
i; s is reduced and irreducible components of X 0

i; s are

normal,

(4) the singularities of X 0
i; s are rational double points or of normal

crossing type, and

(5) the relative canonical bundle KX 0
i =OK 0

i

is trivial and there is a nef

Q-divisor H on X 0
i such that

HjX 0
i; h
@Q gLK 0

i

for some positive rational number g A Q>0, where LK 0
i
:¼ LnKi

K 0
i .

Here we use the fact that Ln3 is very ample [25] and the assumption p >

18d þ 4 to apply Saito’s results [26] on the construction of projective semistable

models.

Claim 3.1. If hðX Þb 3, then there exist a finite extension of discretely

valued fields Li=Ki and a primitively quasi-polarized family of K3 surfaces

Xi ! Spec OLi
;

which extends ðXLi
;LLi

Þ :¼ ðX nKi
Li;LnKi

LiÞ.

Proof. We shall apply Artin’s results on the simultaneous resolution

of rational double points in the category of algebraic spaces [2, Theorem 2].

Then we find a finite extension of discretely valued fields Li=K
0
i , a proper

smooth family of K3 surfaces

Xi ! Spec OLi
;
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and a simultaneous resolution over Spec OLi

Xi ! X 0
i nOK 0

i

OLi
:

Here Xi is an algebraic space over Spec OLi
, and Xi ! X 0

i nOK 0
i

OLi
induces an

isomorphism on the generic fiber and the minimal resolution of rational double

points on the closed fiber.

We apply Nakkajima’s results [20, Proposition 3.4], and see that the closed

fiber Xi; s is a combinatorial K3 surface, which means one of the following

types:

(1) smooth K3 surface (type I),

(2) two rational surfaces joined by a chain of ruled surfaces over an

elliptic curve (type II),

(3) union of rational surfaces, whose dual graph of the configuration is a

triangulation of S2 (type III).

In [24, Proposition 3], Rudakov, Zink, and Shafarevich showed that

the height hðXi; sÞ of the closed fiber satisfies hðXi; sÞb hðXi;hÞ. Moreover,

1a hðXi; sÞa 2 is satisfied if the closed fiber Xi; s is not smooth. So by our

assumption hðX Þb 3, the family of K3 surfaces Xi ! Spec OLi
is necessarily

smooth.

We shall show that the line bundle Li on Xi which extends LLi
is a

quasi-polarization. We follow Maulik’s argument as in [18, Lemma 4.10].

We denote the natural morphism Xi ! X 0
i by g. The pullback g�H of the

nef Q-divisor H is also nef. Since we have HjX 0
i; h
@Q gLK 0

i
on X 0

i;h, we also

have

g�H@Q gLi

and hence Li is nef by [18, Lemma 5.12]. The bigness of Li follows from the

fact that the Euler-Poincaré characteristics are locally constant in a flat family.

Since the order of a torsion element in the cokernel of

PicðXi;hÞ ,! PicðXi; sÞ

is a power of p [19, Proposition 3.6] and

p > 18d þ 4 > 2d ¼ ðLÞ2 ¼ ðLiÞ2;

the line bundle Li is also primitive on the closed fiber. r

Proof of Theorem 1.1. We now give a proof of Theorem 1.1. The

family XU ! U can be extended to a primitively quasi-polarized family of K3

surfaces

X ! C
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over a proper smooth curve C, after replacing it by a finite covering of it

[18, Lemma 7.2].

By Corollary 2.3, there exists a closed point v A C such that the height of

X jumps at v. So we achieve Theorem 1.1. r

Proof of Corollary 1.2. Assume

rðXKÞb 21� 2hðX Þ;

and take a closed point v A C such that the height of X jumps at v, namely,

hðXvÞ > hðXÞ. Then X necessarily has supersingular reduction at v. Indeed,

if hðXvÞ0y, then we have

22� 2hðXvÞb rðXvÞb rðXKÞb 21� 2hðX Þ:

Hence we have hðXÞb hðXvÞ � 1=2, which is absurd. r

In Theorem 1.1, we assume p > 18d þ 4 and hðXÞb 3, but one expects

that the following conjecture is true without any assumptions on p, d, and

hðXÞ.

Conjecture 3.2 ([7, p.288], [18, p.2390]). Let k be an algebraically closed

field of positive characteristic p > 0, and C a proper smooth curve over k with

function field K ¼ kðCÞ. Let X be a non-isotrivial non-supersingular K3 sur-

face over K. Then, after replacing C by a finite covering of it, there exists a

semistable family of combinatorial K3 surfaces X ! C which extends X and

satisfies hðXvÞ > hðXÞ at some closed point v A C.

A natural strategy to prove Conjecture 3.2 is to generalize Maulik’s results

(Theorem 2.2) to an appropriate compactification of the moduli stack M2d;k,

but such results are not currently available.

Remark 3.3. In the proof of Theorem 1.1, the construction of a quasi-

polarized family of K3 surfaces X ! C is basically the same as in Maulik’s

proof of [18, Theorem 4.2]. But there is a slight technical di¤erence. In [18,

Theorem 4.2], Maulik considered families of supersingular K3 surfaces, and he

constructed families X ! C as schemes. In fact, he applied Artin’s simulta-

neous resolution over the completion of the local ring at each vi A CnU in order

to show that there is no rational double point in the closed fiber X 0
i; vi

; see the

proof of [18, Lemma 4.10]. (This argument works only for supersingular K3

surfaces.) On the other hand, we apply Artin’s simultaneous resolution [2]

over (the henselization of ) the local ring at each vi A CnU rather than the

completion of it. (This is possible since Artin’s results in [2] are valid over

henselian (not necessarily complete) discrete valuation rings.) Consequently, in

the proof of Theorem 1.1, we construct families X ! C as algebraic spaces.
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Note that the example discussed by Matsumoto in [17, Example 5.2] shows that

one does not expect to construct families X ! C as schemes in general. For

details, compare the proof of Theorem 1.1 with Maulik’s proof of [18, Theorem

4.2, Lemma 4.7].

4. Deformations of K3 surfaces with constant height and Picard number

In the rest of this paper, we shall give a proof of Theorem 1.3. We fix an

algebraically closed field k of characteristic p > 0. In this section we show the

following.

Proposition 4.1. Let ðX0;L0Þ be a polarized K3 surface over k satisfying

2a hðX0Þa 10. Then there exists a non-isotrivial polarized K3 surface ðX ;LÞ
over the function field of a proper smooth curve over k such that rðXÞ ¼ rðX0Þ,
hðXÞ ¼ hðX0Þ, and ðLÞ2 ¼ ðL0Þ2:

Proof. We use the deformation theory to construct a non-isotrivial

family. Similar arguments may be found in [13, Section 4]. Let p : X ! S

be the versal formal deformation of X0 over k. It is known that S is formally

smooth of dimension 20 over k; so we have

SF Spf k½½t1; . . . ; t20��:

See [6, Corollary 1.2].

Let L1; . . . ;LrðX0Þ be a Z-basis of PicðX0Þ. Then the deformation space

of the pair ðX0;LiÞ is defined by an equation

fi A k½½t1; . . . ; t20��:

See [6, Proposition 1.5]. A linear combination of L1; . . . ;LrðX0Þ is ample since

X0 is projective. Hence by Grothendieck’s algebraization theorem, we get a

universal family

X 0 ! S 0 ¼ Specðk½½t1; . . . ; t20��=ð f1; . . . ; frðX0ÞÞÞ

of deformations of the tuple ðX0;L1; . . . ;LrðX0ÞÞ: For each 1a ha 10, let

S 0ðhÞ :¼ fs A S 0 j hðX 0
s Þb hg:

In [7], van der Geer and Katsura showed that there are elements

g1; . . . ; ghðX0Þ�1 A k½½t1; . . . ; t20��;

such that, for each 2a ha hðX0Þ, the closed subscheme S 0ðhÞ � S 0 is written

as

S 0ðhÞ ¼ Specðk½½t1; . . . ; t20��=ð f1; . . . ; frðX0Þ; g1; . . . ; gh�1ÞÞ:
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Then the K3 surface X 0
s corresponding to a geometric point s of S 0ðhðX0ÞÞ

satisfies

rðX 0
s Þ ¼ rðX0Þ; hðX 0

s Þ ¼ hðX0Þ:

Moreover, since L0 is a Z-linear combination of L1; . . . ;LrðX0Þ, the K3 surface

X 0
s has a line bundle Ls which lifts L0. The line bundle Ls is ample with

ðLsÞ2 ¼ ðL0Þ2. Since

rðX0Þ þ hðX0Þ � 1a 21� hðX0Þ < 20;

the dimension of S 0ðhðX0ÞÞ is positive. Hence we find a non-isotrivial family

over a complete local ring of dimensionb 1. After passing limits and cutting

by hyperplanes, we find a non-isotrivial polarized K3 surface ðX ;LÞ over a

function field such that rðX Þ ¼ rðX0Þ, hðXÞ ¼ hðX0Þ, and ðLÞ2 ¼ ðL0Þ2. r

By Proposition 4.1, in order to construct non-isotrivial K3 surfaces X over

function fields satisfying rðXÞ ¼ 22� 2hðXÞ and 2a hðXÞa 10, it su‰ces to

construct such K3 surfaces over k.

We note that non-isotrivial K3 surfaces X with rðXÞ ¼ 22� 2hðX Þ do not

exist when p is odd and hðXÞ ¼ 1. This follows from the following result

recently proved by Jang and Liedtke, independently.

Theorem 4.2 ([11, Theorem 3.7], [14, Theorem 2.6]). Let X be a K3

surface with rðXÞ ¼ 20 over an algebraically closed field k of characteristic

pb 3. Then X is defined over a finite field.

Proof. See [11, Theorem 3.7] and [14, Theorem 2.6]. r

5. The existence of non-isotrivial K3 surfaces with large Picard number

Assuming the existence of potential semistable reduction, Taelman con-

ditionally proved the existence of K3 surfaces over finite fields with given

L-function, up to finite extensions of the base field [28]. When the charac-

teristic of the base field is not too small, the author recently proved that

Taelman’s results hold unconditionally [10]. As an application, the author

proved the following theorem.

Theorem 5.1 ([10, Theorem 7.4]). Let p be a prime number with pb 5.

Let r A ð2ZÞ>0 be a positive even integer and h A Z>0 a positive integer with

ra 22� 2h:

Then there exists a K3 surface X over Fp such that rðX Þ ¼ r and hðXÞ ¼ h.

Proof. See [10, Theorem 7.4]. r
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Proposition 5.2. Let p be a prime number and h a positive integer with

1a ha 10. There exists a K3 surface X over Fp with rðXÞ ¼ 22� 2hðXÞ and

hðXÞ ¼ h if at least one of the following conditions holds:
� p ¼ 3 and h ¼ 10, or
� pb 5.

Proof. When pb 5 and 1a ha 9, we have 22� 2hb 4. Then, there

exists a K3 surface X over Fp with rðXÞ ¼ 22� 2hðX Þ and hðXÞ ¼ h by

Theorem 5.1.

When pb 3 and h ¼ 10, it is well-known that there exists a K3 surface

X over Fp such that hðXÞ ¼ h by [27, Corollary 2.2] and [7, Theorem 14.2].

Then, we have rðXÞa 22� 2h ¼ 2. By the Tate conjecture for K3 surfaces

over finite fields, the Picard number rðXÞ is even; see [1, the paragraph

following Definition 0.3]. (See also [9, Chapter 17, Corollary 2.9].) Hence we

have rðXÞ ¼ 2. r

Combining Proposition 5.2 with Proposition 4.1, we obtain Theorem

1.3.

Proof of Theorem 1.3. By Proposition 5.2, there exists a K3 surface

X0 over Fp with rðX0Þ ¼ 22� 2hðX0Þ and hðX0Þ ¼ h. By Proposition 4.1, we

have a non-isotrivial K3 surface X over the function field of a proper smooth

curve over Fp with rðXÞ ¼ rðX0Þ and hðXÞ ¼ hðX0Þ. In particular, X satisfies

rðXÞ ¼ 22� 2hðXÞ and hðXÞ ¼ h. r

Example 5.3. In [29], [8], Yui and Goto calculated the heights of the

formal Brauer groups of K3 surfaces over finite fields concretely. In their list,

we can find concrete examples of K3 surfaces X over Fp satisfying rðXÞ ¼
22� 2hðX Þ.

Remark 5.4. Using Taelman’s theorem [28, Theorem 3] and Proposition

4.1, it is easy to see that Theorem 1.3 holds for any p and any 2a ha 10 if we

assume [15, Assumption (?)].
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