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ABSTRACT. In this paper the author considers a particular type of polynomials with
integer coefficients, consisting of a perfect power and two norm forms of abelian number
fields with coprime discriminants. It is shown that such a polynomial represents every
natural number with only finitely many exceptions. The circle method is used, and the
local class field theory played a central role in estimating the singular series.

1. Introduction

—

Let f=f({)=f({1,{5,...) be an integer-valued polynomial in many
variables that is locally universal, meaning that for any n € N and a prime p

S =n (1.1)

is soluble with {; € Z,. When (1.1) is soluble for all n € N in integers {;,{,,. ..,
f is said to be universal, and when it is soluble for all but finitely many n € N
it is almost universal. It is quite often the case that f is not universal or even
almost universal as indicated by the Brauer-Manin obstruction. The failure of
the Hasse principle, though, can be in some sense overcome if we allow more
variables in the equation. It is a general phenomenon that if a surface & (n) of
a higher dimension, defined by F(Z) = n, contains the original surface %(n)
given by f (z ) = n as a section, then it becomes almost universal, provided their
codimension is sufficiently large. The Hardy-Littlewood method provides a
powerful tool for estimating the number of variables necessary for this.

Although this analytic method is powerful for many problems of additive
nature, it has some technical limitations and a factor of log(deg /) is invin-
cible in general; most of the results satisfy dim(%(n))/dim(%y(n)) > log(deg f).
The term log(deg f) arises from the technical difficulty to handle the minor
arcs. If one considers a specific polynomial that is irrelevant of this difficulty,
it is provable that log(deg f) reduces to O(1).
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In the 1960s, Birch, Davenport and Lewis already observed this and
considered a specific type of k-forms. Let K, E be the number fields of degree

k with integral bases {w1,...,w¢}, {®],...,»;}. Denote the norm of xjw; +
<+ xpwp and yio] + -+ yrwp by Ni(xi,...,x¢) and Ng(pi,...,p). In
[1] they considered z¥ + Ng(x1,...,xx) + Ng(y1,..., yx) under some provisos,

reached the following theorem as their main result.

THEOREM 1.1. Suppose K, E are not both totally complex, and let g, o
denote their discriminants. Suppose that, for every prime p dividing both dx and
o, the equation

n:Zk+NK(X1,.-.7Xk)+NE(y1,..-,yk) (12)

has a non-sinigular solution in the p-adic field. Then (1.2) has infinitely many
solutions in integers.

The strategy in their work was to follow the routine procedure of the
circle method, except for the treatment of the singular series. A typical way
of dealing with the singular series is to obtain an estimate of exponential sums
Sa.q = D Fmod ¢ €& ()/q) by factoring them into products of exponential
sums over a single variable. But a norm form Ng(xj,...,x;) has many
off-diagonal terms and it is not easy to do that directly. In [1] instead, a
technique invented by Birch was used to get an auxiliary lemma of the
type > x g D |Suql* « X¢. They also showed the positivity of the

a,q)=1
singular series, but( \zithout giving an estimate of its range.

In this study we prove the almost universality of the polynomial z% +
Nk (X) + Ng(¥) in a different setting that enlightens several new aspects. We
treat abelian number fields K, £ whose degrees k), k; may be different and
can be totally imaginary as well. We also provide an effective bound for the
singular series. In the last section we will include an example which shows
the optimality of our conclusion, i.e., that the sum of two norms can fail to be
almost universal even when it is locally universal. There are very few optimal
results in the theory of additive problems, but this result seems to provide one
of them.

The techniques in [1] may help us deduce some parts of our results, but
will not exhaust the contents of this research. On a technical point of view,
the significance of this study is that estimates of the exponential sum S, ,
uses local class field theory and a restricted sum, which plays an essential role
in dealing with the singular series by removing solutions that are p-adically
singular for a ‘bad’ prime p. (Here ‘bad’ means that either p is too small or
it is ramified in one of K, E.)

This article is organized as follows. In Section 2 we give some definitions,
in particular of the congruence residue classes RQ and QVS(n) that will be
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important in the treatment of the major arcs. In Section 3 we reduce the
integration over major arcs into singular series and singular integral. The
estimation of the singular series follows in three subsequent sections. Section 4
covers the exponential sums over bad primes. Section 5 gives some basics
about algebraic number theory, which will be used in Section 6 to design
a particular system of representatives of Og/ptOg, together with local class
field theory, in order to obtain a successful bound of S, ,. for good primes
p. Section 7 lays down a fairly classical argument on the singular integral.
We omit estimation on the minor arcs because the reasoning in [1] carries over
verbatim. The last section gives the desired asymptotic formula and describes
how to construct a sum of two norms that is locally universal but is not almost
universal, demonstrating why the term zX is necessary in our problem.

2. Notations and settings

Let K and E be abelian number fields with ring of integers Ok, Op and
integral bases {¢,...,¢ } and {y,..., ¥, } whose discriminants dg, Jr are
relatively prime. Since (dx,0g) =1, for each rational prime p at least one
of the inertial groups Tx(p), Te(p) is trivial. Suppose Tk (p) is trivial. Let

P1s---,p, be the prime ideals in K above p, and Ok, the completion of Ok at
p;. The local class field theory says that the local norm map Nk ; : (Ok,p,)" —
(Z,)" is surjective. We also know that Ng(ax) =[], Nk, i(«) for « € K, where

we consider o, Nk (o) as elements in adequate completions of K [6]. Since Ok
embeds into [], Ok, as a dense subset, combining the surjectivity of N ;,
the local universality of Ng(X) + Ng(¥) = Nkio(X- @) + Ngo(¥- W) will follow
if the local norm maps Nk 1,..., Nk , are all continuous. But Ng ; is indeed
continuous as we easily see. Choose a uniformizer mep; in Og,. Any
clement ¢ € Gal(K,,|Q,) maps n to another uniformizer in Oy, so for an
element y € Ok, ,, we can write (yn’)” = y(o)n’ for some y(o) € Ok,p,. Thus
for x, y € Ok p,, one has

Nk i(x+yn’) = H(x—|— yn’)” = H(x” + J(o)n’) = Ni.i(x) + 7’z

a a

for some z e Ok p,. But n'z= Nk (x+ yn’) — Nk i(x) € p/ NZ,, whence we

have Nk ;(x+ yn’) = Nk i(x) mod p’. It follows that Nk ; is a continuous

map, and the sum of norms Ng(X)+ Ng(¥) is therefore locally universal.
Throughout this paper we write

F(Z) = F(Z(),Z],...,Zlirkz) :F(Z(),X],...,Xkl,yl,...,ykz)

= F(20,%, 7) = 2" + Ni(%) + Ne(5).
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e(o) denotes ™ and v, denotes the p-adic valuation as in tradition. P
denotes the set of rational primes. We put Q = Hpei) p where

P={peP:p< (kiky)*™® or p|ogor}.

In particular 1 « Q « 1 for fixed ky, K and E.

Let Iéf be a system of representatives X modulo ¢ such that for any prime
p in P that divides ¢, one has Nk(¥) # 0 (mod p). Iu(f is defined in the
same manner, and let R, be a system of representatives Z = (2o, X, §) (mod q)
with ¥ € Rf, je Ry. Note that [R,| = [R,||R/| if (¢,r) = 1. For brevity in
the sequel we write Z = R, for an integral vector Z if Z=d (mod ¢g) for some
de R, Observe that Z= R, for all ¢ > 1 if and only if Z = Ry.

Throughout this article we let k = max{ko,k;,k2} and X; = n'/%. 1In the
definition of major and minor arcs, we consider the Farey dissection of order
n'~" where v is a fixed small positive number, in particular, less than i For a
technical reason in the estimation of the singular integral, we need to choose
small boxes %B; in [0, 1], [0,1]" and [0, 1] so that B = B, x B; x B, is around
a nonsingular point of the Euclidean surface defined by F(¢) = 1. Let X;B; =
{F: x7€%B;}. The restricted sum D zegn ¢(o0F (2)) is defined over

%(I’Z) = {FE (X()%() X X]%] X Xz%z) ﬂZ1+k1+k2 F= RQ}

BX(n) is defined similarly using X;8;NZ* and RE, and so is B (n). We
want to estimate the number of solutions to F(Z) =n with Z € B(n), viz,

I+c
F(n) = J Z e(oF(Z))e(—na)do
ZeB(n)
for some real number c.
For simplicity we write >_, .4+, to denote the summation over a that
runs through 1 to ¢ under the condition (a,q) = 1. We define the major arcs
for | <a<g<n'and (a,q) =1 by

W(g.a) = {o:[x—a/g <n” "), W= | Mga)

qg<n"amod” ¢

and put the minor arcs m = ("', 1 +n""'] — 9. Note that M is a disjoint
union of the segments Mi(q,a).

3. The major arcs
For each rational prime p and (a,p) =1, let

sk.o= Y e(iLNK(fé)), SK.= % e(pi’LNK(yc)),

X mod pt )?eléKL
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SE o and Sf o are defined in the same manner. For (a,q) =1 we also put

o a ., I
Su= Y e(tr@). - | o(F (7)) P
‘R, q XoByx X181 x X2 B,

Let x(q) be the product of distinct prime factors of (g, Q).

LemMA 3.1, Assume |B|<n'™', 1 <a<q<n’, (a,q) =1. Then
a .

Z e((——l—[)’)F(z))

zeB(n) 1

[Ro| x(g)"™™ 1

_ N 2+1/ko—1/k+2v
B Qlthith |R ( )| glHhitk S"*ql(ﬁ) +0(n ’ )
(g

Proor. Let g =lem(q, Q) = W and write Z=qd+b, 0<b; <q. Let
A(q,b) = {fe R"*MHR - gii + b e XoBy x X181 x X28B,} and A(q,b) = A(q,b)

ﬂZ”kl“". One easily has

> ((Gep)re) - % )3 ( (0d-+5))elpr(aa + )

Zeﬂv%(n) beR deA(q
a - R
=Ze(—F<b>) S elpFlai+ b)),
I;ER‘, 1 GeA(q,b)

Let h:R'™1*% _ C be a map defined by h(7) = e(BF (a7 +b)). If @
is an integral vector near # so that |5, —a;| < 1/2 for all 0 <i <k + ky,
and M is the supremum of the absolute value of directional derivatives of

h(if) for 7 € A(q,b), then clearly |h(7) — h(@)| « M. Observe that any convex

-

body U cA( ,b) can be divided into unit boxes together with at most

0(%((]) ( ) (% ++ +;)) possible broken boxes. Hence

- Y h@

GeA(q,b)

—
N
=
EC*

= XoXbxk 11
< A(q,b)|M+u(

+ -+ ! sup |1(7)|
ghitke - \Xo = X1 Xp ﬁp 1

where |4(q,b)| is the Lebesgue measure of A(q,b). Here

S XoXh xlk .
|A(Q7b>|<<ﬁ7 qu|h(’7)|:17
n
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and
$2 ko—1 ki—1 -1 1-1/k
M 3G | < IO+ ) <l
which gives
Ndi | onlke 2+ ko= 1/k
Ao deA(ab) q
2+ ko =1/
< g
Writing off + b =7,
= h(ﬁ)dﬁ:J _e(BF (qii +b))dii
A(a,b) A(q,B)
1
= e(BF(F))dF ————
Jxo%oxXl%lxXsz ( ()) q1+k1+lxz
1
:ml(ﬂ)-
Since q = ¢ %, one has
a - y 0 - ; ]
Z e|=F(b))= |RQ/K(£1)| Z el=-F(b) | = |RQ/x(q)|Su,q.
ber, M —~ \q
€k beR,

It follows that

a - 1 n2+1/k0—]/k+v
) e(f(b)) <W’(ﬁ) ’ 0<w>)

Y

_ |Roug Suq
o T+kiths gltkith
(0/x(q)) q

L 2tk /kty
1(8) + 0<|Rq|W>

|RQ| K(q)1+k1+kz ga,q 241 fko—1 Jk-+v
— Q' +hitk |Ié ( >| PR I(p) + O(qn ko "
K(g

and the lemma follows.
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We introduce typical notations for the major arcs now. Compared to
the classical ones, the singular series contains some additional terms in its
summands as we use the restricted sum over Z € B(n).

o Sf a g K(q)l+k1+k2 .
Ay =Y ﬁe(“”) S(om) =) = e——A(a)
amod*qq q <X | K(q)|
0 1+k1+k2
K v
D == WD)

1=0 Kp’)

In particular 4,(1) = 1. Possible issues on the convergence of ,(p) will
be clarified later. We also define the singular integral

3(e) = j j% e(F (D) dZe(~y)dy

—C

THEOREM 3.2.

Jm Z e(aF (Z))e(—no)dao

Mz eBn)
Rol </ v i ks
_ Q]+k?+k2 6(]1 ’n)\s(nt)nlJrl/ko + 0(n1+1/k0 1/k+5 ) (31)
ProOF. Let J(c,n) = [ I(B)e(—nP)dB. Note that there are 0( ) pairs
(¢,a) in the major arcs and each interval M, ) is of length 2n"~". From
Lemma 3.1,
>y J > e(aF(2))e(—no)do
g<n’amod” ¢ My, ) ZeB(n)

=> > Rol M) ™™ _Su e[ =2n) 30" n)
a oIt Ryl gRTR TN g SV

qg<n’gmod”q
+ 0( 2v y—1 2+1/k0 l/k+21)
[Ro| <

= QlhtR S(n",m)J(n"",n) + O(n'H1/ko1/keSy

Put FZq(XOCO,XIZ:I,...,X]Ck],Xzé:kH,l,...,XZCkH,kZ) and y:nﬁ so that
PF(F) =yF({). Then
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n-1

St =[] e(BF(P)dFe(~np)dp
—n"1 JXBox X1 B x X>B,
" ki vk 2\ 7 dy
= XXX, %e(yF(C))dCe(—y)7
— S(nv)nlJrl//cO
and (3.1) follows. O

4. The singular series: Bad primes
Lemma 4.1. If (¢,r) = (a,q) = (b,r) =1 then S‘a.qSV'b.,, = S’awbq?qr.

PROOF. Write Z = (20, X, §) and & = (&), & f).

Let so = rzg + g¢&, so that sy takes every value modulo ¢gr. Since g € Ok is a
unit modulo rOy, for any & e RX one has Ng(gd) #0 (mod p) for all pe P
that divides r, i.e., qd = ﬁrK . Because the map & - ¢ +— go - ¢ gives a bijection
between systems of representatives of Ox modulo rOg, we obtain a bijection
gRX — RX. In the same manner, the set

—

{ii =rX+qi:Xe RS de R}
is bijective to Rg and so is
{ﬁzrj/’+qﬁ:j/'eRf,ﬂeRrE}

to Iéqf Therefore
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RIPIPIPIILIL)

eREﬂeRE

JeRE BeR!
. . +b < N
which 1is Efequ e( a’(‘; q F(s)) = Sar+bq7qr~ O

An immediate implication of Lemma 4.1 is the following.

COROLLARY 4.2. If (q,r) =1, then A,(q)A.(r) = A,(qr).
K(g) R o)1+t K(gr) e .
. . = =1
Real 1R R o (@20) =
Hence if we assume the convergence of lim, .., S(¢,n) = S(c0,n) which will be
established later, we get

Observe that we obviously have

n) = [T z(p)

peP

Let M,(q) be the number of solutions to F(Z) =n (mod ¢) with Ze R,.
Lemma 4.3. For L >1

M,(p") IR, | ; ; :
p<k1|+k2)L - p1+k,|)+kz + Au(p) + Au(p?) 4+ Au(P").

Proor. Let ¢ = pt. 1t is obvious that Rpm can be constructed from ﬁp
for any m > 1, namely

Rpm = {Z mOd pm zZ = R }

so that pr11!{i,)1:’4‘rk2) = pllflfﬂrkz . For d=(a,q) = pl’ I <L, write
. ald d'"“htkes e i d#q
Safd-d,qld-d = < F(Z)> = { v e
21; a/d IR, if d =gq.

It follows that
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1 i, . ( ald )
=— E w/dd.qldd€| — =N
4% Jd-d,q/d-d 4/d

3 a/p’ 5
> 0o < R

v

L—1 3
— ki+ka i S“/P]A,[’L*’ el — a/pl n)+ |Rq|
=4 y - (pL_l) 1+ki+k2 pol ql+k1+kz
= a=

9

I .
S 1 a |R |

_ S ki+k a, p q

=4 Z Z 10tk tka) e(—pln) + PIETIEE

=1 amod*p’p

v

L ;
=gl <p1+k[1)+k2 + Ay(p) + Au(p?) + -+ Au(p") ). [

The estimation of A,(p%) for p e P uses next lemma.

LemMA 4.4. Let f(Z) be an integral polynomial in t + 1 variables for which
=(C0,C15---,C;) is a solution to f(Z) =n (mo . ssume that there is
E=(Co,CrensCy) is a sol 7 d pM).  Assume that th
an i such that u; = v, (Ojém ‘Z:Z) < Mzl Let Ni(M) be the number of solutions
& modulo p™ such that & = (mod pHitYy for j#£1i, & = (mod p“th) and
f(&) =n (mod pM). Then N;(M) = p'M-2u=1+u;

ProoF. Without loss of generality, assume i =0 and let 4y = 0;(;2') |E:E’

_ Y@
AO(a, b,c,.. ) = o ’?:(Co-h'?“o‘ltl-‘rp"()“b-‘rm.,Cl,...,C,)' Note that

vp(do(a,b,c,...)) =ug

for all a,b,c,... € Z. The Hensel’s lemma can be applied to this situation in a
form that starts from a higher power of p:

fCo+p 20,00, .,8) = £(©) + dop™*zo mod p*+?,
f(C() + Pu0+120 + pu0+22(/)a Clv oo 7Ct)

= f(Z:O + pu0+1207 Cl) ey Ct) + AO(ZO)pMOJrzZ(I) mod p2u0+37
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and this process goes on. Thus for any &,...,& modulo pM with & =¢
(mod p*1), there exists a unique r modulo p™~2“~1 guch that

f(&o+phttr &, ... &) =n mod pM

Observe that this r can be lifted to a number modulo p™~*~! in p* distinct
ways. The value of Ny(M) easily follows by counting the choices of &y, ..., ¢,
and ¢, + p“*'r modulo p™. O

Let y = y(p) = min{v,(k1), vp(k2)}.
LemMA 4.5. If peP then A,(p*) =0 for all L >2y+ 1.

ProOF. Note that p®i1th)L 4(ply = M, (pL) — pk1+k2M (pt=1) for L > 2.
We show that all of the solutions that are counted in M,(p’) and M,(p~~")
cancel out if L > 2y 4 2. Assume y = v,(k). Suppose Z = (z9, %, ) € Ry is a
solution counted in M, (p™) where p e P. Let G = Gal(K|Q). Then Ng(X) =
[Legxipf +---+ x/q(a,fl), and we have

ONk (X T
ox: Z¢I H X1¢1 '+xk1(ok1)

ceCG 1eG
T#0

=Trxio| o [ 107 + -+ + xu07)
A7

- ;i
=N, T _ .
K(X) 'kQ (xl(p] X (qu)

Hence
ONk () ONKE) .
X1 ax] +"'+xk| ax}q :NK(X) TVK‘Q(I) :klNK(X)
But X e Rfm, , Nkg(¥) #0 (mod p) which implies x,(]\;"x #0 (mod p’*!)

for some i. As described in the proof of Lemma 4.4, this solution Z is one
of the lifts of ¢ eR »n when m >2y+1 and so the solutions zeR ¢ and
z'e R, that are counted in M,(pY) and M,(p~") are all lifts of the
solutlons zeR »+1. Lemma 4.4 shows that the number of such lifts grows
by a factor of pkit% for each increment of m in the modulus p™ for
m=>2y+1. Thus all of them are canceled in M,(p%) — ph+ka,(pt=).

]
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The estimation of Aun(pL) for p ¢ P is a bit more complicated. Contrary
to the classical problems in additive number theory for which the exponential
sum S, ,. splits into the product of many exponential sums over single
variable, SX | does not behave in the same way because Nk(X) has many
oﬁ-diagonal terms of the form x{"x5?...x;*. Instead of obtaining a bound of
exponential sums over a single variable, therefore, we focus on the properties of
the norm map Ng|q and it is here that the class field theory plays a role. A

successful bound for S{pr comes in following sections.

5. Algebraic preparation for the singular series

For the estimation of the exponential sum S, ,, we translate the summands
in SK o to a system of well-chosen representatives of the quotient ring
L
OK/P OK

—a

LemMmA 5.1. Let e, f, g be the ramification index, inertial degree and
decomposition number of p in K|Q and write pOg = pip;...p,. Let

Hp \pm

lsém
and for each m with 1 <m < g, let {rim),rém,. ) 'Z,} be a system of repre-
sentatives of Ox modulo p¢t.  Then

Ig

pch Pt
=1 =1

Proor. Let G = Gal(K|Q). We first recall that Ng(X) € Z[xy,...,xx]-

ag, . N
Indeed, the coefficient of each term x ...xk:‘ in Ng(X) =[[,cq(x107 +---+
Xk, @f ) is an algebraic integer which is invariant under every o e G, so it
is a rational integer. Hence for any integral vector ¥ that is congruent to
X modulo p* one has Nk (?) = Ng(¥) (mod p~). Since xip; + - Xp, ¢, =

vipy + v @, (mod prOk) if and only if x; = v; (mod p*) for all i, clearly

Sty = X e Mol

VER

e( N1<|Q (1>+"-+Oc(g)l’-(g))).

iy

for any system 2% of representatives of Ok /plOx.
We may work on a more general situation like the following. Let I, J
be integral ideals of Og that are relatively prime and ¢, r be their absolute
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norms. Note that ¢, r need not be relatively prime. Let {#,...,7,} and
{ur,...,u,} be systems of representatives of Og/I and Og/J. Suppose we
put v; ; = ft; +oau; for some awel, feJ. Then v;; = ft; mod I, and hence
vij=vp o modl < f(ti—ty)el. If f+1 is not a zero divisor of Og/I,
this is equivalent to #; =t mod /. Thus v;; for 1 <i<g, 1 <j<r form a
system of representatives of O /IJ if and only if f+ I and « + J are not zero
divisors in Og/I and Og/J respectively.

Because 7 and J are relatively prime, I + J = Ok and there exist « € I/ and
peJsuchthata =1 modJ and f=1 mod /. 141 isclearly a unit in Og/I
(in particular, not a zero divisor). The existence of «, [ that satisfies the
conditions mentioned above follows from this.

As an obvious generalization, assume /(1. ... 1@ are integral ideals that
are relatively prime and let v, = N(I™). If {" K™ . r"} is a system
of representatives of Og/I™, there exist al),... a9 with a™ e [T9_, 17

i#m
for which o 410" is not a zero divisor in Ox/I™ for all m. Writing
Vi, = oc(1>r(ll) +o 4 o@r9 ) the set

g

{oi., 1 <i < vy 1<y <vgd

forms a system of representatives of Ox/I)...19. With the substitution
1™ = pel and the choice of «™ as stated in the lemma, o is trivially not a
zero divisor of Ok /p¢t. This completes the proof. O

The following is a well-known fact in algebraic number theory (for
example, see Chapter 8 of [7].)

PrROPOSITION 5.2.  Let p be a nonzero prime ideal of Og and m > 1. Let
I be a system of representatives of Ox modulo p containing 0. Let t € p\p>.
Then A= {so+sit+ -+ Sm_1t™ Vs € I'} is a system of representatives of
Ok modulo p™.

Let e, f, g be as in Lemma 5.1. We want to choose a system of
representatives of Ox modulo p¢s in a nice way. Consider the ideal class
group ¥ of K and a class [I] € 4 containing I. An analogue of Dirichlet’s
theorem on primes in arithmetic progression is that the prime ideals of Ok
are equi-distributed among ideal classes in ¥ on a probabilistic point of view
(Chapter 11 of [5]). We simply take a weaker form of this for granted that
every ideal class contains infinitely many prime ideals.

Firstly, consider [p;]€%. Then there is a prime ideal a; such that
] =[p;]" in ¥ and ged(ar, p1p,y-..p,) = Okx. Now pja; is principal,
say, tOg and for m # 1
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i=1

9 9
1% \pm NttOg = lem | T ] ve*. 140 \pm

i#m i#m
LT el
= ale lee Pm
=1
ilyém
#
whence one can choose o e (a¢E 9, pfE)\p,, e, o™ eafbpel = 1Ok
and o /tt e Og for m=2,3,...,g. %"
Similarly, we can choose aj, a,...,a, so that p;a; = ;0 is principal and

ged(ai, pp; ... p,) = Ok for all i. In particular #; € p,\p; and v,(Nxjo(1)) = f.
By the infinitude of the prime ideals in every ideal class, we can in addition
assume (a;,q;) = Og for i # j. It follows that there exists an element

(m) H a$ eL \pm

t#m

for each m so that

o)
7 oL € Ok \Ppy-
i=1 ‘i
i#m
Let 7'M, ... . I'9 be systems of representatives of Ok/py,--.,Ok/p, that
contain 0. In the estimation of Spr later, we choose the representatives that
are of the form

Za R M SRR Y ) (5.1)

m=

where sj(m) rm.

6. The singular series: Good primes

Let # be a system of representatives of Og/ptOx and #* = {re % :
P X Nkio(r)}. Let e, f, g be as in Lemma 5.1. Note that .§'pr = Sfp,‘ if
p¢P.
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LEmMMA 6.1. Write Sf SK IL +SK . where

a a
Sf}?]L = Z e(p—LNK|Q(y)>7 Sf},ZL = Z e(—LNK|Q(y)>
VER® yER\R" P
() I L<f then Sy =30 (=) () pht¥

2) If L>1 and p)(lq then SK 1, =0

(3) If L=1and p is unramzﬁed in K|Q then SfplL = —<p;:11)q.

PROOF. Assume L<f. Since p|Ngjq(y) if and only if p/|Ngq(7),
in this case S pL merely counts the number of nonunits of Og/pfOx =
OK/p . g Let T be the number of nonunits in Og/pOk. The number
of units in OK/pOK is (p¢ — ple=N)9 so

T = pkl _ (pef _p(e—l)f).fi — pkl _pefg(l _p—f)y

g
— (_l)i—l g p/q—if
i=1 J

and SKZ _p(L 1)k1T Z (_ ) (l)ple—if

As for S [)L’ first assume L > 1 and p /' k;. Let X be given by y =X - @.
Since p/tki, pJt Ng(X) implies that there exists / such that %fc) #0
(mod p) as shown in the proof of Lemma 4.5. If m is any integer such
that m = Ng(X) (mod p), Lemma 4.4 shows that the number of ¥ modulo

pr! satisfying Ng (% + pv) =m (mod pt) is p*i=DE=D " Thus

pL—l

_ _ a R
S =PI ST S e el + ) ) =

Xmod p z=1
A Nk (%)

Now assume L = 1 and p is unramified in K|Q so that Ng(r) takes every
nonzero value modulo p. Considering Ng(ru) for ue 2%, it is easy to see
that the number of r e 2* satisfying Nk|o(r) =m (mod p) is the same for each
value of m=1,2,...,p—1. It follows that

() 255 S o)

re®” m=1

k fq( —1) :_(P‘/—l)g
—p FE PR O

We include a classical bound of an exponential sum for convenience. Let

Zm 1 e(q AO)
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LemMA 6.2 (Theorem 4.2 of [8]). For (a,q) =1, S, «g'~'/k.

Let e, f, g be as in Lemma 5.1, 11,...,7, and o)), ... a9 as described in
Section 5. Choose a system Z of representatives of Og/p’Ox whose elements
are of the form given by (5.1).

LEMMA 6.3. Let p¢P. For L > 1,

)k1—1+2 logp ky and | )/62—1+2 log[, kZ.

|SK AR ol < (p

ProoF. We prove the first inequality. Write L=uf +v, 1 <v < f and
let #i ={re#:rep;}. The case L =1 easily follows from Lemmas 6.1 and
6.2, so we assume L > 1. Since ptk;, by Lemma 6.1 and the inclusion-
exclusion principle

a_ Nkpg(r)
sk, =sKk2 — e(
o “r z,eUZa) pof Pf
m=17m

SEDTEST N Ehni)

=1 iy =1 Iy
!1 U . 'emm:r%im

where

. . a NK\Q(tiltiz "'tf/) r
E(iy,...,q =€< N ’
( ) pL—_lf plf KlQ til tiz N t,’,

and, in case L < fg, we wrote the sum over / < |[L/f] as ), and the sum over
IL/f|<l<gas >, Let a< i) :amf”’). By the choice of 2, we
have (a(,»l_,__q,»,),p) =1 and —— € Ok when re ﬂ For >,, observe
that {——"— T € ﬂ;:], } runs through a system of representatives modulo

pL ok by p= times. As for Y ,, we first note that E(i,...,i) =1
always. Recall that an element of # is of the form

m=1° lm

Z“m JrS1 " Jrsém)’rszr +S2 )1nL4 h

9
=1

m

where sj(m) er™ |r™|=p/ and rej, if and only if s/ =0. The set
ﬂfnzl R, con51sts of the numbers with So = s(() = 0 and hence contains

pYE=Npla-D/L — pkLl-lf elements. We thus can write
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g
Spr: Z (_l)l—l Z p(krl)lfS(f pep Y

1<l/<yg ity ip=1
I<|L/f] i1 <<y
R
+ Y (=t > pht
[L/f]<i<g i ii=1
<<y

Let M(x) be the maximum value of |S,,I_’< ,+| among all b # 0 (mod p) for
x> 1, and p"* when x <0. Let 0, = 0k »(x) be the real number satisfying
M(x) = p**i=140w)  (In particular, 6,y =1 when x <0 and by convention
we put 0y =1.) Then we have

9
g _
55,0 < 30 ( ) Varz - 1)

o o))

<g- mlax{ <§l]>plf(/€11)+(L./f)(k11+9(L1/))}

< max{p(L7”‘> (kl 71+0(L—!/))+1f(kl 71+10g/7 g/f+]0g/; g/lf)}
/
whence for some /

L(ky —=1+0)) < L(ki =14+ 0_y) + lf(—H(L_gf) +% log, g)
or
Loy < mlax{(L =)0y + (I+1) log, g}
From this expression, in an inductive way, one immediately has
(Wf + 0)01up40) < 00 + 2ulog, g. (6.1)

Assume v=1 first. By Lemma 6.1, Sfp:—%+ g (=Dt
(9)p"1=7. Here

(' - 1)’

P R AR R [ 1)s-!

< 2pf71pf(gfl) — pk171+log,)2’
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i1 o i
and observe that 0 < > 7 ,(=1)" () p"~7 < gph~. Thus
|S(fp| < max{pklflJrlog/,Z’gpklff} < klpk171 _ pk171+logp kl'
Now assume v > 1. Then

S (9]

i=1

|Sfpv| _ < klpvklff _ pv(k171+17f/v+logp ki/v)

log/, ky logp ky

and 1—%—1— — < where the equality holds when v = f. We have

proved that vf,) < logj; ki in both cases; hence from (6.1)

log, k1 + 2ulog, g < (2u+1) log, ky
uf +v u+1

9(uf+v) < <2 logp k. ]

The next one is an immediate corollary.

LemMa 6.4. If p¢ P then there exists an absolute constant 6 > 0 such that
An(pL) < W

ProOOF. Since SJ‘a’pL =S, v for p ¢13, by Lemmas 6.2 and 6.3

o 1

A, (p") « -pt. |S37PLS“I’<I,LSE t|

(pL) 1+ki+ks a, p

« plha—tat(1=1/k)+ka—1+2log, k1)+(ka—1+2 log, k2)

< pL(flfl/k0+210g], kikz)
and 2 log, kiky < - because p ¢ P. O
Now the singular series is estimated.

THEOREM 6.5. There exist positive absolute constants ¢y, ¢, that depend
only on K and E such that ¢; < S(n",n) < ¢, for all sufficiently large n.

. o(q) ' TR1TR2 Itk +hy
PROOF. Since 1 < <. < 27
|RA‘(1/)‘ |RQ|

« 1, the absolute convergence of

lim &(¢,n) = S(c0,n)

— o0

follows from Corollary 4.2, Lemmas 4.5 and 6.4. More precisely we have

S ~S(n’ —
[E(e0,m) — S )| <
so it suffices to show that 0 < ¢; < S(c0,n) =[]

peP %,(p) < ¢; for some con-
stants ¢; and c¢;.
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o 1+ky +k
For p ¢ P, K“"])é 1‘ "~ 1 so Lemma 6.4 gives
x(p)
e} o o0 1 1
%u(p) = 1] < Z\An(l’L” « ZW <45
=1 = (") p
which implies that there exists a prime py depending only on K and E such that

1 . 3

3 < H In(p) < 5

P=Do

Suppose p < po. Recall that every prime p is unramified in at least one
of K|Q and E|Q, so assume p is unramified in K|Q. For L >2 M,(p*t)>
N,(p*) where

Nu(p*) = [{Z € R,1 : F(Z) = n mod p~, Nx(¥) # 0 mod p}|.

As in the proof of Lemma 6.1, the number s(m) of ¥ modulo p’ satisfying
Ng(X) =m (mod pr) is the same for all m# 0 (mod p). Since there are
(p! = 1)?pE=Dk units in Og/p“Ok = pf...pL, it is easy to see that s(m) =

(p/=1)fp~ Dk > L = PE
T Let /(L) be the number of (zo, ) modulo p* such that y e R;
and zé‘" + Ng(¥)—n#0 (mod p). For each e Iv{pEL, if Ng(¥) —n=0 (mod p)
then there are pX — pX~! zy’s counted by i(L). Otherwise there are at least

pEt zp’s, so h(L) = |RE |pt~! = [RF|plE-DktD It follows that

L (Pf— )¢ (L=1) (ki =D +(L=1)(ka+1)| BE
Na(p™) = s(1)h(L) = o1 IR,

> (p— 1)k1—1 |Rf|p(k1+kz)(L—l).

Let ¢/, f’, g’ be the ramification index, inertial degree and decomposition
number of p in E|Q. Then

5 7 / NP 1 ‘ql ka
E | — e'fr (=1 f'\g' _ k _ B
IRy| = |[(O£/pOE)"| = (p p ) =p 2(1 pf,> > (2> :

and hence
Na(ph) _ (p =1
p(k[Jrkz)L - 2k2pkl
tky+hky o
Now write )?,(,L)(p) = IL:OK(II’I[;#A”@I). By Lemma 4.3,

(!
Cw(p)"E A (ph) k(p) TR (p -1
‘ch(p)| 2k2pk1

= Llp
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As for the upper bound of y,(p), if pe P then Lemmas 4.5 and 4.3 give

2y(p)+1 I 1+ Itki+hka A7 2y(p)+1
. K(p o p M, P
AT I Dl Ry ) g A(p )

=0 [Ri(pn)] |R1,| pkitka)(2y(p)+1)

p1+k|+kz |Rp|p(1+k1+k2)27(p) _ p2y(p)+l.

|jép| plkatk)(2y(p)+1)

If pé¢ P, %,(p) converges absolutely by Lemma 6.4. As the bound in Lemma
6.4 is independent of n, one can choose an upper bound U, of 7,(p) that
depends only on K and E. Therefore

1 < 3 )
clzinup<6(oo,n)<§(k1,k2) HPHUP:CZ' ]
P<po peP P<¢1;5))
p

7. The singular integral and minor arcs
The following proof is basically from [4].
THEOREM 7.1. We can choose B so that JI(n") — Jy >0 as n — .

Proor. Choose small positive numbers ¢,,...,¢; ., so that the real

k . .

value ¢, that makes @,° + Ng(dy,...,d,) + Ne(Bp, 15+ P, x,) = 1 18 posi-
tive, not equal to 1, and hence

OF [0¢y # 0 and  Ng(dy,---,bk,) + Ne(@r, 155 Pry k) # 0.

-

Then ¢ = (#o»- - P, +x,) 1s @ nonsingular solution to F(4) =1. Let B
be a box centered at ¢ with side lengthes 24. Write
U

3w = L e(7F (©))dCe(—y)dy

—u

sin 27u(F(0) = 1) 7
s n(F(C)-1)
4 J sin 27w(F(*+§)_1)d5
) m(F@+0)-1) '
WriEe F($+§) —1=colp+ - + Ck 11, Ok 4 —I—Pz(é) + ~~-+Pk(§) where

P,(0) is a homogeneous polynomial of degree m. Note that ¢y =
OF [00o]5_5 = ko¢é‘°71 # 0. Now for ry,r,r, € R consider the equation

ko 1k k k
”00¢00 +V11NK(¢1,-~~a¢kl) +r22NE(¢k1+la"'v¢k]+k2) —-1=0.
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Since both of ¢y and Ng(¢y,...,d,) + Ne(y, 1,5 bk, 1k,) are nonzero,
one can choose ry,r;,» > 0 such that ko(rogbo)k‘rl =1 and still satisfying

F(r0¢07r1¢17 tee 7rl¢k17r2¢k1+1? tee 7r2¢k1+kz) - 1 = O and

NK(V]¢]7"')r1¢k1) +NE(r2¢k1+l""7r2¢k1+/Q) # 0.

So we can assume ¢y = koqﬁg"_l =1 from the beginning.

For || < 4, we have |F(¢+ 0) — 1| < ¢ where ¢ = ¢(2) is small for small
A Put F(gz + 5) — 1 = ¢, and consider this as a map from 0y to . Then, if 1 is
sufficiently small, the inverse function theorem tells us that 6, can be expressed
in terms of ¢,01,...,0k+k, as a power series

90 =1— clgl -t ck|+k29k]+k2 + e?(1‘7 017 . '70k1+kz)

where 2 is a multiple power series whose least degree terms are of degree at
least 2. Hence 00y/0t =1+ P (1,01,...,0k k) Where 2, is a multiple power
series without a constant term. By taking A sufficiently small, we can make
|21(8,01, ..., 0k4k)| < 1/2 for |01],...,|0k k| < 4, |t] <o. A change of vari-
able from 6y to ¢ gives

2 * sin 2mu(F (¢ + 0) — 1)
S =1 .. SR do ...d0 1,d0
R0%) Jil LA AFG+0)—1) 1 ki+k, @00

V(t)dt

7 sin 2mut
_s Tt

where V(1) = [*, ... [L,(1+21(1,01,...,00,11,))d0) ... dOk 11, and we wrote
a ~ b to mean that the limit of their ratio equals 1.

V(1) is clearly a continuous function of ¢ for |¢] sufficiently small. We also
observe that 77(¢) has left and right derivatives at every value of ¢, and these
derivatives are certainly bounded for ¢ in a small confined region. Therefore
by Fourier integral theorem one has

lim J(x) = lim J STy e = v (0) = .
H—0 H—0 ) _ 13

But

A A
‘V(0)|: J J (1+e@1(0,01,...70k1+k2))d01...dgk]Jrkz
_2 _

4

A A 1
>J J _d91~--d0k1+k2>0
—2 722

and the theorem follows. O
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We merely state the estimation on the minor arcs, which can be easily seen
in [1].

THEOREM 7.2. There exists 6 > 0 that depends only on K and E such that

J Z e(aF (Z))e(—no)do « plt1/ko—o

8. Conclusion
By Theorems 3.2, 6.5, 7.1 and 7.2 one has

THEOREM 8.1. The number of representations, ¥(n), of n in the form
z(l)q’ + Nk (X) + Ne(y) with 7= (z20,X, Y) € B(n) satisfies

y [Ro|
r(n) Q1+]§+k7 3o HXI’I n1+l/ko_|_0(nl+l/k0)

peP

where 1 < 3o [[,cp Xu(p) < L.

A remark can be made on this result. Theorem 8.1 is optimal in the sense
that the term 2(1)“0 is invincible to make the polynomial almost universal in any
cases. We give here an example of a sum of two norms Ng(X) + Ng(¥) which
is locally universal but is not almost universal. This can be summarized as
follows.

Let [ = fu5(il) = Noy=a0(11 +u3v/=A4) + N ov=B)o (12 +usV/—B) =
u? +u3 + Au? + Bu} be a quaternary quadratic form. Choose 4, B among
prime numbers congruent to 1 modulo 8 that are sufficiently large so that f
cannot represent all of {16,32,48,80,96,112,160,224}. (In particular, 48 =
24.3 £ ulz + u%) f is locally universal, since N, Q=)0 takes every unit value
in Z, for p#2,4 and the same holds for N, \/_IQ in Z, when p #2,B.
When p =2, we see that 4 and B are in (Z2) and f is equivalent to
u} +u3 +uj +uj over Z,, which is universal by Lagrange theorem. But our
choice of A, B makes f a 2-anisotropic form ([3]) with a large discriminant
d(f)=AB. By the complete classification of almost universal quaternary
quadratic forms ([2]), therefore, f is not almost universal.
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