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Abstract. Let f be a transcendental meromorphic function in the complex plane C,

and a be a nonzero complex number. We give quantitative estimates for the char-

acteristic function Tðr; f Þ in terms of Nðr; 1=ð f lð f ðkÞÞn � aÞÞ, for integers k, l, n greater

than 1. We conclude that f lð f ðkÞÞn assumes every nonzero finite value infinitely often.

1. Introduction

Let f be a transcendental meromorphic function in the complex plane C.

In this article, we use the standard notations in the sense of Nevanlinna

[7], such as Tðr; f Þ, Nðr; f Þ, Nðr; f Þ, mðr; f Þ, Sðr; f Þ, dða; f Þ. In particular,

Tðr; f Þ is the characteristic function and Nðr; f Þ is a counting function with

respect to poles of f , ignoring multiplicities. We shall use the symbol Sðr; f Þ
to denote an error term vðrÞ satisfying vðrÞ ¼ oðTðr; f ÞÞ as r ! y, possibly

outside a set of finite linear measure. Throughout this paper a small func-

tion (with respect to f ) means a function jðzÞ meromorphic in C satisfying

Tðr; jÞ ¼ Sðr; f Þ. In addition, in this paper, we use another type of small

function S �ðr; f Þ, which has the property S �ðr; f Þ ¼ oðTðr; f ÞÞ as r ! y, r B E,

where E is a set of logarithmic density 0.

A meromorphic function f is rational if and only if Tðr; f Þ ¼ Oðlog rÞ
(see [6]). The quantity

dða; f Þ ¼ lim inf
r!y

mðr; 1=ð f � aÞÞ
Tðr; f Þ ¼ 1� lim sup

r!y

Nðr; 1=ð f � aÞÞ
Tðr; f Þ

is called the deficiency of f at the point a. Another deficiency is defined

by

Yða; f Þ ¼ 1� lim sup
r!y

Nðr; 1=ð f � aÞÞ
Tðr; f Þ :

Note that 0a dða; f ÞaYða; f Þa 1.
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The First Fundamental Theorem of the value distribution theory due to

Nevanlinna is utilized frequently in this note. It is stated as the following

property:

T r;
1

f � a

� �
¼ Tðr; f Þ þOð1Þ

for any constant a A C. The details can be found in [6] for example. A root

of the equation f ðzÞ ¼ a (1=f ðzÞ ¼ 0 for a ¼ y) will be called an a-point of the

function f ðzÞ for a A CU fyg. a is called a Picard exceptional value of a

function f ðzÞ if the number of its a-points in C is finite.

The aim of this paper is to look for a lower estimate of

Nðr; 1=ð f lð f ðkÞÞn � aÞÞ. The following well-known estimate is due to Hayman

[7, Theorem 3.5].

Theorem A. Let f be a transcendental meromorphic function in the plane,

l be a positive integer, and a, b be constants with b0 0. Then

Tðr; f Þa 2þ 1

l

� �
N r;

1

f � a

� �
þ 2þ 2

l

� �
N r;

1

f ðlÞ � b

� �
þ Sðr; f Þ: ð1Þ

Hayman also concluded a corollary from the previous inequality.

Corollary. Under the same assumptions as in Theorem A, either f

assumes every finite value infinitely often or f ðlÞ assumes every finite value except

possibly zero infinitely often.

Moreover, Hayman conjectured that if f is a transcendental meromorphic

function and lb 1, then f lf 0 takes every finite nonzero value infinitely often.

This conjecture has been confirmed by himself in [7] for lb 3, by Mues [13]

for l ¼ 2 and by Bergweiler and Eremenko [3] for l ¼ 1. During the past

decades, a sequence of related research have been made. In 1982, Doeringer

[4, Corollary 1] proved that for a transcendental meromorphic function f ,

the only possible Picard exceptional value is zero for a di¤erential monomial

f lð f ðkÞÞn when lb 3. In 1994, Tse and Yang [15] gave an estimate of Tðr; f Þ
for l ¼ 1 and l ¼ 2 and confirmed the only possible Picard exceptional value

is zero. In 1996, Yang and Hu [19, Theorem 2] proved that if dð0; f Þ >
3=ð3ðl þ nÞ þ 1Þ with positive integers k, l, n, then for a nonzero finite complex

number a, f lð f ðkÞÞn � a has infinitely many zeros. In 2002, Li and Wu [12]

obtained that for a nonzero finite complex number a and positive integers l, k

with lb 2, there exists a constant M > 0 such that

Tðr; f Þ < MN r;
1

f lf ðkÞ � a

� �
þ Sðr; f Þ:
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In 2003, Wang [16] studied the zeros of f l f ðkÞ � f for a small meromorphic

function fðzÞ2 0, and verified that for lb 2, f l f ðkÞ � f had infinitely many

zeros if the poles of f were multiple. In 2004, Alotaibi [2] gave an estimate

and showed that the function f ð f ðkÞÞn � f has infinitely many zeros for a small

function fðzÞ2 0, when nb 2.

We introduce a result given by Lahiri and Dewan [9, Theorem 3.2].

Theorem B. Let f be a transcendental meromorphic function and aðzÞ,
aðzÞ be both small functions of f without being identically zero and infinity. If

c ¼ af lð f ðkÞÞn, where lðb 0Þ, nðb 1Þ, kðb 1Þ are integers, then

ðl þ nÞTðr; f ÞaNðr; f Þ þN r;
1

f

� �
þ nNðkÞ r;

1

f

� �

þN r;
1

c� a

� �
þ Sðr; f Þ; ð2Þ

where NðkÞðr; 1=f Þ is the counting function of zeros of f with multiplicity counted

minfq; kg times.

Remark. Inequality (2) implies that for lb 3, nb 1, kb 1,

Tðr; f Þa 1

l � 2
N r;

1

f lð f ðkÞÞn � a

� �
þ Sðr; f Þ; ð3Þ

which implies

dða;cÞaYða;cÞa 1� l � 2

nk þ nþ l
: ð4Þ

However, this result is still worth refining. In the current paper, we

obtained an estimate corresponding to the case k, l, n all greater than 1, and in

our proof, we use a very important inequality of Yamanoi.

Theorem C ([18, Yamanoi]). Let f be a meromorphic and transcendental

function in the complex plane and let kb 2 be an integer, A � C be a finite set

of complex numbers. Then we have

ðk � 1ÞNðr; f Þ þ
X
a AA

N1 r;
1

f � a

� �
aN r;

1

f ðkÞ

� �
þ S �ðr; f Þ; ð5Þ

where

N1 r;
1

f � a

� �
¼ N r;

1

f � a

� �
�N r;

1

f � a

� �
:
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Remark. Actually, when A is an empty set, the inequality (5) turns out

to be the following one.

ðk � 1ÞNðr; f ÞaN r;
1

f ðkÞ

� �
þ S �ðr; f Þ; ð6Þ

which corresponds to the famous Gol’dberg Conjecture, which says that

for a transcendental meromorphic function f and kb 2, then Nðr; f Þa
Nðr; 1=f ðkÞÞ þ Sðr; f Þ. The di¤erence is that they apply small function with

di¤erent exceptional set.

In this paper, we continue to consider the general form f lð f ðkÞÞn � a for

a nonzero constant a. The following theorem improve the estimate (3) when

k; nb 2.

Theorem 1. Let f be a transcendental meromorphic function in C, l, n, k

be integers greater than 1 and a be a nonzero constant. Then

Tðr; f Þa 1

l � 1
N r;

1

f lð f ðkÞÞn � a

� �
þ S �ðr; f Þ: ð7Þ

Remark. When lb 2, nb 2, kb 2, (7) is better than (3) except the

appearance of larger exceptional set of logarithmic density 0. If the case

k ¼ 1, lb 3 or n ¼ 1, lb 3 occurs, (3) might be the best choice so far.

Another important remark should be made here. As we realized that

for general form f lð f ðkÞÞn, there are two cases that are excluded in Theorem

B and Theorem 1: l ¼ 1, nb 1, kb 1 and l ¼ 2, nb 1, kb 1. We sum-

marize the known estimates of these two cases. For the case l ¼ 2, n ¼
k ¼ 1, Zhang [20] obtained a quantitative result, proving that the inequality

Tðr; f Þ < 6Nðr; 1=ð f 2f 0 � 1ÞÞ þ Sðr; f Þ holds. For the case l ¼ 2, n ¼ 1, k > 1

the inequality is due to Huang and Gu [8]. For the case l ¼ 1, nb 2,

kb 1, by Li and Yang [11] and Alotaibi [2] gave two di¤erent inequalities

for the estimates independently. For the case l ¼ n ¼ 1, kb 1, again

Alotaibi [1] obtained an estimate provided that N1Þ r; 1
f ðkÞ

� �
¼ Sðr; f Þ, where

N1Þ r; 1
f ðkÞ

� �
is the counting function of simple zeros of f ðkÞ, as well, Wang

[16] gave an estimate but under the additional condition that multiplicities of

all poles of f are at least 3 and N1Þðr; 1=f Þa lTðr; f Þ, where l < 1=3 is a

constant.

Though these cases are excluded in Theorem 1, our estimate is considered

to be stronger compared to the known results so far. Furthermore, it is

natural to estimate the deficiency of f lð f ðkÞÞn by making use of Theorem 1.

This leads us to the following.
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Theorem 2. Let f be a transcendental meromorphic function in C, k, l, n

be positive integers all greater than 1 and a be a nonzero constant. Then

dða; f lð f ðkÞÞnÞa 1� l � 1

nk þ nþ l
:

Remark. Since for a nonzero constant a, dða; f lð f ðkÞÞnÞ < 1, Theorem 2

also implies that the possible Picard exceptional value of f lð f ðkÞÞn is zero

for kb 2, lb 2, nb 2. We would like to state these results as a corollary

here.

Corollary 1. Under the same conditions as Theorem 1, f lð f ðkÞÞn assumes

every finite value except possibly zero infinitely often.

Remark. In fact, this kind of result is not brand new. There are already

a couple of known results implying that for any positive integers k, l, n,

the function f lð f ðkÞÞn assumes every finite value except possibly zero infinitely

often. The readers should see Lahiri and Dewan [9, 10], Steinmetz [14], Wang

[17], Alotaibi [2, 1] and Li and Wu [12] for further details.

The following section contains couples of lemmas used for the proofs

of Theorem 1 and Theorem 2. The proofs are placed in Section 3 and 4

respectively, as well an application to the sum of deficiencies is followed.

2. Lemmas

Before we proceed to the proofs of the theorems, we need the following

lemmas.

Lemma 1 ([7, Theorem 3.1]). Let f be a non-constant meromorphic

function in the complex plane, l be a positive integer, a0ðzÞ; a1ðzÞ; . . . ; alðzÞ
be meromorphic functions in the plane satisfying Tðr; anðzÞÞ ¼ Sðr; f Þ for n ¼ 0;

1; . . . ; l (as r ! þy) and

cðzÞ ¼
Xl

n¼0

anðzÞ f ðnÞðzÞ:

Then

m r;
c

f

� �
¼ Sðr; f Þ:

In particular, this lemma implies mðr; f ðlÞ=f Þ ¼ Sðr; f Þ and mðr; f ðlþ1Þ=f ðlÞÞ
¼ Sðr; f ðlÞÞ.
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Lemma 2 ([6, p. 99]). Let f be a non-constant meromorphic function in the

complex plane, k be a positive integer. Then

Tðr; f ðkÞÞa ðk þ 1ÞTðr; f Þ þ Sðr; f Þ: ð8Þ

In particular, Sðr; f ðkÞÞaSðr; f Þ. Inequality (8) will be used often in this

note without reference.

Lemma 3. Let f be a transcendental meromorphic function in the complex

plane. Then the di¤erential monomial

c ¼ f lð f ðkÞÞn

is transcendental, where l, n and k are positive integers.

Proof. We have

1

f lþn
¼ f ðkÞ

f

� �n
1

c
:

We obtain from Lemma 1 and the First Fundamental Theorem that

ðl þ nÞTðr; f Þa nT r;
f ðkÞ

f

� �
þ T r;

1

c

� �

a nN r;
f ðkÞ

f

� �
þ T r;

1

c

� �
þ Sðr; f Þ

a nk Nðr; f Þ þN r;
1

f

� �� �
þ T r;

1

c

� �
þ Sðr; f Þ: ð9Þ

Since Nðr; f ÞaNðr;cÞ þ Sðr; f Þ and N r; 1
f

� �
aN r; 1

c

� �
þ Sðr; f Þ, we can

simplify inequality (9) to

ðl þ nÞTðr; f Þa ð2nk þ 1ÞT r;
1

c

� �
þ Sðr; f Þ:

Because f is transcendental, we conclude that c is transcendental as well.

r

Lemma 4. Let f be a transcendental meromorphic function in C, let k, l, n

be positive integers, and set

g ¼ f lð f ðkÞÞn � 1:

Then,

Tðr; gÞaOðTðr; f ÞÞ;

as r ! y, possibly outside a set of finite linear measure.
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Proof. Note that Nðr; f lð f ðkÞÞnÞ ¼ OðNðr; f ÞÞ and mðr; f ðkÞ=f Þ ¼ Sðr; f Þ
by Lemma 1. Applying the First Fundamental Theorem, we get

Tðr; gÞ ¼ Tðr; f lð f ðkÞÞn � 1Þ

¼ Nðr; f lð f ðkÞÞnÞ þmðr; f lð f ðkÞÞnÞ þOð1Þ

aOðNðr; f ÞÞ þ lmðr; f Þ þ nmðr; f ðkÞÞ þOð1Þ

aOðNðr; f ÞÞ þ lmðr; f Þ þ nmðr; f Þ þ nm r;
f ðkÞ

f

� �
þOð1Þ

¼ OðTðr; f ÞÞ þ Sðr; f Þ:

We can see that

Tðr; g 0ÞaNðr; g 0Þ þmðr; gÞ þ Sðr; gÞaTðr; gÞ þ Sðr; gÞ:

Hence

Tðr; gÞaOðTðr; f ÞÞ: r

3. Proof of Theorem 1

Without loss of generality, we assume a ¼ 1, g ¼ f lð f ðkÞÞn � 1. By

Lemma 3, we know that g is not constant. Since

1

f lþn
¼ f ðkÞ

f

� �n
� g 0

f lþn

g

g 0

� �
;

it follows that

m r;
1

f lþn

� �
am r;

g

g 0

� �
þm r;

g 0

f lþn

� �
þ Sðr; f Þ:

Note that

g 0

f lþn
¼ l

f 0

f

f ðkÞ

f

� �n
þ n

f ðkþ1Þ

f

f ðkÞ

f

� �n�1

;

which implies

m r;
g 0

f lþn

� �
¼ Sðr; f Þ:

Therefore, we have

m r;
1

f lþn

� �
am r;

g

g 0

� �
þ Sðr; f Þ:
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We know that the poles of g 0=g come from the zeros and poles of g, and

all are simple. The poles of g=g 0 come from zeros of g 0 which are not zeros

of g, preserving multiplicity. Hence, we get

N r;
g 0

g

� �
¼ N r;

1

g

� �
þNðr; gÞ; ð10Þ

and

N r;
g

g 0

� �
¼ N r;

1

g 0

� �
� N r;

1

g

� �
�N r;

1

g

� �� �
: ð11Þ

By combining (10) with (11),

N r;
g 0

g

� �
�N r;

g

g 0

� �
¼ Nðr; gÞ þN r;

1

g

� �
�N r;

1

g 0

� �
: ð12Þ

By Lemma 4, we know that

mðr; g 0=gÞ ¼ Sðr; gÞaSðr; f Þ; Nðr; gÞ ¼ Nðr; f Þ:

Applying the First Fundamental Theorem and (12),

m r;
1

f lþn

� �
am r;

g

g 0

� �
þ Sðr; f Þ

aN r;
g 0

g

� �
�N r;

g

g 0

� �
þm r;

g 0

g

� �
þ Sðr; f Þ

aN r;
g 0

g

� �
�N r;

g

g 0

� �
þ Sðr; gÞ þ Sðr; f Þ

¼ Nðr; f Þ þN r;
1

g

� �
�N r;

1

g 0

� �
þ Sðr; f Þ: ð13Þ

Here we add Nðr; 1=f lþnÞ to both sides of inequality (13), then

ðl þ nÞT r;
1

f

� �
aNðr; f Þ þN r;

1

g

� �
�N r;

1

g 0

� �
þN r;

1

f lþn

� �
þ Sðr; f Þ: ð14Þ

Note that g 0 ¼ f l�1ð f ðkÞÞn�1ðlf ðkÞf 0 þ nff ðkþ1ÞÞ, which implies

ðl � 1ÞN r;
1

f

� �
þ ðn� 1ÞN r;

1

f ðkÞ

� �
aN r;

1

g 0

� �
: ð15Þ

Substituting (15) into (14), we get
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T r;
1

f lþn

� �
aNðr; f Þ þN r;

1

g

� �
þN r;

1

f lþn

� �
� ðl � 1ÞN r;

1

f

� �

� ðn� 1ÞN r;
1

f ðkÞ

� �
þ Sðr; f Þ:

Hence,

ðl þ nÞTðr; f ÞaN r;
1

g

� �
þNðr; f Þ þ ðnþ 1ÞN r;

1

f

� �

� ðn� 1ÞN r;
1

f ðkÞ

� �
þ Sðr; f Þ: ð16Þ

Inequality (6) implies that for kb 2,

Nðr; f ÞaN r;
1

f ðkÞ

� �
þ S �ðr; f Þ: ð17Þ

Now by combining inequality (16) and (17), we have for nb 2

ðl þ nÞTðr; f ÞaN r;
1

g

� �
þ ðnþ 1ÞN r;

1

f

� �
� ðn� 2ÞN r;

1

f ðkÞ

� �

þ Sðr; f Þ þ S �ðr; f Þ

aN r;
1

g

� �
þ ðnþ 1ÞN r;

1

f

� �
þ S �ðr; f Þ:

Since l � 1 > 0 for ðnþ 1ÞNðr; 1=f Þa ðnþ 1ÞTðr; f Þ, then

Tðr; f Þa 1

l � 1
N r;

1

g

� �
þ ðnþ 1ÞN r;

1

f

� �
þ S �ðr; f Þ: ð18Þ

For any nonzero constant a, we replace f lð f ðkÞÞn � 1 in above inequality by

f lð f ðkÞÞn � a, the inequality (7) is obtained. The proof is completed. r

4. Proof of Theorem 2

Set c ¼ f lð f ðkÞÞn. Inequality (18) is stated that

Tðr; f Þa 1

l � 1
N r;

1

c� a

� �
þ S �ðr; f Þ

for lb 2, nb 2, kb 2. By the definition of dða; f Þ and the First Fundamental

Theorem, we obtain
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Tðr;cÞa ðnk þ nþ lÞTðr; f Þ þ Sðr; f Þ

a
nk þ nþ l

l � 1
N r;

1

c� a

� �
þ S �ðr; f Þ: ð19Þ

By inequality (19), we have

N r;
1

c� a

� �
b

l � 1

nk þ nþ l
Tðr;cÞ � S �ðr; f Þ:

Since

Tðr; f Þ ¼ 1

l
Tðr; f lÞa 1

l
ðTðr; ð f ðkÞÞnÞ þ Tðr;cÞÞ

aOðTðr;cÞÞ;

then we deduce that

lim inf
r!y

S �ðr; f Þ
Tðr;cÞ ¼ lim inf

r!y

S �ðr; f Þ
Tðr; f Þ

Tðr; f Þ
Tðr;cÞ ¼ 0:

Therefore, by the definition of deficiency,

dða;cÞ ¼ 1� lim sup
r!y

N r; 1
c�a

� �
Tðr;cÞ

a 1� lim sup
r!y

l�1
nkþnþl

Tðr;cÞ � S �ðr; f Þ
Tðr;cÞ

a 1� l � 1

nk þ nþ l
þ lim inf

r!y

S �ðr; f Þ
Tðr;cÞ

¼ 1� l � 1

nk þ nþ l
: r

5. An application

After Yamanoi’s result was published in 2013, there are some results about

deficieny relations came out by using his important theorem. We take a result

from Fang and Wang [5] as a good example here, and we analogize their steps

to get an estimate of the sum of deficiencies of f lð f ðkÞÞn.
We need the following lemma for our calculation. This lemma is as well

used in paper [5].
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Lemma 5 ([7, p. 33]). Let a1; a2; . . . ; aq, where q > 2, be distinct finite

complex numbers. Then

Xq
i¼1

m r;
1

f � ai

� �
am r;

Xq
i¼1

1

f � ai

 !
þOð1Þ:

Theorem 3. Let f be a transcendental meromorphic function in C, k,

l, n be positive integers all at least 2 and ai A C be constants, i ¼ 1; 2; . . . ; q.

Then

Xq
i¼1

dðai; f lð f ðkÞÞnÞa 1þ 1

nk þ nþ l
:

Proof. By the Nevanlinna theory, for constants ai A C, the sum of

deficiencies of function f is defined by

Xq
i¼1

dðai; f Þ ¼ lim inf
r!y

Xq
i¼1

m r; 1
f�ai

� �
Tðr; f Þ : ð20Þ

Let c ¼ f lð f ðkÞÞn. By Lemma 5, we have

Xq
i¼1

m r;
1

c� ai

� �
am r;

Xq
i¼1

1

c� ai

 !
þOð1Þ

am r;
Xq
i¼1

c 00

c� ai

 !
þm r;

1

c 00

� �
þ Sðr; f Þ

aTðr;c 00Þ �N r;
1

c 00

� �
þ Sðr; f Þ

aNðr;c 00Þ þmðr;c 00Þ �N r;
1

c 00

� �
þ Sðr; f Þ

aNðr;cÞ þ 2Nðr;cÞ þmðr;cÞ �N r;
1

c 00

� �
þ Sðr; f Þ: ð21Þ

By Yamanoi’s result (6), it follows from inequality (21) that

Xq
i¼1

m r;
1

c� ai

� �
aTðr;cÞ þ 2Nðr;cÞ �Nðr;cÞ þ Sðr; f Þ

aTðr;cÞ þNðr; f Þ þ Sðr; f Þ

aTðr;cÞ þ Tðr; f Þ þ Sðr; f Þ: ð22Þ
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By Theorem 1 and Theorem 2, it follows from inequality (22) that,

Xq
i¼1

m r;
1

c� ai

� �
¼ lim inf

r!y

Xq
i¼1

m r; 1
c�ai

� �
Tðr;cÞ

a 1þ lim inf
r!y

Tðr; f Þ
Tðr;cÞ þ Sðr; f Þ

a 1� 1

l � 1
1� lim sup

r!y

N r; 1
c�a

� �
Tðr;cÞ � 1

0
@

1
A

¼ 1� 1

l � 1
ðdða;cÞ � 1Þ

a 1� 1

l � 1
1� l � 1

nk þ nþ l
� 1

� �

¼ 1þ 1

nk þ nþ l

in which a is a nonzero constant. r
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