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ABSTRACT. We work over an algebraically closed field k of positive characteristic
p. Let g be a power of p. Let 4 be an (n+ 1) x (n+ 1) matrix with coefficients g;; in
k, and let X, be a hypersurface of degree ¢ + 1 in the projective space P”" defined by
Yo azxix! =0. Tt is well-known that if the rank of 4 is n+ 1, the hypersurface X is
projectively isomorphic to the Fermat hypersuface of degree ¢ + 1. We investigate the
hypersurfaces X4 when the rank of A4 is n, and determine their projective isomorphism
classes.

1. Introduction

We work over an algebraically closed field k of positive characteristic p.
Let g be a power of p. Let n be a positive integer. We denote by M, (k)
the set of square matrices of size n+ 1 with coefficients in k. For a nonzero
matrix 4 = (a;)o<; j<n € M, (k), we denote by X4 the hypersurface of degree
q + 1 defined by the equation

E Cl(/X,‘X;{ =0

in the projective space P" with homogeneous coordinates (xo, x1,...,x,). The
following is well-known ([2], [10], [14], see also §4 of this paper).

PrOPOSITION 1. Let A = (ay)y<; j<, € My+1(k) and X4 = P" be as above.

Then the following conditions are equivalent:
i) rank(4) =n+1,
) X4 is smooth,
i) Xy is isomorphic to the Fermat hypersurface of degree q+ 1, and

) there exists a linear transformation of coordinates T € GL,1(k) such
that 'TATY = I\, where 'T is the transpose of T, T'D is the matrix
obtained from T by raising each coefficient to its g-th power, and I,
is the identity matrix.
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The Fermat hypersurface of degree ¢+ 1 defined over an algebraically
closed field of positive characteristic p has been a subject of numerous papers.
It has many interesting properties, such as supersingularity ([15], [16], [17]), or
unirationality ([13], [15], [16]). Moreover, the hypersurface X, associated with
the matrix 4 with coefficients a; in the finite field F, ., which is called a
Hermitian variety, has also been studied for many applications, such as coding
theory ([8]). (The general results on Hermitian varieties are due to Segre [11];
see also [6]). Therefore it is important to extend these studies to degenerate
cases.

In the case where characteristic p # 2, the following is well-known and
can be found in any standard textbook on quadratic forms: the hypersurface
defined by the quadratic form ) a;x;x; =0 is projectively isomorphic to the
hypersurface defined by

Xg X, =0,

where r is the rank of 4 = (a;). This result has been extended the case of
characteristic 2 (see [3]). Therefore we have a question what is the normal
form of the hypersurfaces defined by a form Ea,;,x,»x;’ =0. When A4 satisfies
4 = A9 and hence this form is the Hermitian form over F,, the hypersurface
X4 is projectively isomorphic over F,. to
P xtt =0,

where r is the rank of 4 ([5]).

In this paper, we classify the hypersurfaces X4 associated with the matrices
A of rank n over an algebraically closed field. Note that two hypersurfaces X,
X4 associated with the matrices 4, A’ are projectively isomorphic if and only if
there exists a linear transformation 7 € GL, (k) such that 4’ = 'TAT@. 1In
this case, we write 4 ~ A4’.

We define I; to be the s x s identity matrix, and E, to be the r xr
matrix

0 0 0
1 0 0
0 1 0

In particular, E; = (0) and Ej is the 0 x 0 matrix. Throughout this paper, a
blank in a block decomposition of a matrix means that all the components of
the block are 0. Our main result is as follow.
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THEOREM 1. Let A = (aj)y<; j<, be a nonzero matrix in My, (k), and let
X4 be the hypersurface of degree q + 1 defined by Za,-jx,-x;’ = 0 in the projective
space P" with homogeneous coordinates (xo,x1,...,X,). Suppose that the rank
of A is n. Then the hypersurface X4 is projectively isomorphic to one of the
hypersurfaces X associated with the matrices

I
W = ( - >7
En—s-H

where 0 <s<n. Moreover, if s+#s', then Xy and Xy are not projectively
isomorphic.

COROLLARY 1. If A is a general point of {4 € M, (k)| rank(A) = n}, then
A~ I/anl-

COROLLARY 2. Suppose that n>2, s <n and (n,s) # (2,0). Then X is
rational.

We also determine the automorphism group
Aut(Xs) = {g € PGLn+1(k) |g(X\) = Xs‘}:

of the hypersurface X; for each s. For M e GL,(k), we denote by [M]e
PGL, (k) the image of M by the natural projection.

THEOREM 2. Let X; be the hypersurface associated with the matrix Wj
in the projective space P". The projective automorphism group Aut(Xy) with
s<n—2is the group consisting of [M], with

T |'a|0
M = 0 d| o ;

clell

where T € GL,_1(k), a,c are row vectors of dimension n— 1, d,e € k, and they
satisfy the following conditions:
(i) [T)eAut(X/2), 'TW/TYW =W/, 6=059+#0, where X'* is the
hypersurface defined in P"~2 by the matrix

W — I
’ Enfsfl
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(i) d=
(iii) [@aW!+d(0,...,0,1)]- TW =6(0,...,0,1),
(iv) ‘TW!-'aD 4 'ed? =0, and

(v) [aW/!+d0,...,0,1)]-‘al +ed? = 0.
Moreover, we have

T, t (q) — ,
Aut(X,) = n T’TT” M, T, € GLngk)7 /L.;é 0, 7

a |1 u is a row vector of dimension n

and
Tn_l t (9) q

Aut(X, 1) = B Th T2 = B,

—_— T Tnfl € GLnfl(k), 0 # ﬂ ek

1

We give a brief outline of our paper. In §2, we prove Theorem 1 and
its corollaries. In §3, we prove Theorem 2. In §4, we recall the proof of
Proposition 1 because this proposition plays an important role in the proof
of Theorem 1. In §5, we investigate the plane curve X, associated with the
matrix 4 of rank <2 in the projective plane P2, and recovers Homma’s
unpublished work [9] (see Remark 5).

The author thanks Professor Ichiro Shimada for helful discussions and
comments. A part of the proof of Theorem 1 was proved by Shimada. The
author also thanks Professor Masaaki Homma for sending his paper [9], and
the referee for his/her suggestion on the first version of this paper.

2. Proofs of Theorem 1 and its corollaries

We present several preliminary lemmas. The following remark may be
helpful in reading the proof of lemmas.

REMARK 1. Let

foo -+ Ion

o - I

. . . q . . . .
be an invertible matrix. Suppose that Zaijxixj =0 is the equation associated

to a matrix A= (aj)y<; <, Then the operation

Avrs 'TATD
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on the matrix is equivalent to the transformation of the coordinates

n
Xi = E LijXj,
=0

where 0 <i<n.

Lemma 1. Put

I
E,
Gy, — al0---01 ’
0 0
En—s—r+1
0 0
and
I
Er+2
(@) .
Gs,r+2 = al 0 01 )
0 0
Enfsfrfl
0 0

where s> 1, r>0,n—s—r—12>0, and a is a nonzero row vector of dimension
s. Then

Gs, r Gs, r42-

ProOF. By the transformation

In—s—r—l
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we have
q
ITGGS,rTé;D = Uy, r42- O

REMARK 2. Lemma 1 holds whenr =0o0orn—s—r—1=0. In particular,
when n—s—r—1=0, we have Gy ,1» = Wi

LEmMmA 2. Put

Ds | —"2”0---0

—a
0
: E,
0
Hv, r = )
0---01 1
1
0
EnfsfrJrl
0

where s> 1, r>2,n—s—r—12>1, Ds_y € M;_1(k), a’ and a" are row vectors
of dimension s — 1. Then

HS, r~ Llg p42-

ProOF. By the transformation

Is+r71

Ty = 1|11 ,

L s 1

we have

tTHHs,rT;-[q) = 11y r42- ]
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LEmMMmA 3. Put

Dsfl
—a' [0
1
0
: E,
H' 0
wre 0---01]0/1 ’
110
1
0
Eq s 1
0

where s> 1, r>2, n—s—r—32>1, Dy € M, (k), and a’ is a row vector of
dimension s — 1. Then

/! !/
Hs‘,r ~ Hs r+2°

ProOF. By the transformation

Ix+r
1
1 1
TH’ = 1 1 )
1
Li s 3
we have
Ty H!, T = H! O
H' g Lo 5, r42°

REMARK 3. Lemma 2 and 3 will be used only in the case where n — s+ 1
is odd.  Hence, we do not need to prove the case n —s— 1 =0 in Lemma 2 nor
the case n—s—3 =0 in Lemma 3.
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LEmMmA 4. Put

I

En—.H—l

where s>1, n—s+1>1, and a is a nonzero row vector of dimension s.
Then

(1) If n—s+1 is even, then Py ~ Wi.

(2) If n—s+1 is odd, then

Ps NBs'fl = 0

En7s+2

0
where Dy_1 € My_(k), bs_1 is the row vector of dimension s — 1. In particular,

if s=1 and n is odd, then Py ~ W,.

Proor. (1) Suppose that n — s+ 1 is even. Using Lemma 1 and Remark
2, we have

Ps = Gs‘,O ~ Gs,n—s+1 = Ws-

(2) Next, suppose that n—s+ 1 is odd. By interchanging the coor-
dinates Xxg,...,x;_1, and scalar multiplication of the coordinates xj,...,Xx,
if nessesary, we can show that

Is—l

!
Py~ P = |

N

EI’[*S
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with a’ being a row vector of dimension s — 1. By the transformation

I
—a” | 1
T = 0 )
Ips
with 2”@ =a’, we have
D, | —"a”
—a’ 1
1 |0
0, ='TP.T\" = ) :
0
0

where D, =11+ 'a”-a’. If n—s+1=1, by the transformation

Infl

T,

we have
t (q) _
T2QnT2 — Dp—1-

Suppose that # — s+ 1 > 1. Note that, since we are in the case where n — s + 1
is odd, we have n —s+1 > 3. By the transformation

Is—l

|

I
_
—_
—_

T3

In—x—l
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we have
Dy, _igql
—a’ 0
1 0
0, =TT} = !
1
0
Enfsfl
0
Using Lemma 2, we have
Dy | —"a"0---0
0
Q: = Hs,2 ~ Hs,nfs = QA” = E,
0
0---01
Then by the transformation
In—l
T4 = 1 )
—-111
we have
Dy | —"a”0---0
R, ='TQ'TY =| 0
Enfs+2
0

If s=1, Rj ~ Wy. Suppose that s > 1. By the transformation

5,2+
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Isfl
1 1
Ts = a’” 1 5
1
Infsfl
we obtain
Ds—l
—a' |0
101
R = "TsR,TY = ho
1
0
Eq, s
0
If n—s—1=1, by the tranformation
111—2
1
T6 = )
1
-1 1

we have
'TeR. ,T\" = B, .
Suppose that n —s—1> 1. Then by the transformation

I,

T; =

In—s—3
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we have
Ds—l
—-a' |0
1
0| E
01]0]1
R/ = TR = = s
110
1
0
E, 53
0
Using Lemma 3, we have
D
—a’ |0
1
0
R{=H{,~H],  ,=R"= | Ens2
0
0---01]0]1
1{0
110

It is easy to see that

‘TeR"T\Y = B, ,.

LEmMMmA 5. Put

En —s+1
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where s> 1, n—s+1>1, Dye My(k), and by is a row vector of dimension s.
Suppose that the rank of By is n. Then

I
Bs ~ Ws = 5
Enfs+1

Dsfl

bs—l
B~ B, 1 = 0 ;

or

. Enfs+2
0

where Dy € My_(k), and by is a row vector of dimension s— 1.

PrOOF. Suppose that det Dy # 0. By Proposition 1, there exists a linear
transformation of coordinates T € GL,(k) such that ‘TpD,T, [(,’” =1I;. By the

transformation
T
T - < D ) ,
Inferl

we have

I

by

‘TB,TY =] 0 ,
Enferl
0

where b/ = b, T\). 1f b =0, then B, ~ W,. Suppose that b/ # 0. By Lemma
4, we have By, ~ Wy, or By ~ B,_j.

Suppose that det Dy =0. Then one row of the matrix Dy is a linear
combination of the other rows. By interchanging coordinates xy,...,x, | if
nessesary, we can assume that the s-th row is a linear combination of the other
rows. We write the matrix D, as

Pl
DS:< g>7
h

where Pe M;_(k), g, h are row vectors of dimension s — 1, d € k, and that
satisfy h = wP, d = w'g with w being a row vector of dimension s — 1. Then
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t

Pl'g
h|d

wen- 11|
. : Enferl
010

where f is a row vector of dimension s — 1, and e € k. By the tranformation

I 1| —'w
T = 1 )
) S
we obtain
P|-P. w9 4g
B = tT/B;T/(q) _ f| —f 'wd4e
0
Ey—s1
0 0
Put

Q_(P‘—P~fw<‘1)+’g>
f| —f-'wld) e .

Because the rank of B] is n, we have det Q #0. Let Q'€ GL,(k) such that

00" = 1,
Pl lg/
[
Q _< f/ e/ >a

where P’ € My i(k), g', f' are row vectors of dimension s — 1, ¢’ € k. By the
transformation

P/ tgl
T// — f/ E’ ,

In—x—o—l
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we obtain
IP/
g |0
tT//B//T//(q) — 1
’ 0
. Enﬁs‘H
0
Putting D;_; = ‘P’ and b,_; = g’, we have B! ~ B,_;. O

REMARK 4. When s =1, we have
By 1 =By =E, 1 = W.
Now we prove Theorem 1 and Corollary 1.

ProOF. Because the rank of the matrix A4 is n, Proposition 1 implies that
the hypersurface X, is singular. By using a linear transformation of coor-
dinates if nessesary, we can assume that X4 has a singular point (0,...,0,1).
Then we have a;, =0 for any 0 <i<n. The matrix 4 is now of the form

D,
A= = B,,,
by,

where D, € M,(k), and b, is a row vector of dimension n. Using Lemma 5
repeatedly and Remark 4, we have that the hypersurface X4 is isomorphic to
one of the hypersurfaces defined by the matrixes W, with 0 < s < n.

If A is general, then det(D,) # 0, and hence by the first paragraph of the
proof of Lemma 5 and Lemma 4, we have 4 ~ W,_;.

Next we prove that s # s’ implies W, + Wy. For this, we introduce
some notions. Let X be the hypersurface defined by the matrix W, in the
projective space P". The defining equation of X/ can be written as

qun + Fq+1 = O,

where

ro 0 if s=n
Xt ifs<n,

and

1 1 .
xg+ 4+ xl if s=n
Fq+]:

g+1 g+1 q :
xp e Fxl] A XIxg X, X, i s <
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It is easy to see that X" has only one singular point Py = (0,...,0,1). The
variety of lines in P" passing through P, can be naturally identified with the
hypersurface #,, = {x, =0} in P” by the correspondence Q € #, to the line
OPy. Let ¢ be the map defined by

p:P"\{P)} —P"!
P — PP,.
Let X7 = o(X"\{Po}). For Q= (yo,..., Yu-1,0) € #,, we consider the line

1= 0Py ={(Ayo, ... Ayn-1,1) | (A,p2) e P'}.

We have /e X if and only if there exists P = (po,..., pu_1,pn) € X"\{Po}
satisfying P €/, i.e. there exists an element x € k such that

(P05 -+ s Pnt, Pn) = (Y0, -+ Y1, 1),

for some P e X"\{Po}, or equivalently there exists an element x € k such that

Fy(yo, s yn-1)pt+ Fya1 (Yo, -5 yu1) = 0.
Then
Q if Fq(yo,...,yn,l) =0 and
Fq+l(y07 cee 7J’n—1) # 07
o~ (DN (X\{Po}) = {a single point} if F,(yo,...,yu-1) #0,
Z\{Po} if Fq(y()7 ey ynfl) =0 and
Fq-H(yOa s 7J’n—1) =0.

Putting V, = {F, =0,F,;; =0} c P! and H, = {F,=0} c P"!', we have

X2 if s<n-2,
Vs = { nonsingular Fermat hypersurface in P! if s =n,
nonsingular Fermat hypersurface in P"2 if s=n— 1,

where X2 is the hypersurface in P"? associated with the matrix

I
Enfxfl '

For any s # s/, suppose that X" and X} are isomorphic and let y : X' — X
be an isomorphism. Because each of X" and X! has only one singular point
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Py, we have /(Py) = Py, and hence y induces an isomorphism i from X! to
X7. For any line /e X and /' € X/ such that (/) = /', we have

#o ()N XN\{Po})) = #(p ™' (I') N (X\{Po})).

Thus Vy =~ Vy and Hy; =~ Hy. Hence, for any s # s/, if Vy% Vg or Hy ¢ Hy
then X # X/

In the case n = 1, we have that X consists of two points, and X| consists
of a single point. In the case n =2, we have that XO2 consists of two
irreducible components, X? is irreducible, and X7 consists of (¢+ 1) lines.
Hence, in the case n =1 and n = 2, we see that s # s’ implies W, + Wy. By
induction on n, we have the proof. O

Next, we prove Corollary 2.

Proor. Under the condition n > 2, s < n and (n,s) # (2,0), we have x,_,
does not divide F,11, and hence V; is of codimension 2 in P"~!. By induction
on n, X" is irreducible. The morphism

N

Plxmipyy : XI\{Po} — A = P

is birational with the inverse rational map

Fq+l(y07 .. -7yn1))
n—1

Q:(yoa"-ayn—ho)'_}(yoa"'vyn—lv_ yq

3. Proof of Theorem 2
For any s <n— 2, the matrix W, can be written
w!
Wi=1| 0---011|0
110

For any g € Aut(X;), we have g(Py) = Py because X; has only one singular
point Py = (0,...,0,1). The automorphism ¢ is defined by a matrix of the
form

T | 'al|lo0
M= b|d|o0 |

clell

where T € M,_,(k), a, b, ¢ are row vectors of dimension n— 1, and d,e € k.
We have ‘MW,M 9 = 5W; for some 0 # J € k, which implies
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TWTW = oW (1)
[aW/!+d(0,...,0,1)]- T¥ =5(0,...,0,1) 2)
"TW) - 1@ 4 ledd =0 (3)
[aW/!+d(0,...,0,1)]-al® +ed¥ =0 4)
b=0 (3)
d1=9¢ (6)

By (1), we see that T is a matrix defining an automorphism of X2 in P"~2
Because s <n—2, by (2) we have d =J. Hence, we can calculate 7 by
induction on n. The vectors a, ¢ and d, ¢ can be find by using the equations
(2)-(6). Conversely, it is easy to show that if the matrix M satifies the
conditions (i)—(v) then it defines a projective automorphism of X;. The
projective automorphism groups of X, and X, _; are easy to calculate. O

4. Proof of Proposition 1

For reader’s convenience, we give a proof of Proposition 1, which is based
on arguments of [12], chapter VI. The implications (iv) = (iii) = (ii) = (i) are
clear. We prove (i) = (iv). For Be GL,;(k), consider the map fp defined
by

fB: GLn+1(k) - GLn+1(k)

T — 'TBT?.

Because the differential of the Frobenius map F : T — T is identically zero,
we can deduce that

d(fg) =d('T)BT9.

Therefore, the tangent map of f3 is surjective for any B e GL, (k). Hence,
fp 1s generically surjective, and the image of fz contains a non-empty open
subset Ug. Let 4 be any matrix of M,.(k) such that the hypersurface X,
is nonsingular, i.e. 4 € GL, (k). Because GL, (k) is irreducible, we have
U,NU; # J, where I is the identity matrix of size n+ 1. There exist
Ty, T> € GLy(k) such that f4(Ty)= fi(T>). Putting T =T,T5! we have
'TATW =1. O

5. The case of plane curves

Next we will study the plane curves X4 associated with matrices 4 of
rank < 2 in the projective plane P2
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THEOREM 3. Let A = (ay)o<; j<» € M3(k) be a nonzero matrix and let
X4 be the curve defined by Zaijxiqu =0 in P2 Suppose that the rank of A is
smaller than 3.
(i)  When the rank of A is 1, the curve X4 is projectively isomorphic to one
of the following curves

RS 3 eyl
Zy:x, =0, or Zy : xyx; = 0.

(i) When the rank of A is 2, the curve X4 is projectively isomorphic to one
of the following curves

1 1 1
Xo:xixi+xlx =0, Xi:x" +xlx2=0, or Xo:xI" +xI" =0.

ProOOF. In the case the rank of 4 is 2. By Theorem 1, the plane curve
X4 is projectively isomorphic to one of the plane curves Xp, or Xj, or X,.

In the case rank of A4 is 1. With the same argument of the proof of
Theorem 1, we can assume that the matrix 4 is as following form

app dor 0
A= ayp di 0
axy ay 0

By interchanging with xy and x; if nessesary, we can assume that (ao1, a1, 1)
# (0,0,0). Because rank of A4 is 1, there exists A € k such that (ag, a10,a20) =
AMagr, a1, a2). The curve X, is defined by the equation

(aooxo “+ appx; + aZQXQ)(Xg + ix{]) =0.

It is easy to show that X, is projectively isomorphic to the curve Z, or Z;.

O

REMARK 5. In fact, the case when the plane curve X4 of degree p + 1 has
been proved by Homma in [9].

Note that the plane curve X7 has a special property such that the tangent
line of X; at every smooth point passes through the point (0,1,0). There-
fore, the plane curve X| is strange. Moreover, this curve is irreducible and
nonreflexive. In [1], Ballico and Hefez proved that a reduced irreducible
nonreflexive plane curve of degree ¢ + 1 is isomorphic to one of the following
curves:

(1) Xp x4 X X =,

(2) a nodal curve whose defining equation is given in [4] and [7], or

(3) strange curves.
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Let % be the space of all reduced irreducible projective plane curves of degree
g + 1, which is open in the space 2 =~ P(2) of all projective plane curves of
degree g+ 1. Let %, be the locus of £ consisting of curves isomorphic to
X7, and let % be the locus of 2 consisting of strange curves. Let (£;) be the
homogeneous coordinates of 2 where J = (o, ji,/2) ranges over the set of
all ordered triples on non-negative integer such that jo+ j; + j,=¢g+ 1. The
point (£;) corresponds to the curve 3" &;x’ =0 where x’ = x['x/'x{. Then
the locus of all curves defined by the equation of the form Ea,-jxix;’ =0 is the
linear subspace of 2 defined by &; =0, unless J e {(¢+1,0,0),(0,g+1,0),
(0,0,g+1),(¢,1,0),(q,0,1),(1,4,0),(1,0,9),(0,4,1),(0,1,4)}. By Theorem 3,
we have that because Zy, Z;, Xy, X> are reducible, the closure %, of %, in &
consists of curves isomorphic to X; or to Xj, and the intersection of %, and
% consist of curves isomorphic to Xj.
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