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ABSTRACT. We show that a generic C! expanding map on a compact Riemannian
manifold has a unique measure of maximum total exponent which is fully supported and
of zero entropy. We also show that for » > 2 a generic C" expanding map does not
have fully supported measures of maximum total exponent.

1. Introduction

Let M be an N-dimensional, compact, connected, smooth Riemannian
manifold without boundary and let 7 be a C' expanding map of M. Recall
that a C' map T : M — M is called expanding if there exist ¢ >0 and 1 > 1
such that ||[DT"(x)v||y, = cA"||v]|, holds for any xe M, ve T\M and non-
negative integer n, where DT : TM — TM; (x,v) — DT (x)v is the tangent map
of T and |v||, is the norm of v induced by the Riemannian metric of M.
Clearly such a map T is surjective since it is an open map and its image is
compact. We denote by .#(T) the totality of invariant Borel probability
measures of 7. Since the absolute value of the determinant of the matrix
representation of DT(x): ToM — Tr M is independent of the choice of
orthonormal bases of 7. M and T .M, we can define the determinant
|det D(T)(-)| : M — R of the tangent map DT. Let J(T)(x) = |det D(T)(x)|
and consider the quantity

AT, ) = JM log J(T)(x)d.

We may call A(T,u) total exponent of T with respect to ue .#(T) since the
following formula holds

s(x)
> k()0 x)dp,

Jj=1

JM log J(T)(x)du = J

M
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where {y(1,x) < --- < yx(s(x),x)} is the totality of distinct Lyapunov exponents
of T at x and k(j,x) is the multiplicity of yx(j,x) for each j.
Put

MT) =sup{ (T, ) :ue #(T)}.

An element g in #(T) is called a measure with maximum total exponent if
MT,u) = A(T). We denote by £(T) the set of measures with maximum total
exponent. It is easy to show that #(7T) is not empty since .#(T) is compact
in the weak * topology and the map u+— A(T,u) is continuous.

For any nonnegative integer r, C"(M, M) denotes the space of C”" maps
on M endowed with the C” topology. Note that a sequence 7, converges in
C"(M, M) if and only if all the derivatives of T}, of order less than or equal to
r converge uniformly on M. Let &"(M, M) be the space of C" expanding
maps of M. Then it is easy to see that it is an open subspace in C"(M, M).
Recall that a subset of a topological space X is called residual if it contains
a set expressed as a countable intersection of open dense subsets in X. A
topological space X is called a Baire space if any residual subset is dense in
X. For a Baire space, consider a property P with respect to elements in X.
We say that the property P is generic or a generic element satisfies P if there
exists a residual subset each member of which satisfies P. It is well known
that the topological space C’"(M,M) is a Baire space, consequently, so is
E"(M.M).

The purpose of this paper is to prove the following theorems.

THEOREM 1. Each of the following properties for element T in &' (M, M) is
generic.

(1) T has a unique measure with maximum total exponent.

(2)  Any measure with maximum total exponent for T has zero entropy.

(3) Any measure with maximum total exponent for T is fully supported.

On the contrary, we have the following when r > 2.

THEOREM 2. For r>2, a generic element in &"(M,M) has no fully
supported measures with maximum total exponent.

The same kind of theorems are first proved by Jenkinson and Morris in [§]
for expanding maps on the circle. Afterward, inspired by their results, the
second author of this paper extended those to expanding maps of the n-torus in
his dissertation [14]. We should note that these results are similar in spirit to
some theorems in ergodic optimization. So we explain about some preceding
results briefly (see the survey by Jenkinson in [7] for the further discussion
and references). Consider a continuous map 7 on a compact metric space
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X and a continuous function f: X — R. The main interests in ergodic
optimization are invariant probability measures x which maximize the integral
Iy f dp. Such measures are referred to maximizing measures for f. Bousch
and Jenkinson showed that for a fixed expanding map of the circle, a generic
continuous function has a unique maximising measure with full support in
Theorem C of [2] (cf. Proposition 9 in [1]). On the other hand Brémont
proved in [4] that for any fixed continuous map on a compact metric space,
any maximizing measure for a generic continuous function has zero entropy.
Therefore we see that for any expanding map on the circle, a generic contin-
uous function has a unique maximizing measure with full support and zero
entropy. One of the main results in Jenkinson and Morris [8] asserts that for a
generic but not fixed C! expanding map T on the circle, log J(T') has a unique
maximizing measure with full support and zero entropy. In other words we
generalize the results in [8] on the unit circle to those on a compact manifold
admitting C! expanding maps.

The ideas of our proofs are essentially the same as those in [8]. But the
technique in [8] seems to have some difficulties to be applied to the general
expanding maps. So we need to make modifications of lemmas in [8] so that
they can work in our general case. In particular, the crucial step of con-
structing an auxiliary perturbation of C! map along a periodic orbit is given
with full generality.

In Section 2, we summarize some fundamental results on expanding
maps. Section 3 is devoted to the construction of an appropriate perturbation.
Finally proofs of Theorem 1 and Theorem 2 are given in Section 4.

2. Preliminaries

In this section we summarize the results which are needed in the proof
of those theorems in Introduction. Most of them are well know facts for
expanding maps, so we just give references or sketch the proof.

First we need the following lemma. For the proof consult Lemma 20 of
Section 3 in [15] (see also Section 7.26—Section 7.30 in [10] and Section 3 in
Bowen [3]).

LemMA 1. Let T be an element in (5”(M, M). Then for any >0 there
exists a Markov partition for T with diameter less than 5, i.e. we can construct a
Sinite cover {Ry,..., Ry} of M by closed sets satisfying the following conditions.
1) int R; = R; for each i

(

(2) intR;Nint R; = & for i # j.
3) UL,int R; is dense in M.
@) TUL, 0RrR) =L, oR:.
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(5) If T(int R;) Nint R; # &, then R; c TR,
(6) max;<;<, diamy(R;) < f, where diamy(R) is the diameter of R < M
with respect to the distance d induced by the Riemannian metric on M.

For Te & 1(M , M), choose f > 0 so small that 7" maps any ball of radius
less than S homeomorphically onto its image. Let #={R;,...,R,} be a
Markov partition of 7" with diameter less than f. Now we define a subshift of
finite type in the usual way as follows. Put

T = {&= (E)1ng A(&E 1) = | for cach i > 0},
where 4 = (A(7j)) is a ¢ X ¢ matrix given by

1 if T(int R;) Nint R; # (&,
0 otherwise.

i ={

Now we consider the shift transformation ¢ : 2 — X satistying (¢¢&);, = £, for
any i >0 and {€2. We choose ¢ >0 and A > 1 such that ||[DT"(x)v| zu, =
cA"||v]|, for any x € M, ve T.M and nonnegative integer n. Putting 0 = 1/4,
we define dy: X x X —R by dy(é,n)=0"" where n(¢,7)=inf{i>0:
& #n;}. Here we regard inf @ and 0* as +oo and 0, respectively. For
EeX, we see that ﬂ;':_ol TR is nonempty and diama;(ﬂ?:_ol T7'R:) <
(1/¢)0" diamy(M) by the choice of B. Therefore (), T 'R, consists of a
single point and we can define a map 7 : ¥ — M so that n(¢) is the single point
in ()2, T 'Rs;. Moreover we have the following.

Lemma 2. (1) = is a Lipschitz continuous map from (X, dy) to (M,d).

(2) ﬂjﬁo T(|JL, int R;) is dense in M.

(3) For any xe (2, T7(JL, int R), =~ '{x} is a single point set.

(4) =m is surjective.

(5) moo=Tomn holds.

(6) The subshift (X,0) of finite type is topological mixing. i.e. A™ >0 for
some positive integer ny.

Proor. The assertion (1) is obvious from the fact that d(n& ny) <
diamg (/5" T-'R:) < (1/¢)0"“" diamy(M) holds. The assertions (2)—(5)
are a sort of exercises of general topology. To prove the assertion (6), we have
only to show that 7 is topological mixing. But this is a well known fact. For
example, by using the lifting of 7 to the universal covering space of M, we
can easily see that for any nonempty open set U = M, there exists an integer
n >0 such that 7"U = M.

As a corollary we obtain the following lemma which is a modification of
Lemma 1 in [8] (see also [9] and [12]).
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LemMmA 3. If T is an element in &'(M, M), then we obtain the following.

(1) Let M,(T) be the set of invariant probability measures each of which
is supported on a periodic point. Then .#,(T) is dense in .4 (T) in the
weak * topology.

(2) Let Y be a proper closed subset of M. Then for any we #(T) with
supp i = Y, there exists a sequence p, € M (T) converging to u in
the weak x topology such that p, is supported on a periodic orbit and
supp u, N ()2 T~'Y) = & for each n.

ProOF. Since the subshift (X,0) of finite type constructed in Lemma 2
is topological mixing, it satisfies the specification property (see [6]). Conse-
quently so does 7. Therefore the proofs of Lemma 1 and Lemma 2 for the
closed set 4 = ()", T~'Y in [12] do work. Thus we obtain (1) and (2).

Shub proved the conjugacy theorem of expanding maps in [13] via
Contraction Principle. His proof leads us to the following statement which
corresponds to Lemma 2 in [8].

LemMa 4. Let Ty be a sequence of elements in &'(M, M) satisfying
the conditions: (i) there exist ¢ >0 and 2> 1 independent of k such that
| DT} (x)v] Ty = cA|lv]|, for any xe M, ve TyM and nonnegative integer n;
(ii) Tx converges to T € &'(M, M) in the C° topology. Then for sufficiently
large k, there exists a homeomorphism hi : M — M such that h o T = Ty o h,

and both hyi and hi' converge to the identity idy in the C° topology.

ProoF. By virtue of Theorem («) in [13] and its proof, we see that any
two homotopic expanding endomorphisms 7 and S of a compact manifold,
there exists a unique homeomorphism A: M — M such that hoT = Soh.
On the other hand the condition (ii) of the lemma implies that there exists
an integer ko such that 7} is homotopic to T for any k > ko. Therefore
we conclude that for any k > ko, there exists a unique homeomorphism
hi : M — M such that i o T = Ty ohi. Thus it remains to verify that both
hi and h; I converge to the identity idy, in the C° topology. To this end we
recall the strategy in [13].

We denote by p: M — M the universal covering space of M endowed
with the Riemannian metric which is the pull-back of the Riemannian metric
on M by the natural projection p. Let V' be the set of continuous maps
F: M — M which are lifting of continuous maps of M into itself such that
yo F = F oy holds for any covering transformation y. We define a function
D:V xV —R defined by D(F,G) =sup,,; d(pFx, pGx), where d is the
distance function on M induced by the Riemannian metric. We easily see
that (¥, D) is a complete metric space. Consider homotopic elements 7, S €
&' (M, M). We assume that S satisfies the condition (i) in the statement of
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the lemma. Let 7 and S be the liftings of 7 and S, respectively. We note
that the lifting of an expanding map on the universal covering space becomes
a diffeomorphism. Since 7 and S are homotopic, we see that ST'FT e V
holds for any F € V. Therefore we can consider a mapping @: V — V by
F— S7'FT. Then it is not hard to see that D(®"F,®d"G) < ¢~ '2"D(F, G)
for any F,Ge V and n > 0. Therefore Contraction Principle yields that there
exists a unique H € V' with ®H = H. In fact, we can see that H is the lifting
of the desired homeomorphism / satisfying 1o T = S o & in the same way as in
the proof of Theorem 3 in [13]. Now we have

D(H,id,;) < D(H,®"(idy)) + D(®"(id 1), id 1)

<c V"D(H,idy;) + D(ST"T",id )
< D) + Y DS ST
n—1
= ¢ T'D(H Idy) + Y D(@*(S7IT), 0k idy;)
k=0
p

<c¢ "2T"D(H, Idy;) + D(S7'T,idy).

- PUMI T e(A—1)

Thus if we choose n satisfying ¢ 'A7" <1, we have D(H,idy) <

(A/(A—=1)(A"/(ci™ = 1))D(S7'T,id,;). Consequently, we have dy(h,idy) <

(A)(A—=1)(A"/(cA" = 1))do(S,T), where dy is the C° metric defined by
do(f.9) = sup.cy d(f(x),9(x)) for f,ge C*(M,M).

By virtue of the above argument, we see that dy(h,idy) — 0 if

do(Ty, T) — 0. By the definition the metric dy, we also have dy(h;!,idy) — 0.

Next we summarize the results corresponding to Lemma 3 and Lemma 4
in [8].

LemMMA 5. Let Ty be a sequence of elements in &' (M, M) satisfying the
conditions (i) and (ii) in Lemma 4. Then we have the following.
(1) Every ue #(T) is the weak = limit of a sequence of Borel probability
measures {wy,} with w, € M (Ty) for each k.
(2) Let {1} be a sequence of Borel probability measures with w, € M4 (Ty)
for each k. Then any weak = accumulation point of the sequence
belongs to M (T).
(3) Let {1y} be a sequence of Borel probability measures with 1y, € M (Ty)
for each k. If . converges to u in the weak x topology, we have
limsup A(Ty, w.) < h(T,p).

k—oo
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PrOOF. By virtue of Lemma 4, we can prove the assertions (1) and (2)
in the same way as the assertions (a) and (b) in Lemma 3 in [§].

If we verify that the entropy map .#(T) > u— h(T,u) € R is upper semi-
continuous for T e &'(M, M), we obtain the assertion (3) in the same way
as Lemma 4 in [8] by using Lemma 4. It remains to show the upper semi-
continuity of entropy map for 7. Note that 7 is forward expansive, i.e. there
exists > 0 such that if d(T"x, T"y) < f for any n >0, then x = y. Thus it
is easy to establish the upper semi-continuity of the entropy map in the same
way as the proof of Theorem 8.2 in [16].

Finally we need the following.

LemMA 6. If Ty is a sequence of elements in & 1(M , M) and converges to
Teé 1(M , M) in the C' topology, then for sufficiently large k, Ty satisfies the
conditions (1) and (ii) in Lemma 4. Moreover, any weak * accumulation point of
a sequence W, with w, € L (Ty) belongs to L (T).

PrOOF. We can easily see that the first assertion is true. Since J(T%)
converges J(T) uniformly on M, the second assertion follows from the
assertions (1) and (2) in Lemma 5 in the same way as Lemma 5 in [8].

3. Construction of an auxiliary perturbation along a periodic orbit

In this section we construct an appropriate perturbation of an given C!
map along its periodic point. Before giving them we need some definitions
and notation.

Let U and V be neighborhoods of the origin in N-dimensional Euclidean
space RY. Consider a C! map F: U — V which is locally diffeomorphic
around each point of U and F(0) =0. We denote by (e¢;) the standard
orthonormal basis of RY with respect to the Euclidean metric. For our
convenience we write JF(x) for the matrix representation of the tangent
map DF(x) with respect to the standard orthonormal basis (e;), i.e. the
usual Jacobian matrix of F. We assume that U and V' are endowed with
Riemannian metrics gy and gy, respectively. Applying the Gram-Schmidt
orthonormalization to the standard basis (e;), we obtain matrix valued smooth
functions P(:): U — GL(N,R) and Q(:): V — GL(N,R) such that «;(x) =
Z/]l] P(ji)(x)e; and f;(y) = Zj/ll 0(ji)(y)e; form orthonormal frames o(x) =
(2:(x)) and B(y) = (B:(»)) of RY = T,U and RY = T,V with respect to the
metrics gy and gy, respectively. The matrix representation of DF(x): T, U —
TroV is given by Q(F(x)) '0F(x)P(x). Now we define J(F) = |det DF|:
U — R by J(F)(x) = |det Q(F(x)) 'dF(x)P(x)| for each xe U. Then it is
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easy to see that J(F) is independent of the choice of orthonormal frames «
and . We can prove the following.

LemMA 7. There exists a positive number C depending only on F such that
for any ¢ (0 <e< 1) and y >0, there exists 6y > 0 such that for any o with
0 <6 <8, we can find a C' map Fs: U — V satisfying the following properties
with Gs(x) = log(J(Fs)(x)/J(F)(x)).

(1) Fs(0) =0.

(2) sup,.yllFs(x) — F(x)|| < Co, where ||-|| denotes the Euclidean norm
on RV

(3) sup,cylldFs(x) — 0F (x)||g. < Ce, where || -| g denotes the operator

norm on GL(N,R) induced by the Euclidean norm on R
(4) Fs(x) = F(x) and Gs(x) =0 if ||x|| = 6.
(5) G5(0)=¢
(6) sup,.y Gs(x) <y+e

Proor. Consider the functions
u(t) = { exp(=1/1) %f £>0, and  v(¢) =tanh 1.
0 ifr<0

For a,0 >0 small, we define a C* map 4:RY — R”" vanishing for x with
[[x]| > by

41(x) v(ax1 /u(6%))
A =| 1| =u@ |« : ; (3.1)
Ay (x) v(axN/u(éz))

where the choice of a will be specified later. Observe that the (i, j)-th element
of the Jacobian matrix J4(x) is given as

Zi, (x) = ~20u' (0 — ||x[*)o(axi /u(?))
u(@® — [|x]*)
* GW”'(“W u(6%))a (i), (3.2)

where J(ij) is the Kronecker delta. Therefore, we ecasily see that

04;
an

|4,(x)| < exp(—1/6%), and

(x)‘ < 5% exp(—1/0%) +ad(ij) (3.3)

if 92 < 1/2. Define F; by
Fj(x) = F(x) + 0F(0)4(x). (3.4)



Measures with maximum total exponent 359

Then the Jacobian matrix 0F; is given by
OF5(x) = 0F (x) + 0F(0)04(x). (3.5)

From the first inequality in (3.3), there exists J; such that F5(U) < V' holds if
0 < ;. Since A4(0) =0 by the definition (3.1), this yields the assertion (1).

Using the first inequality in (3.3) again, we can find C; >0 and 6, >0
with J, <J; depending only on F, sup,.y||Fs(x) — F(x)|| < Ci0 holds for
0 < 5. This yields the assertion (2). The assertion (4) is obvious since
A(x) =0 for x with ||x]| > 4.

In order to verify the other assertions, we consider the matrix represen-
tation of DFs(x) with respect to the orthonormal frames o« and f. We have

J(F3)(x) = |det(Q(F5(x)) ™ OF (x) P(x) + Q(F3(x)) "' 0F (0)04(x) P(x))|.  (3.6)
Therefore we obtain
J(F5)(0) = |det(Q(0) "' 0F (0)P(0) + Q(0) ' 0F(0)04(0)P(0))|
= |det(Q(0) ' 0F (0)P(0))| |det(Ly + 04(0)))]
= J(F)(0)(1 +a)". (3.7)

Note that we have used the fact d4(0) = aly, where Iy is the identity matrix.
Now we are in a position to specify the choice of a. If we put a=
exp(e/N) — 1, we have G5(0) =e. Then we can choose a number C, > C;
depending only on F and a positive number J; depending only on F and ¢
such that sup,.y|0Fs5(x) — 0F(x)| ;. < Cre holds for any 6 <d;. Thus the
assertion (3) is valid.

It remains to show the last assertion (6). By virtue of the assertion (4), we
have only to evaluate Gs(x) for x with ||x| <J. We will use an elementary
inequality

det L2
det L;

< exp(N|IL; flgelL2 = Lillgr) (3-8)

for L;,L, e GL(N,R). This is verified as follows. From L1‘1L2 =
Iy +Li'(Ly = Ly), we have |[Li'Lo|gp <1+ [|Ly' (L2 — L1)|l g Since it is
easy to see that |«| < ||4]|;, holds for any matrix 4 € GL(N,R) and for any
eigenvalue o of 4, we obtain

|det Lp/det Ly| = |det L' Lo| < ||Li ' Lollgp < (1+ L7 (L2 — Li) )™

Now the inequality (3.8) is an easy consequence of the inequality 14 A < e’
for 1> 0.
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First using the equation (3.6) we have

det Q(F(x)) ‘
det O(F;(x))

det(Iy + 0F (x) "' 0F(0)04(x))
X det(Iy + 04(x))

J(F5)(x) = J(F)(x)

det(Iy +04(x))|.  (3.9)

Since Q: V — GL(N,R) is C* and |x|| <J, we see that
1Q(F5(x) 62 | Q(F5(x)) = Q(F (3) gz, < C36 (3.10)

for a positive constant C3 depending only on F. In addition, it is not hard to
see that

Iy + 04(x)) " Nl I (OF (x) " 0F (0) — In)oA(x)l| 1
< Cy sup [|OF(x) — OF(0)|l o (3.11)

x:||x|| <o

for a positive constant C; depending only on F. Next we evaluate
|det(Iy + 04(x))| as follows. By virtue of the second inequality in (3.3), its
(i, j)-th element satisfies |(Iy + 04(x))(ij)| < J(ij) exp(¢/N) + Cs0, where Cs is
a large constant depending only on F. Thus by using the definition of the
determinant, we have

|det(Iy + 04(x))]
=ooom
< (/N 4 Cso)Y +Z BT 7 (€N + C50)/(Cs0) N (N — j)!
J=
< (1 + Cyd) (3.12)

for large Cs depending only on F. Combining (3.8), (3.9), (3.10), (3.11) and
(3.12), we obtain
J (F5)(x)
J(F)(x)

< (1 + C¢0) exp<C35+ Cy sup ||0F(x) — F(0)|l g1 +8>.

x:||x|| <o
This yields
Gs(x) < (C3+ Co)d+ Cy sup [ OF (x) = OF(0)]] g7, + .

x:||x|| <o

Hence, putting C = C,, we can find a positive number dy < J3 such that all the
assertions in the lemma are valid.

The following theorem is the main result in this section.
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THEOREM 3. Let T be an element in C'(M, M) such that J(T)(x) # 0
holds for every point x e M. Assume that T has a periodic point xy with least
period p. Then for any ¢ with 0 <e <1 and y >0, there exists a positive
number 09 > 0 such that for each 6 with 0 <6 <dy, we can find an open
neighborhood U/} of T'xy for each i=0,1,....,p—1. and an element Ty of
CY(M, M) satisfying the following.

(1) Ti?co :'T()"'xo for each i=0,1,...,p—1.

@ UINU =@ ifi#]

(3) Tx = Tsx for any xeM\UfiU({. A

4) If 0<9' <0, then we have U}, = Uj.

(5) For any charts (U,@), (V) with TU < V and any compact set

Kc U, T;UcV we have sup, |y o Ts(x) —yo T(x)|| < Cpy,x0
and sup,.xlloW o Ty 0 9~ )(p(x)) 8k o To ™) (9() g1, < Cp okt
where C, y x is a positive constant depending only on T, K, ¢, and 1.
(6) Define Gs: M — R by Gs(x) =log(J(Ts)(x)/J(T)(x)). Then we have
Gs(Tixo) = ¢ for each i=0,1,...,p— L.
(7)  supyeu Gs(x) < y+e holds.
In  particular, we can choose {Uj}o 5.5, S0 that diamy Uj <J and
(Nsw<o<s, Us = AT'xo} for each i=0,1,...,p—1, where diamy(A) is the di-
ameter of A < M with respect to the distance d of M as before.

Proor. For each i=0,1,...,p—1, choose a chart (V;¢,) around
Tixo and an open set U; such that Tixge Ujc U;c V;, TU; = Vi, and
9,(T'x9) = 0, where we regard U, and (V),¢,) as Uy and (Vo,¢,) respectively.
Moreover we assume that V;’s are mutually disjoint. Consider 7; ;41 =
g0 Top 9 (U) — @i (Vier). Each ¢,(V;) is endowed with the Rie-
mannian metric ¢g; which is the push-forward of the Riemannian metric of
the manifold M by ¢;. Obviously we can apply Lemma 7 to the case when
U=9(U), V=031(Vit1), F=Tiit1, gu=9; and gy =g;+1. Note that
there exist a positive constant ¢y, depending only on M and dp > 0 such
that 0 < & < Jy yields that B.,5(0) = ¢,U; and diam,(¢; ' (B,,s(0)) < for each
i=0,1,....,p—1, where B,(0)={xeR" :|x||<r}. We denote by Tii1.s
the map corresponding to Fs5. Define a map Ti5: Ui — Viyy by Tis =
934 0 Tiiv1,6 © 9.

Now put U} = ¢;'(B,,s(0)) and define a map T; by

Tisx if xeU; for 0<i<p-—1,
Tsx = . p—1
Ix if xe M\ J,_, U

We just verify that U!’s and T; satisfy the assertions in the theorem. The
assertions (1)—(4) are obvious from the definition of U/’s and Ts. Ty is of class
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C! on U; and coincides T on U,;\Fé" by definition. Therefore T is of C' on
M. The assertion (5) of the theorem immediately follows from the assertions
(2), (3), and (4) in Lemma 7. By virtue of the assertions (5) and (6) in Lemma 7,
we easily see the validity of the other assertions concerned with Gy if we notice
that J(T)(x) = J(T;i+1)(p;(x)) and J(T5)(x) = J(T; i41,6)(p;(x)) by definition.

From the definition of Uj above, the last assertion of the theorem is
clearly valid.

As a corollary we obtain a modification of Lemma 7 in [8] which plays a
crucial role in our argument.

COROLLARY 1. Let T be an element in &' (M, M) and let x, be a periodic
point of T with least period p. Then there exists ey > 0 such that for any ¢ with
0<e<egy and y > 0, there exists a positive number dy > 0 such that for each
8 with 0 <9 <0dy, we can find an open neighborhood U] of T'xy for each
i=0,1,....,p—1 and an element Ts of &' (M, M) satisfying (1)—(7) in the
statement of Theorem 3. In particular, we can choose {Uj}_s.; so that
diamg Uj <6 and (59 5.5, Ui = {T'x0} for each i=0,1,...,p— 1.

ProOF. Let us consider the case when the map 7 in Theorem 3 is an
element in &'(M, M). Note that if the map T obtained in Theorem 3 could
be an element in &'(M, M) for any & < 1, there would be nothing to be
proved. On the other hand the second inequality in the assertion (5) of
Theorem 3 guarantees that there exists ¢ > 0 depending only on 7 such that
if ¢ < ¢y, then Tj is expanding.

4. Proof of theorems

As we have constructed the perturbation in the previous section, the
arguments in this section are almost the same as those in Section 3 and
Section 4 in [8].

It is well known that one can define a distance function p on the set
M (M) of Borel probability measures on M such that it induces the weak
topology on .#(M) and satisfies the condition

p((1 = D+ v, pw) < 2 (4.1)

for every u,ve #(M) and A€ (0,1). For each x >0 we consider the fol-
lowing sets.

R ={T € &'(M, M) : diam,(Z(T)) < x}

,%C:{Teé“(M,M): sup h(T,,u)<Khwp(T)},
neZ(T)
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where /op(7T) denotes the topological entropy of 7. We need the following to
show that the properties (1) and (2) in Theorem 1 is generic.

ProposITION 1. For each x >0, both R, and %, are open and dense
subsets of &' (M, M) in the C' topology.

ProOF. First we show that &'(M, M)\, and &'(M, M)\, are closed
in '(M, M) in the C' topology. Assume that T} € &' (M, M)\ %, converges
to Te &' (M, M) in the C! topology. Since Z(T}) is compact, we can find
e, vk € L(Ty) satisfying p(uy,, vk) > . By Lemma 6, their weak * accumu-
lation points are in #(T). Choosing subsequences if necessary, we may
assume that there exist u,ve .#(M) such that p(u,u), p(vk,v) converge to
0. Thus we have diam,(#(T)) > x. Hence we have T € &' (M, M)\%,.

Next assume that Ty € &'(M, M)\, converges to T € &' (M, M) in the
C! topology. By Shub’s theorem in [13], we may assume each T} is topo-
logically conjugate to 7. Consequently hop(T%) = hiop(T). Since L(Tk) is
compact and the entropy map for an expanding map is upper semi-continuous
(see Proof of Lemma 5 (3)), we can find v, such that A(Ty,v) =
sup,c ¢ (1) "(Tk, ). Again choosing a subsequence if necessary, we may
assume that p(vg,v) converges to 0. Lemma 6 yields ve #(7). Moreover,
by Lemma 5 (3), we have

h(T,v) = limsup h(Ti,vi) = ihiop(T).
k— o0
Hence we have T e &'(M, M)\ ..

Now we have only to prove %,MN.Y, is dense in gl(M ,M). Choose
any Tegl(M,M) and ¢ >0 with 0 <& < gy, where, ¢ > 0 is the positive
number appearing in Corollary 1 depending only on 7. By virtue of Lemma
3, there exists a periodic point x; with least period p such that the measure
o = (1/p) 20 071y, satisfies

Ke
J log J(T)duy > M(T) — —. (4.2)
M 8
Let Ty be the perturbation obtained by applying Corollary 1 to 7" and xy with
y = xe/8. Note that since ¢ < &, Ty € &' (M, M). Then (6) in Theorem 3 and
the inequality (4.2) yields that

M1 > | togJ(Toidug = | togs(T)da + | Gy
M M M

> A(T) + (1 - —)a. (4.3)
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Take any strictly decreasing sequence d; < dy of positive numbers converging to
0, where J is as in the statement in Theorem 3. For the sake of simplicity, we
write Ty, and Gy, as Ty and Gy, respectively. Choose vy € #(Tk). The first
inequality in Theorem 3 (5), T} converges to T in the C° topology. Therefore,
by taking a subsequence if necessary, we may assume that v, converges to
ve #(T). Thus we have

J Gy dvy = J log J(Tk)dvk — J log J(T)dvy.
M M M

— (T - JM log J(T)dv > A(To) — A(T) = "% (44)

for any k sufficiently large. Combining (4.3) with (4.4) we have

JM Gr dvi > <1 - g) :. (4.5)

Recalling the open sets U} in Theorem 3, we see that Uy = Uf:ol Uj, satisfies
that Uyt < Ux and (), Ux = Or(xo), where O7(xo) = {xo, Txo, ..., T" 'xo}.
Now we evaluate v (Uy) as follows.

—1 -1
Vk(Uk) > 1—|—E B_IJ G, dvi, = 1-}-E 8_IJ Gy dvi
8 Uy 8 M

><1+§>1<1—§)>1—%’C. (4.6)

In the above, the first inequality follows from (7) in Theorem 3 with y = x¢/8,
the equality in the first line follows from (3) in Theorem 3, and the first
inequality in the second line follows from (4.5). Using the well known fact that
v converges to v in the weak * topology if and only if limsup,_, v (F) <
v(F) holds for any closed set F, we can easily see from (4.6) that v(Uy) >
1 —(3/8)k for each k. Thus we obtain v(Or(xg)) =1 — (3/8)x. Hence we
can write v as v= (1 —3x/8)uy+ (3x/8)v for some ve .#(T). From the
condition (4.1), this yields

. 3
Jim p(vie, i) = p(vs o) < - (4.7)
In addition, by Lemma 5 (3), we have
. 3 3
limsup A(Ty, vi) < h(T,v) = (1 _§>h(T,ﬂ0) +§h(T, )
k—o0

< %"hwp(T). (48)
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Hence we have shown that the inequalities (4.7) and (4.8) hold for any
accumulation point as 6 — 0 of the sets #(Ts). This implies that for any
e with (0 < e <¢g), there exists J; such that Tye #,N.Y,. whenever J <.
Since the second inequality in (5) in Theorem 3 holds, we can choose ¢ so
that T belongs to a given neighborhood of T in the C! topology.

To prove that the property (3) in Theorem 1 is generic, we show the
following.

PROPOSITION 2.  For a nonempty closed proper subset Y of M, consider the
set

MY (Y)={Te&" (M,M) :suppuc Y holds for some ue £ (T)}.

Then M'(Y) is a closed and nowhere dense subset of &'(M,M) in the C'
topology.

Proor. First we show that M'(Y) is closed in &'(M, M). Assume that
T, e M'(Y) converges to T € &'(M, M) in the C' topology. Note that the
sequence T} satisfies the conditions (i) and (i) in Lemma 4. Let y, € #(T%)
satisfy supp 4, < Y and let 4 be an accumulation point of them. We may
assume that g, converges to u in the weak * topology. From Lemma 6 u
turns out to be an element in #(7). Moreover, since Y is closed, we have
w(Y) > limsup;_,., 1 (Y)=1. Consequently we see u(Y) =1 and M!(Y) is
closed.

Next we show that M'(Y) is nowhere dense in &'(M,M). If M'(Y) is
not empty, take any 7 e M!'(Y) and Y, = ﬂ]io T-Y. Choose any ¢ with
0 < &< ¢y, where ¢ is the same as in Corollary 1 as before. Note that if
we M(T) satisfies u(Y) =1, we also have u(Y,,) =1. By Lemma 3, we can
find a periodic point xo of T with least period p satisfying Y, N Or(xy) = &
and

J log J(T)duy > MT) — ¢, (4.9)

where g, denotes the T-invariant probability measure supported on Or(xp) as
before.
We can find a positive integer Ny such that Yy, = ﬂjﬁo T7Y satisfies
Yn, N Or(x0) = . For each x >0 consider the set
No .
Y, = U Sy,
Se& (M, M):dy(S, T)<x J=0

where dy(S, T) is the usual C’-metric defined by do(S, T) = sup,..,, d(Sx, Tx).
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It is not hard to see that ﬂx>o YNy« = Yn,- Now applying Theorem 3 to T
and xo with y = 1, we construct C! map Ts. As stated in Corollary 1, there
exists ¢ >0 depending only on 7 such that 7; is expanding for any o
sufficiently small. Note that by virtue of the first inequality in (5) in Theorem
3, there exists Cr >0 depending only on 7 such that dy(Ts,T) < Cro.
Choose 6 > 0 so that
yell’gof,‘cr(s 0£52f1;71 d(T X0, y) > 0.

Since the diameter of each U/ in Theorem 3 is less than J, the assertion (3) in
Theorem 3 yields that 7' = 75 on the set Yy, ;5. Consequently 7' = T; on the
set Y, c;0 and Or(xp) is also a periodic orbit of 75 by Theorem 3 (1). Note
that if pe .#(Ts) satisfies u(Y) =1, we have u(Yy, c;5) =1. In particular,
for a Borel probability measure with u(Yy, c;6) =1, p is T-invariant if and
only if it is Tj-invariant.

We show that ue .#(Ts) with u(Y)
Assume that pe .#(Ts) satisfies u(Y) =

= 1 cannot be an element of Z(Ty).
1. Then we have

JM log J(Ty)dy = JM log J(T)du < A(T) (4.10)

since 7' = Ts on Yy, c;5. On the other hand, the inequality (4.9) and Theorem
3 (6) yields

MT) < J

log J(T)dpy + & = J log J(T5)d .
M M

Combining this with (4.10), we arrive at
J log J(Td)du:J log J(T)dp < A(T) < J log J(T5)duy < A(Ts).
M M M

Choose any 7 in M!(Y) and consider any neighborhood of 7 in the C!
topology. If ¢ >0 and 6 > 0 are small enough, the map T constructed in
Corollary 1 can be found in the neighborhood since the assertion (5) in
Theorem 3 holds. The argument above implies that if 0 > 0 is sufficiently
small, we see that T5¢ M'(Y). Hence M'(Y) has no interior points.

PrOOF OF THEOREM 1. We can easily verify that the set of T e &'(M, M)
satisfying the property (1) and the set of T e &' (M, M) satisfying the property
(2) are given by (), #1/, and ()", %i/n, respectively. Thus, properties (1)
and (2) are generic by Proposition 1.

Since M is a compact metric space, we can find a countable family {Y,}
of closed proper subsets of M such that any closed proper subset Y of M turns
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out to be a subset of Y, for some n. Indeed, let {B,} be a countable open
base of M consisting of open balls. We may assume that the radius of each
B, is so small that B, is a proper subset of M. Putting Y, = M\B,, we obtain
the desired family of closed proper subsets of M. We easily see that the set
T e §'(M, M) satisfying the property (3) is given by ﬂ;il(gl(M, M)\M'(Y,)).
Since each M'(Y,) is a closed and nowhere dense subset of &'(M, M) by
Proposition 2, we arrive at the desired result. O

Finally we prove Theorem 2. To this end we consider the symbolic
dynamics (X,0) in Lemma 2 and a function 7 : 2 — R which is dy-Lipschitz
continuous. Denote by .#(o) the set of g-invariant Borel probability measures
on 2. Put

Ma,V,v) = J V dv,
z

Ao, V) = sup{J Vdvive %(a)}

P

and denote by Z(o,V) the set of measures in .#(c) satisfying A(g, V) =
AMa,V,v). Since .#(o) is compact with respect to the weak * topology, the
continuity of V' yields that ¥ (o, V) is nonempty. We need the following fact
that can be find in Savchenko [11]. We state it with proof for the reader’s
convenience.

LemMMA 8. There exists a unique nonnegative dp-Lipschitz continuous func-
tion ¢ : X — R satisfying the following properties.
(1) V<gpoo—g9+Ai(a,V) on Z.
(2) For any nonnegative function  : X — R satisfying V < oo — 1+
Mo, V) on X, we have ¢ < on X.
(3) For ve L(a,V), we have V.=poT — ¢+ Ala, V) on supp v.

Proor. We just follow the same lines as the proof of Proposition 11 in
[5]. We may assume that A(g, V) =0. Define ¢ by

(&) =sup{S,V(y):n =0 and o"y = &},

where S,V () = Z_;:ol V(a/n) for n>1 and Sy=0. First we show that
0 <¢(&) <+ for each £e€X. Since Sp¥ =0, we have only to show that
the set {S,V () :n >0 and o"n = £} is bounded from above. From Lemma
2 (6), There exists an integer ny > 0 such that for any 7€ X and n >0 we
have o™ (Z(#|0,n — 1])) = X, where 5[0,n — 1] is the word #y, ...n,_; and
Z(n[0,n — 1]) is the cylinder set {{: {; =#; for 0 < j<n—1}. Thus for each
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5 with ¢""y = £, we can find a fixed point #° of ¢"*" in Z(5[0,n — 1]). Note
that A(a, V) =0 yields Sy, V' (7°) <0. On the other hand we have

n+np—1

|Sntne V(1) = Sptny V(”O)l =< [V]H Z da(Uj’?, 0'/’70)
Jj=0

< (1%0 + n0> [V}éh
where [V], is the Lipschitz constant of V. Thus we easily see that ¢(&) <
(1/(1 = 0) + no)[V],.

Next we show that ¢ is dy-Lipschitz continuous. Note that if ¢ and 7
in X satisfy & =1y, then (o{;...0,_1-&eX yields (oy...01-n€eX for
a word (oly...{,_;, where w-w’' denotes the concatenation of words w
and w'. Therefore, we have |S,V((oly...Co1 &) = SuV (Colr--- ooy )| <
(1/(1 = 0)[V]yde(&, ). Thus ¢ is continuous. Moreover, we see easily that

0(6) = o) = max(max o(©) 1 )

holds for any &, € 2. By definition the inequality V' < ¢poag — ¢ is valid on
2. Now proof of (1) is complete.

Next, let  be a nonnegative function satisfying V <y oo —y on 2.
Then for any pair (&,7) € 2 x X with "y = &, we have Y(&) = S, V() + ¥ (n).
This clearly implies that the assertion (2) is valid.

Finally, let ve #(o, V). Combining the fact that [,(poo—¢p— V)dv =10
with the assertion (1), we obtain poo — ¢ — V' =0 v-a.e. The continuity of V'
and ¢ implies that this equality holds everywhere on supp v.

PrROOF OF THEOREM 2. Put V =logJ(T)on. Note that since 7 is of
class C?, it is easy to see that V is a dy-Lipschitz continuous function on X.

First we verify that n.(# (0, V)) = L(T) as follows, where =, is the push-
forward of 7z defined by

JMfdn*v:JZfondv

for f e C(M). Note that =, is surjective since so is 7. Moreover, we have
(M (0)) = M (T) by Lemma 2 (5) (see, for example, Proposition 3.2 and
Proposition 3.11 in [6]). Thus for any ue £(T), there exists v e .# (o) such
that 7,v = and A(T) = A(g,V,v). Clearly we have

ANT) = JM log J(T)du = L Vdv<io, V). (4.11)
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On the other hand, for any v' € .# (o), we have
J Vdv = J log J(T)dn.v' < A(T).
z M
Thus we obtain A(g, V) < A(T). Combining this with (4.11), we conclude that
J Vdv=2o,V)=MT).
z

Next we show that if there exists an element in #(7T) with support M,
then .#(T) coincides & (T), namely, A(T) = [,, log J(T)du holds for any
we #(T). Let u be an element in £ (7T) with support M. Then from the
argument above, we find ve #(g, V) such that n,v = u. We can show that
supp v = 2. Indeed, choose any & € X', then we see that ﬂ:;(l) T~ int R:; #
for any positive integer n since the Markov partition satisfies (3), (4), and (5)
in Lemma 1. Therefore Z(£[0,n—1]) o n’l(ﬂ;zol T/ int R;) holds. Thus
we have v(Z(&[0,n—1])) > v(n‘l(ﬂj'zol T~ int R)) >0 for all n>0. This
yields suppv=2. Now by virtue of Lemma 8§, there exists a dp-Lipschitz
continuous function ¢ : X — R satisfying V' =¢poag— ¢+ A(o,V) on . This
implies that A(g, V) = [ V dv holds for any v e .#(c). Consequently, we have
MT) = [, log J(T)du for any pe .4(T).

For any neighborhood of 7" in the C” topology, it is not hard to construct
an element S € &' (M, M) such that there exists a fixed point xy and a periodic
point yo with least period p > 2 such that log J(S)(xo) # (1/p) log J(S?)(yo).
Thus the set #"(M, M) of the maps T such that #(T) = .#(T) is nowhere
dense. In addition clearly it is closed. Therefore we arrive at the desired
result. O
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