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ABSTRACT. Let SL(2,IH) be the group of 2 x 2 quaternionic matrices with Dieudonné
determinant one. The group SL(2,IH) acts on the five dimensional hyperbolic space
by isometries. We investigate extremality of Jorgensen type inequalities in SL(2,H).
Along the way, we derive Jorgensen type inequalities for quaternionic Mdobius trans-
formations which extend earlier inequalities obtained by Waterman and Kellerhals.

1. Introduction

In the theory of Fuchsian groups, one of the important old problems is
the “discreteness problem’: given two elements in PSL(2,R), to decide whether
the group generated by them is discrete. For an elaborate account on this
problem, see Gilman [11]. Algorithmic solutions to this problem were given
by Rosenberger [20], Gilman and Maskit [12], Gilman [11]. The Jorgensen
inequality [7] is a major result related to this problem. Jergensen [7] obtained
an inequality that the generators of a discrete, non-elementary, two-generator
subgroup of SL(2,C) necessarily satisfy. Wada [30] used this inequality to
provide an effective algorithm that helps the software OPTi to test discreteness
of subgroups, as well as to draw deformation spaces of discrete groups.

A two-generator discrete subgroup of isometries of the hyperbolic space is
called extreme group if it satisfies equality in the Jorgensen inequality. Inves-
tigation of extreme groups in SL(2,C) was initiated by Jergensen and Kikka
[8]. This work was followed by attempts to classify the two-generator extreme
groups in SL(2, C), for eg. see [12, 14]. In a series of papers, Sato et al. [21]—
[26] have investigated this problem in great detail and provided a conjectural
list of the parabolic-type extreme groups. Callahan [4] has provided a counter
example to that conjecture. Callahan has also classified all non-compact
arithmetic extreme groups which were not in the list of Sato et al. The
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problem of classifying parabolic-type Jorgensen groups in SL(2, C) is still open.
Recently, Vesnin and Masley [29] have investigated extremality of other
Jorgensen type inequalities in SL(2,C). Vesnin [2] has raised the problem
of classifying all hyperbolic 3-orbifold groups that satisfy extremality in
Jorgensen type inequalities obtained by Gehring-Martin [10] and Tan [27].

The problem of classifying extreme Jorgensen groups in higher dimension
has not seen much attempt till date. The aim of this paper is to address this
problem for Jorgensen type inequalities in SL(2,HH). Here H is the division
ring of the real quaternions and SL(2,H) is the group of 2 x 2 quaternionic
matrices with Dieudonné determinant 1. It is well-known that SL(2,H) acts
on the five dimensional real hyperbolic space H> by the Mé&bius transforma-
tions (or linear fractional transformations), for a proof see [13]. The isometries
of H’ are classified by their fixed points, as elliptic, parabolic and hyperbolic
(or loxodromic). This classification can be characterized algebraically by con-
jugacy invariants of the isometries, see [18, 19, 13, 3] for more details.

The Jorgensen inequality has been generalized in higher dimensions by
Martin [17] who formulated it using the upper half space or the unit ball model
of the hyperbolic n-space in R"*!. Hence, in Martin’s generalization, the
isometries are real matrices of rank n+ 1. Ahlfors [1] used Clifford algebras to
investigate higher dimensional M&bius groups. In this approach, the isometry
group of the hyperbolic n-space can be identified with a group of 2 x 2 matrices
over the Clifford numbers, see Ahlfors [1], Waterman [31]. Using the Clifford
algebraic formalism, a generalization of Jergensen inequality was obtained by
Waterman [31]. However, it may be difficult to deal with the Clifford matrices
due to the non-commutative and non-associative structure of the Clifford
numbers.

Using the real quaternions there is an intermediate approach between the
complex numbers and the Clifford numbers. This approach should provide
the closest generalization of the low dimensional results for four and five
dimensional Mobius groups. The Clifford group that acts by isometries on the
hyperbolic 4-space, is a proper subgroup of SL(2,IH). So, Waterman’s result
restricts to this case. Kellerhals [15] has used this quaternionic Clifford group
to investigate collars in H*. Recently, Tan et al. [28] have obtained a gener-
alization of the classical Delambre-Gauss formula for right-angles hexagons
in hyperbolic 4-space using the quaternionic Clifford group of Ahlfors and
Waterman.

The Clifford group that acts on H°, however, is not a subgroup of
SL(2,H). In fact, the group SL(2,H) is not in the list of the Clifford groups
of Ahlfors and Waterman. However, following the approach of Waterman, it
is not hard to formulate Jorgensen type inequalities for pairs of isometries in
SL(2,H). Kellerhals [16] derived Jorgensen inequality for two-generator dis-
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crete subgroups in SL(2,H), where one the of the generators is either unipotent
parabolic or hyperbolic.

Using similar methods as that of Waterman, we give here slightly gener-
alized versions of the Jorgensen inequalities in SL(2,1H) where, one of the
generators is either semisimple or, fixes a point on the boundary, see Theorem
2 and Theorem 3 in Section 3. The quaternionic formulations of the inequal-
ities of Kellerhals and Waterman are derived as corollaries, see Corollary 1 and
Corollary 7 respectively. We formulate a Jorgensen type inequality for strictly
hyperbolic elements that is very close to the original formulation of Jargensen,
see Corollary 2. We recall here that a strictly hyperbolic element or a stretch
is conjugate to a diagonal matrix that has real diagonal entries different from
0, 1 or —1. As corollaries we obtain two weaker versions of the inequality for
subgroups having one generator semisimple.

We investigate the extremality of these Jorgensen inequalities in Section 4.
We extend the results of Jorgensen and Kikka in the quaternionic set up, see
Theorem 5, Corollary 8 and Theorem 6. We also obtain necessary conditions
for a two-generator subgroup of SL(2,IH) to be extremal, see Corollaries 11
and 12.

2. Preliminaries

2.1. The quaternions. Let IH denote the division ring of quaternions.
Recall that every element of IH is of the form ay+ aji + axj + azk, where
ap,ay,ax,az € R, and i, j, k satisfy relations: i*> = j2=k> = —1, ij = —ji = k,
jk=—-kj=1i ki=—ik=j and jk=—-1. Any aelH can be written as
a=ay+ai+ayj+ ask = (ap + a1i) + (a2 + a3i) j = z+ wj, where z=ay+ aii,
w=a +a3ie C. For aeH, with a=ay+aii+aj+ask, we define
R(a) =ayp the real part of a and (a) = aji + arj + ask = the imaginary
part of a. Also define the conjugate of a as a = R(a) — S(a). If R(a) =0,
then we call a as a vector in IH which we can identify with R®. The norm
of a is |a| = \/ai + a} + a3 + a3.

2.1.1. Useful properties. We note the following properties of the quaternions
that will help us further:

(1) For xeR, aeH, we have ax = xa.

(2) For aeC, gj = ja.

(3) For a,be M, |ab| = |a| |b| = |ba| and if a # 0, then a~! = IaLZ

Two quaternions a, b are said to be similar if there exists a non-zero
quaternion ¢ such that » = ¢~'ac and we write it as a -~ b. Obviously, “~’ is
an equivalence relation on H and denote [a] as the class of a. It is easy to
verify that a « b if and only if R(a¢) = R(b) and |a| = |b|. Equivalently, @ v~ b
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if and only if R(a) = R(b) and |(a)| = |S(b)|. Thus the similarity class of
every quaternion a contains a pair of complex conjugates with absolute-value
la| and real part equal to R(a). Let a is similar to re”, 0 e [-n,n]. In most
cases, we will adopt the convention of calling |0| as the argument of a and
will denote it by arg(a). According to this convention, arg(a) € [0, 7], unless
specified otherwise.

Suppose a quaternion ¢ is conjugate to a complex number z = re’,
Since R(¢) = R(z) and |g| =|z|, it follows that |Sq| = |Jz| =|rsinal, ie
RZ]

|sin o] = =2
Tl

2.2. Matrices over the quaternions. Let M(2,H) denotes the set of all 2 x 2

a

. . b .
matrices over the quaternions. If A4 :( d>’ then we can associate the

c
‘quaternionic determinant’ det(A4) = |ad — aca='b|. A matrix 4 € M(2,H) is
invertible if and only if det(4) #0. Also, note that for A,BeM(2,H),
det(4B) = det(A) det(B). Now set

SL(2, H) _{<i’ 2) e M(2,H) : det(z Z) = |ad — aca™'b| = 1}.

The group SL(2,H) acts as the orientation-preserving isometry group of the
hyperbolic 5-space H>. We identify the extended quaternionic plane IH =
HU {co} with the conformal boundary S* of the hyperbolic 5-space. The
group SL(2,H) acts on IH by Mébius transformations:

(j 2) 12— (aZ+b)(cZ+d)—1

The action is extended over H> by Poincaré extensions.

2.3. Classification of elements of SL(2,IH). Every element A4 of SL(2,H)
has a fixed point on the closure of the hyperbolic space H>. This gives us
the usual trichotomy of elliptic, parabolic and hyperbolic (or loxodromic)
elements in SL(2,H). Further, it follows from the Lefschetz fixed point
theorem that every element of SL(2,H) has a fixed point on the conformal
boundary. Up to conjugacy, we can take that fixed point to be oo, and hence,
every element in SL(2,IH) is conjugate to an upper-triangular matrix.

We would like to note here that an elliptic or hyperbolic element A4 is
conjugate to a matrix of the form

(0 )
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where A, ueC. If |A] = |u/(=1) then A4 is elliptic. Otherwise it is hyper-
bolic. In the hyperbolic case, |A| # 1 # |u| and |A||u| =1. A hyperbolic or
loxodromic element will be called strictly hyperbolic if it is conjugate to a
real diagonal (non-identity) matrix. A parabolic isometry is conjugate to an

element of the form
A1
Al =1.
(5 5) W

For more details of the classification and algebraic criteria to detect them, see
[3, 13, 18, 19].

2.4. Conjugacy invariants. According to Foreman [6], the following three

. . . . b
functions are conjugacy invariants of SL(2,H): for 4 = (Ccl d) e SL(2,H),

B =B = |dI*R(a) + |a|*R(d) — R(abe) — R(bed)
— R[(ad — be)a + (da — ¢b)d),

y =74 = la|> +|d|” + 4R(@)R(d) — 2R(bc)
= |a]* + |d|* + 2[R(ad) + R(ad)] — 2R (bc)
= |a +d|* 4+ 2R(ad — be),

6 =0d4=R(a+d).

Parker and Short [19] defined another two quantities for each 4 € SL(2,H) as
follows:

o=04=cac”'d — cb, when ¢ # 0,
= bdb'a, when ¢ =0, b #0,
= (d —a)a(d —a)"d, when b=c=0,a #d,
= ad, when b=c=0,a=d
T=14=cac” ' +d, when ¢ # 0
=bdb™'+a, when c=0,b#0
= (d—a)a(d—a)"" +d, when b=c=0,a#d

=a+a, when b=c=0,a=d.
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It can be proved that in each case |o|> = o = 1, where

o= oy = |a|’|d)* + |b|*|c|* — 2R(acdb).
We are going to show that /o = det(4) = |ad — aca™'b| = |a|.

b
Lemma 1. If A= (a d) e M(2,H), then /o = det(A) = |ad — aca™'b|

= |al.

Proor. We observe that
(det(A))? = |ad — aca™'b|* = (ad — aca™'b)(ad — aca—'b)
= (ad — aca™'b)(da — ba~'¢a)
= |a]*|d|* + |b|*|c|* — adba'¢a — aca™'bda
= |a|*|d|* + |b)?|¢|* — 2R(aca " bda)
= |a)*|d|* + |b)?|c|* — 2R(cabd) = |a|*|d|* + |b|*|c|* — 2R(acdb) = a.

This completes the proof.

2.5. Some observations. It can be checked that a=oy = |l,-j|2 = |r,-j|2,
1 <i,j <2, where [, rj are defined as follows:

I =da—dbd'c Iy =bdb"'a—bc
by = cac™'d — ¢b by = ad — aca™'b
ri; = ad — bd 'ed rio=db ab — ¢b
ra1 = ac”'de — be ry =da — ca 'ba

b

a
THEOREM 1 ([16]). Let M = (C J

Then M is invertible

[y Ijtd  —I5'b\ [ drt —brp
C\~lyle a ) \-ery! ary )

2.6. Notations. For our convenience we use the following notations:

> € M(2,H) be such that det(M) # 0.

~_ g-1 ~_ g-1 ~_ g-1 ~_ g1
d~ =14, c~=l'c, b~ =15b, a~ =l a,

— g1 — ol — ppl — gl
d.=dr, C~ = Clyp b.=bry, a.=ary, .
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Kellerhals has proved some interesting properties of these numbers given
by following lemma:

LemMa 2 ([16]). Let M = (a b) e M(2,H) be invertible. Then we
have the following properties: ¢ d

(1) ade—bc.=1=da.—ch., da—b"c=1=a>d—c"b.

(2) ad~—=bc~=1=da~—cb~, dia—b.c=1=a.d—c.b.

(3) ab~=ba~, cd~=dc~, a>c=c~a, b>d =d"b.

4) ab.=ba., cd.=dc., a.c=c.a, b.d=d.b.

3. Jorgensen inequality for SL(2, H)

The following proposition gives a Jorgensen inequality for a two-generator
subgroup of SL(2,IH) that has a semisimple generator.

A
0
generate a discrete non-elementary subgroup of SL(2,H). Then

{(R2 = Re)” + (IS4 + [Sud)*H(1 + [be]) = 1.

b 0
THEOREM 2. Let S = (a d> and T ( ), A is not similar to pu,
¢ u

Proor. Let us suppose that

Ko = {(R% = Ru)” + (192] + [Sul)*H (1 + [bel) < 1.

Consider the Shimizu-Leutbecher sequence defined inductively by

2 bO a b Apt1 bn+l ~1
= = = n = == l’lT .
%o (Co do) S <C d)’ Sl <Cn+l dn+l) SnT S

Now,
a, b A0 da-  -b>
Sp1 =S, TS =" " " . 3.1
! ! (Cn dn><0 /‘)(_C; a, ) 31
a,A byl d> —-by
_ n n 32
(cn)t d,,/l) <—cn~ ay ) (3.2)
B anhd; — byuc;  —a,Ab; + byuay; 13
 \eddy — dyuey  —cydby + dyuary (3.3)
A1 bpy )
= . 34
( Cnt1 dn+l ( )
Thus,

~

no

An1 = anid, — byucy,, byt1 = —anAb, + byua

Cny1 = CpAd, — dyuc,, A1 = —cndb; + dypay; .
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Now, we have

sl lenst| = [(~andby + by (caidy — dypcy)

J—a; by by 4 — e dypuesd Y.

= |anbncndn
By an easy computation, we see that
A —a 'byuab> 7 = |RA+ 34— R — a, b, (Spw)a b7, since a,b) = bya;

= (R — Ru) + S — a, b (Sp)ay by

— R = R + (97 — a; bu(Swazby )

<\ — %) + (192 + |Sul) .

Similarly, we may deduce that

= e iy d | < (R — R + (197] + 1S
Therefore,

bnr1] [ent1] < |anbpcndy|{(RA — %ﬂ)z + (I1S4] + |gﬂ|)2} (3.5)

Since, |a,d,| < 1+ |bycyl, this implies
| lena| < {(RA = Re)? + (I92] + Su) >} (1 + [bucal)|bacal . (3.6)

Since, Ky = {(RA—Ru)> + (IS4 + [Sul)*}(1 + |be|) < 1, by using induction
process we have the relation, |b,ii1¢,41| < Kf|be| = byc; — 0, as n— o,
and so, a,d; =1+b,c;, — 1, as n— co. Since, |ayi1|=|a,Ad] — byuc}|,
|dpi1| = |—cadb, + dyua|, we have

A andy| = 1ul |buey | < lawsr| < |2] landy | + |1 [bacy|

= a1 | — |4 as n— oo.
Similarly, we have |d,1]| — |u|, as n — c0. Again we have

bui1] = [—andby + byuay| = |aby| |4 — a;lb,,,ua;b;71|

< Jaubal (R — R + (197 + Su))?
< Kylan| |bn| — Ko|bal, since |a,| — 1

< Kjb| — 0, since Ko < 1.
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Thus, for all positive integers, |b,| — 0 as n — o, i.e. b, — 0 as n — 0. Sim-
ilarly, we may show that ¢, — 0 as n — oo. Thus, the sequence S, has a
convergent subsequence and since the subgroup {4, B) is discrete, so we arrive
at a contradiction. This proves the theorem.

COROLLARY 1. Let S = a b and T = A0 , A is not similar
c d 0 u

to u, generate a discrete non-elementary subgroup <S,T) of SL(2,H).
Then

2(cosh 7 —cos(o+ B))(1 + |be|) = 1,
where o= arg(1), p = arg(p), v =2log|A|.

Proor. Without loss of generality, assume || =r > 1. Observe that,

(RA = R)® + (|S4] + [Su])?
1 ? 1 ?
= (r c0s ot —— Cos /3) + <r|sin o + |sin ﬁ|>

1 . .
=7 +r—2 —2(cos a cos ff — |sin «| [sin f])

= 2(cosh 7 — cos(a + ), where r=e"? 7> 0.
This completes the proof.

REMARK 1. Kellerhals [15, Proposition 3] proved the above result assuming
T hyperbolic, i.e. © # 0. However, it follows from above that Kellerhals’s result
carry over to the elliptic case as well, i.e. when 7 =0.

The Theorem 2 also extends Waterman’s Theorem 9 in [31] when restricted
to the quaternionic set up. Note that SL(2,H) is not a Clifford group and
hence, Theorem 9 of Waterman does not restrict to SL(2,IH). For example, the

element
e 0
T = "),
< 0 €’¢>

does not belong to the Clifford group SL(2, Cy), see [31, p. 95|, but it belongs to
the group SL(2,H). This class of elements are also covered by Theorem 2.

The next theorem generalizes the Jorgensen’s inequality in SL(2,H) for
strictly hyperbolic elements with some given conditions. The formulation
resembles the original inequality by Jergensen.
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COROLLARY 2. Let A,BeSL(2,H) be such that both A and the commu-
tator [A,B] are strictly hyperbolic. If {(A,B) is a non-elementary discrete
subgroup of SL(2,H), then

6% =4+ [0apap — 2| = 1.

k0 b
0 kl), where kK > 1 and B = (a d) with ¢ # 0.
c

Then 6, =k + k=" implies |02 — 4| = [(k+ k" 1)? — 4] = |k — k' |%.
Now, we have

4B — kK 0 a b B ka kb
A0 k! ¢c d) \kle k'd

ka kb k' 0\ [/c'do e —a'bo'cac™!
ABA™'B7! =
(klc k1d> ( 0 k) ( —olc o lcac™! )

B ( a k2b> (cldalc —albalcacl)

\k 2 d —o ¢ o lcac™!

B <acldalc —k?’bo'c (k? — 1)bo~'cac™! >
B (k=2 —1)do~'c do~'cac™' — k~>ca”'bo~ " cac™!

PrROOF. Let A = (

Therefore, we have

Suparp = Rlac 'do e — k*ba'¢) + R(do ' cac™ — k2ca'ba cac™")

= R(ac 'do " ¢) — kK*R(ba ' ¢) + R(do ' cac™)
— k7 2R(ca'bo cac™)

= 2R(cac™'dG) — (k* + k~*)R(bac)
= 2(1 + R(chG)) — (k* + k2)R(bGc),  since g = cac™'d — cb.
=2— (kK? + k2 = 2)R(bdc)
=2 — (k—k ")R(bsc).

This implies that |05, 151 —2| = |k — k~|*|R(bGc)|. Since ABA'B~! is
strictly hyperbolic, we have
boc = bdca — |be|* = R(bac) = R(bdca) — |be|* = R(acdb) — |be|*.

Also, we have bocac™ =0 = b(cac—'d — cb)cac™" = 0 = |b|*(|ad|?* — bacd) =
0 = |ad|* = baéd, since be # 0, for otherwise {4, B> becomes elementary.
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This shows that boc = |ad|® — |bc|* = R(bGc). Thus,
6% — 4] + [0apa-15- — 2 = |k — k7' (1+ [be]),
Now the theorem follows from Theorem 5.

The following two corollaries give weaker versions of Theorem 2.

A

COROLLARY 3. Let S= a b and T =
c d 0

0
) generate a non-
u

elementary discrete subgroup of SL(2,H).
Then we have
B(T)L* > 1,

where

L=1+ |y and k=14 |bc|]] +1,
[.] denotes the greatest integer function.
Proor. Since L > 1, k> 2, note that 1 + |bc| <k < L. Let
K = (R — Ru)* + (|97] + [Su))*.

Using conjugation if necessary, suppose without loss of generality that 4, u are
complex numbers. Note that, both f(7T) and K are invariant if we conjugate
the matrix 7" in the above theorems to a diagonal matrix in SL(2,H) over the
complex numbers. Note that

2™ = (R2 = R + (134 + |3,

hence, K < (7).

Further note that a diagonal element T e SL(2,IH) can be conjugated to
a diagonal matrix 7’ e SL(2,C) and, the conjugation can be done using a
diagonal element in SL(2,IH). So, given {S,T) as in the above results, if we
conjugate it to (DSD~', DTD~'), where D a diagonal matrix in SL(2,H), then

the conjugation makes DTD~' a diagonal matrix over €. And further, it is
! !/

. b L
easy to check that if DTD~! = (a ), then |b'c’| = |bc|. Thus conjugation

¢ d
of (S, T) by a diagonal matrix in SL(2,IH) does not change the left hand sides
of the above inequalities.

Since <{S,T) is discrete, non-elementary, K(1+ |bc|) > 1. Hence

B(T)L* > K(1 + |be|) > 1.

This completes the proof.
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b A0
COROLLARY 4. Suppose that S = (a d) and T = ( 0 ) generate a
¢ )7

non-elementary discrete subgroup of SL(2,IH). Then we have
BT)(1 + |be]) = 1,

where B(T) = fS;lOp |(A —epe ™) (2 — fuf ).

The next theorem gives Jorgensen inequality for a two-generator subgroup

where one of the generators fixes oo.

b
d
1 < |u|, generate a non-elementary discrete subgroup of SL(2,H). Suppose
S, ) = u|(|SA + [Su|) < ﬁ. Then we have

1++/1 —4V28(2, p)
le[v/[ol 20| =

2 )

A
THEOREM 3. Let S:<a ) and TZ(O ’7>, RA=Ru#0, |2 <
c u

where 19 = A(—c7'd) +n+ (¢ 'd)u and, ty = i(ac™") +n — (ac™"u

Proor. Let a=argl, f=argu Denote r=|1, where we see that
r?> cos o = cos . Consider the Shimizu-Leutbecher sequence

n bﬂ
So=S,  Sy1=STS",  where S, = (a ; )
Cl’l n

Now, we have
Spi1 = S, TS,
~(an by A7 d> =b;
S\ dJ\NO u)\ -5 a;
B anid; — ayne, — byuc;,  —ayib; + apna; + byuay;
N\ eddy = emey — dypey =y dby + eanay + dyuay )

Define 7,, t, by
v = A=, ) 1+ (¢ d), (3.7)

tw = Mane, V) + 1 — (ane, Hp. (3.8)
Since RA = Ry by assumption, using this we obtain
T = SA(—¢, 'dy) + 1+ (¢, dy) S, (3.9)

ty = Si(ane, ") + 1 — (ane, ) Sp. (3.10)
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We see that
Cpnpl = Cn}-d; - Cn(,’; — dnlc;
= cn(%;{(d;czil) —n-= (C;ldn)%ﬂ)c

n
= —eu{SA=¢, ) + 1+ (¢, d)Sutey
= —CpTpC,
= |ens1| = |tucal lcal-
dni1 = —Ccadb) + cunay + dyuay;
= RAU(d,a] — cub)) + c{SA=bra ™) + 4 (¢, dy)Sutay

=R+ c{Sha, e — e M)+ + (e, dy)Suar

=1 COS o + ¢, Tpat, + ¢, Sa, o la;.

By similar computations, we have

v, o~

Apel =T COS 0L — apTuC,) + ¢ Suc, .

Using above equalities, we see that

Tntl = %/1( n-':ldnJrl) +7+ ( n+ldn+1)%lu

:Qi{c;’lrn 1(rcosoH—c,ﬂ,,a + c,Sa, L= 1a;)}

~—1 ~

+n—{ey e M cos o+ epmaay + e, Say e al) Y Su

~—lp-l _l +\9/16~_' 'Spa e ta>

=t, +rcosaSJic, T, T, L Cha,

~—1_-1 -1 ~—1_—-1cxg,,—1 ~—1 ~cx
—rcosoac, T, ¢, Su—c, 1, Sia, ¢, a,Su

(r*|sin & + |sin B|)(|cos «| + |sin «|)

|TnC,% , using, |ar7| = |an| |12_21|’

= || < |t +

|, = det S, = 1, and, |32 = |4| |sin «|, |Su| = |u||sin f|
= [Tpg1Cnrt] < [tucal |tuca] + V2S(2, 1), since, |cos a| + [sin «| < V2, where,

S(2,u) = (|sin o] + |u|*|sin B])

("‘“ "y wl)
7

= [l (IS4] + [S).-
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Similarly, we have |ty 1¢u1| < [7aCal [taca| + V2S(2, 1), and

|dn+l| < |Tncn| |an| + 277
2
|an+l| < |T,1Cn| |an| +;a
|bni1] < |an|2 + 1S (2, ) |an| |by|.
Consider the sequence
xo = lelV]wol o], Xur = %7 +V2S(4, ).
If 0 < xp < SV IAV2Ses VHZ\[ZSM’”) <1, then {x,} is a monotonically decreasing se-
+4/1-4V28 (%, 1)
2

quence of real numbers and is bounded above by ! and converges

to LZVIZV2ShK) 1_42\/55('1’”). Hence
1+ 4/1—4V25(2, p)
[twca| < <lI, and
2
1+1/1—4V25(2, p)
|Tacn| < 5 <

One a subsequence |t,¢,|] and |t,¢,| converges to values at most

1—+/1-4V2S (%, 1)
s

particular, |c,] — 0. Note that ¢, # 0 unless ¢ = 0, but ¢ can not be zero as
the group (S, T) is non-elementary by assumption. Thus the theorem follows.

Hence on a subsequence |a,|, |bu|, |cu|, |d.| converge. In

b A
COROLLARY 5. Suppose S = “ and T = 7 , where RA=
c d 0 u

Ru#0, n#0, |A| <1< |u|, generate a non-elementary discrete subgroup of
SL(2,H). Suppose
) = 0921+ 19,

Then we have

L+ /1= 4v201PS ()
2/n| ’

lely/ Izl 7] =

where

tp=A—c Ay 1+ ('™t and, )= Aac™ Yt 1 — (ac Ny

Proor. If  # 0, we write 79 = 7j# and #, = tj#. Then the result follows
from the inequality in Theorem 3.
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b bl
COROLLARY 6. Suppose S — (“ ) and T = <” ”), R4 = R = 0,
¢ d 0 u

|4 <1< |u|, generate a non-elementary discrete subgroup of SL(2,H).
Suppose S(Z, 1) = |u|(|SA] + |Sul) < 5. Then we have

1+ /T—450
elFrlo] = LV 45E 8,

where 19 = A(—c7'd) +n+ (¢ 'd)u and, to = Alac™) + 5 — (ac "
ProoF. In this case, we proceed as in the proof of the previous theorem.
The only difference from the previous proof is essentially the following bound:

(r?|sin o| + |sin B])|sin «|

. ~ 1
|Tnc2 , using, |a,| = |an| |1y |,
n

|Tn+l‘ < |ln| +

I15'] = det S, = 1, and, |7 = |4| [sin a], [Su| = || sin B
= |tur1Cnit| < tncal [tuca| + S(4, 1), where

S(2,p) = (|sin o + |uf[sin )

SA
_ (%+ P |%u|)

= |l (IS2] + [Sul).
Noting this bound, the rest is similar.

Given any parabolic transformation in SL(2,H), it is conjugate to a
transformation of the form

i1
T: :1
(5 ;) =1

and moreover, one can choose (1) = 0 up to conjugacy. Using Corollary 6,
this recovers Waterman’s result [31, Theorem 8] in SL(2,H).

b 21
CoROLLARY 7. If S = “ , T = , |[Al=1 generate a non-
c d 0 4

elementary discrete subgroup of SL(2,H) with T parabolic fixing oo, then

ely/IT(ae™!) = ac ! |y/IT(~e\d) — (~ed)]| = @

ProoF. Note that T(ac™') = (Aac™ )+ 12" and T(—c'd)=
(A=c'd)+ 1A Now, T(ac™") —(ac™") = (Mac ) +1— (ac )2 =
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027", Similarly, T(—c'd) - (—c¢'d) =t,27". Since |i|=1, the result
follows.

Recently, Erlandsson and Zakeri [5] have proved a geometric version of
Theorem 3. Their geometric inequality does not depend on any quantity like
S(4,u). Also, in the asymptotic case, it covers some of the two-generators
groups whose discreteness remain inconclusive by Corollary 7. However, the
inequality of Erlandsson and Zakeri does not involve the algebraic coefficients
of the matrices. The above results give a more explicit algorithm involving the
matrix coefficients to test discreteness.

Using similar argument as in the proof of Theorem 3, we can also prove
the following theorem that gives Jorgensen inequality for a two-generator
subgroup where one of the generators has a fixed point 0.

b A0
THEOREM 4. Suppose S = (a ) and T = ( ), where RA=Ru =
c d nop

K, |A <1< |u|, generate a non-elementary discrete subgroup of SL(2,H).
Suppose, S(A,u) = |u|(|SA + |Su|) <& Then

1 1 —¢-1S(2A
|/l o] = LV e S

2 )

where Ty = u(=b~'a) +n+ (b~'a)L, to = u(db=") +n — (db=")1 and ¢ =
depending upon k #0 or k =0.

1 1
YN

4. Extremality of Jorgensen inequalities
The following theorem generalizes Theorem-1 of Jorgensen-Kikka [8].

THEOREM 5. Let S = a b and T = A0
¢ d 0 u

(S, Ty is discrete, non-elementary and for o = arg(1), p = arg(y), = =2 log|/|,

) e SL(2,H). Suppose,

{(RA— Ru)* + (192 + [Su)*H(1 + [be]) = 1.
We consider the Shimizu-Leutbechar sequence
So =S, Spi1 = S,TS, .
Then T and Spi1 = S,TS, ' generate a non-elementary discrete group and
(R — R)> + (192 + 1Su]) 211+ [Bucal) = 1.
Proor. We consider the Shimizu-Leutbechar sequence

So =S, Snt1 ZSnTSJI.
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From relation (3.1) we get
Ayt = ayid; — byuc;,, bpt1 = —anib, + byua;
Cnt1 = CpAd, — dyuc,, dyi1 = —cuAb, + dypay;
and we also have
sl lenst| = [(~anby + bopay) (codd; — dypicy)
= |aybucndy| |2 — a; 'buua byt |4 — e tdyueydy .
This implies (see (3.6) in the proof of Theorem 2)
busrcaii| < {(RA = R)? + (192 + [Su)* (1 + [bacal) Baca . (4.1)
Let
K = (B2 — Ru)” + (IS4 + [Sul)>. (4.2)
Construct the sequence w, where
wo = |bc|, Wy = |bncal.

It follows from (4.1) that w,.; < Kw,(1 +w,). Now note that K(1 + wp) = 1.
Now wy # 0, for otherwise, S and 7 will have a common fixed point. Hence
K < 1.

Observe that

I <K(l4+w) < K(14+ Kwo(1+wp)) < K(1L+w) =1,

and hence K(1+w;)=1. By induction it follows that K(I +w,) =1 for
all n>0. Since K < 1, it follow that w, # 0 for all n and hence the result
follows.

The following corollary generalizes Theorem-2 of Jorgensen and Kikka [8].

A

COROLLARY 8. Let S= a b and T =
c d 0

0
) eSL(2,H). If
U
(S, T is discrete, non-elementary and
{(R2 = Re)? + (192] + 1Su)*}(1+ |be]) = 1,

then T is elliptic of order at least seven.

Proor. If possible suppose 7T is hyperbolic. As in the above proof,
it follows from the extremal relation that K < 1. Now, let arg A =« and
arg u = f. Then we have
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K= (Ri— R’ + (|97 + |Sul)?
= [ + |l + 2194 S| — RiRu)
— |12 + |u|* + 2Jsin o |sin | — cos « cos f

= |22+ |u|* = 2 cos(a+ ).

Let || = e”?. Then using cosh(r) = <%=, observe that
K=e"+e " —2cos(a+f)
> et —|—€7T +2 — (er/Z _’_671/2)2.

Since e”/? +e~7/? > 1, this implies K > 1. This is a contradiction. Hence T
must be elliptic.

Since T is elliptic, 7=0. Now, K =1 implies, cos(x+ f) >1. Thus
0 <a+p<3%. This implies that the order of 7" must be at least seven. This
completes the proof.

b A0
COROLLARY 9. Let S = (a d) and T = (0 )eSL(2,]H). Sup-
¢ JZ

pose S, T is discrete, non-elementary and
B(T)(1 + |bel) =1,
then T is elliptic of order at least seven.

PrOOF. Suppose, up to conjugacy, A, u are complex numbers. Then
K < p(T). Since <S,T) is discrete, we must have K(1 + |bc|) > 1. Hence
the equality in the hypothesis implies K(1 + |bc|) = 1. The result now follows
from the above corollary.
A

COROLLARY 10. Let S = a b and T =
c d 0

0
) eSL(2,H). If
U
(S, T is discrete, non-elementary and
B(T)L* =1,

where k=[1+|bc|]+1>2 and L=1+ |u| > 1, then T is elliptic of order at
least seven.

Proor. Up to conjugacy, we assume A, u are complex numbers. It is
enough to show that K(1 + |bc|) = 1, where K = (RA — Ru)” + (|SA] + |Su)>.
Since the subgroup {S,7T) generates a discrete non-elementary subgroup of
SL(2,H), then we have K(1+ |bc|) = 1. Now note that

1 1
KS/)’(T)ZF STV’CV
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This imples K(1 + |bc|) < 1. Hence, K(1 + |bc|) =1. The result now follows
from Corollary 8.

The following characterizes non-extreme groups.

b A0
COROLLARY 11. Let S = (a d) and T = ( 0 ) generate a discrete
¢ JZ

non-elementary subgroup of SL(2,H). Suppose

[lad] — 1| > (cot2 (#) - 3).

Then (S, T) is not an extreme group.
Proor. If possible suppose <{S, T') satisfy equality in Jorgensen inequality.
Note that, it follows from the equality in Jergensen inequality that
1-K

[be| = —, (4.3)

where K = (R4 —Ru)” + (IS4 + |Su|)®>. The condition |o| = |ad — aca='b|
=1 implies
1 < |ad| + |bc|
= lad| > 1 — |bc|

= K(1 + |bc|) — |be]

_ (1-K)
=K+ (K-1) T
1
= 2—E.
This implies
lad| > 1 — |bc|. (4.4)

Also we have from |o| =1 that |ad|— |bc| < 1. This implies |ad| < 1 + |bc|.
Combining this with (4.4) we get

[lad| — 1| < |bc|.
Now we see that K =2(1 — cos(x+ f3)) and

1-K 2cos(a+f)—1
K 2—2cos(a+p)

cos (‘;’ﬁ) 3 sin (”+ﬂ)

N 4 sin (Hﬂ )

|be| =
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cot? (#) -3
=g

< <cot2 (a—;ﬂ> - 3>.
[lad| — 1] < (cotz(#> - 3),

which is a contradiction. This proves the result.

Hence, we have

b Y}
THEOREM 6. Suppose S = “ and T = 7 S RA=Ru=1x, |4 <
¢ d 0 u

1 < |u|, generate a non-elementary discrete subgroup of SL(2,H). Suppose

1+ /T 1800
le[v/[ ol o] = 3 :

where S(4,u1) = |1|(|SA| + |Su|) <& and, ¢ :ﬁi or L depending on x #0 or
kK =0. We consider the Shimizu-Leutbechar sequence

So =S, Spi1 = S, TS, .

Then, for each n, {S,, Ty is a non-elementary discrete subgroup of SL(2,TH)
and

oo ] = YA,

2

where t, = A(—c; 'dy) +n+ (¢ dp)w, ty = Aanc; ') +n — (ane, e

ProoF. We prove the result assuming x #0. The case x«=0 is
similar.
Consider the Shimizu-Leutbecher sequence Sy = S, S,y = S,7S !, where

n o
S, = (an b"). Now, we have
cn  dy

Spi1 = S,TS, "
[ Gn by A n an _bn~
N\ dJ\O u)\-c a
B anhd; — apney, — byuc,  —a, by + ama, + b,ua;
a cnldy — epmey — duypc,  —cyAby + cunay + dyuay;
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Define 7,, t, by
Ty = A=, dy) + 1+ (¢, dy) (4.5)
tn = Aane, ') + 1 = (anc, (4.6)
We see that
Coyl = CuAd, — cpne, — dyuc,
= —aa(A(=dye; ™) +n+ (e da) ey
= —CpTuC, .
Thus |cui1| = |tncul|cn|.  Similarly, we have
|dns1| < |Tncal lan| + 2r,

|ani1] < [Tncal |an| + P

Also, |byy1| < |an* + S, w)|an||by], as in the proof of Theorem 3. We
have

[Tnt1¢nr1] < |Tncal [tacnl + \/ES()L,u),
|[n+lcn+1| < |Tncn| |t,1C,1| + \/—2'5(/1,;“)

Consider the sequence

‘

xo = e[Vl lto],  Xur1 = X2+ V2S(A,u),  where S(4,pu) <

S

4

Note that {x,} is a monotonically decreasing sequence of real numbers and

141/ 1-4V2S (%, 1) 144/ 1-4v2S (%, )|
2 . 2 .

Hence {x,} must be a constant sequence. In particular, ¢, # 0 for all n
and hence, S, and T can not have a common fixed point. Thus {S,,T) is
non-elementary.

is bounded above by By the hypothesis xp =

b ,
COROLLARY 12. Let S={“ , T = AT , where R =Ru, || <
c d 0 u

1 < |u|, generate a discrete, non-elementary subgroup of SL(2,IH). Suppose
= A(=c7'd) +n+ (¢ d)u,

to = Alac™") + 5 — (ac M.
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If
|70 — 1o
|70t

> |ed + acl,

then {S,T) is not extreme.

144/1—e1S(4, )|
2

ProoOF. Let oy = Suppose <S,T) is extreme. Then

lc|*|70t0] = 62. Note that
10—ty = —Alc'd+ac™) + (¢7'd +ac VHu
=SAMc 'd+ac™") + (¢c7'd + ac™HSu.
Thus
70 — to] < (I94] + [Sul) (e d + ac™"))

1 c?eot
< (|92] + |Sul) — |ed + a@|.M.
|c| Gy

This implies
|T0 — l()‘ |ed + aE|
— <SS u)—.
|oto] . 03

Now note that S(4,x) < § and 69 > %, hence S(;'Z” ) <1. Thus, we have
0

|70 — 1o
|70t

< |ed + ac|.

This proves the result.

5

If we choose T = <A
n

using similar arguments as above. In particular, we have the following.

>, then analogous result to Theorem 6 follows

b A0
COROLLARY 13. Let S = (a >, T—( ), RA =Ry, generate a
c d nou

discrete, non-elementary subgroup of SL(2,H). Suppose
v = u(=b~'a) +n+ (b~ a)l,
to = (™) + 1 — (db1)2.

If

lt0 — 1|

> |bd + ab,
|z0to]

then (S, T) is not extreme.



Extremality of quaternionic Jorgensen inequality 135

4.1. Examples of extreme groups. Let us consider the following elements

0 ey
in SL(2, H): S:(“ ) T:() ¢ f), lf>1 and Si=Su=0.
c d 0 u

Suppose that the subgroup <S, T in SL(2,H) is non-elementary and discrete.
For instance, if a=d=c=1 and A= =1 then this is the case. We see
that 7o =c7!j, to=c"'j and so we have |c|\/|to||to] =1. Also observe

that S(i, ) =0 and Y1425 W =3=1. So, we have |c[\/|zo][to] = 1=
14++/1-4V2S (%, 1)
——.
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