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ABSTRACT. We shall define the spectral projection on the homogeneous tree X, which is
an analogue of the one given by Bray for semisimple Lie groups. We shall prove the
Paley—Wiener theorem for the spectral projection on X. As an application, we present
an elementary proof of the Paley—Wiener theorem for the Helgason—Fourier transform
on X, which was obtained by Cowling and Setti.

1. Introduction

One of the main concerns in the harmonic analysis has been the char-
acterization of the images of the Fourier transforms of various function spaces,
such as a space of compactly supported smooth functions, Schwartz space and
L? Schwartz space. Even now, a number of authors consider these problems
for the case of Lie groups or homogeneous spaces. In [2], Bray studied the
spectral projection P; on the Riemannian symmetric space G/K of rank 1 and
gave the characterization of the range of P, acting on C*(G/K). Here the
spectral projection P, f of f e CX(G/K) is defined by

Pif(g) = (f *d)(g) = j (908507 9)dgy,

¢, denoting the zonal spherical function on G. Ionescu characterized the
image of L?(G/K) under the spectral projection in [7], and Jana determined
the image of the L? Schwartz space ¢”(G/K) in [8].

Many authors have pointed out the analogy between the harmonic analysis
on homogeneous trees X and that on Lie groups (see [4, 3, 5]). In particular,
Cowling, Meda and Setti studied the Helgason—Fourier transform and its
inverse transform in [4]. In the subsequent paper [5], they gave character-
izations of the images of the space of compactly supported functions C,(¥) and
the Schwartz space #(X). We study here an analogue of the spectral pro-
jection for X. In this line of research, it is natural to study the characterization
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of these spaces under the spectral projection. In this paper, we shall give a
characterization of the range of C.(X) under the spectral projection P; on X.

A brief outline of this note is as follows: Section 2 is devoted to
the overview of the spherical representations on the homogeneous trees and
the definition of the Helgason—Fourier transform. In Section 3, we define the
generalized spherical functions relative to the n-th martingale difference on X.
We write down the Helgason—Fourier transform in terms of the generalized
spherical functions. In Section 5, we shall give a characterization of C.(¥)
under the spectral projection. Our proof is made in parallel with the discus-
sion of [2] for semisimple Lie groups. As an application of our result, we
shall give an elementary proof of the Paley—Wiener theorem for the Helgason—
Fourier transform due to Cowling and Setti [5]. Our proof depends only on
the Paley—Wiener theorem for the Fourier cosine transform on torus T.

2. Notation and preliminaries

To begin with, let us fix some notation and terminology. For more
information, the reader is referred to the book [6] or the survey [4].

Let ¢ >2 and X be a homogeneous tree of degree ¢+ 1. It carries a
natural distance d, d(x, y) being the number of edges between the vertices x
and y. We fix a reference point o in X and write |x| = d(x,0). Let x,ye X.
When x, y e X belong to the same edge, they are said to be adjacent and
we write x ~ y. The geodesic path starting at x and ending at y means
the sequence {xo,xi,...,x,} in X satisfying d(x,y) =n, xp =x, x, = y and
d(x;,x;) = |i— j|. For any x,ye X, there exists the unique geodesic path
joining x and y and will be denoted by [x, y]. For x € X and n < |x|, we write
x for the element in [0, x] such that |x"| = n.

A geodesic ray w in X is an infinite sequence {w, :n e Zs} satisfying
d(w;,wj) =]i— j|l. Let @ and ' be geodesic rays. We say that o and o’
are equivalent if there exist i € Z>o and je€ Zs( such that o, = w,,; for all
n > j. The Poisson boundary is the set of equivalence classes of all geodesic
rays and will be denoted by Q2. For w € Q, we choose the representative of w
starting at o and denote it by w again. In this paper, the geodesic rays are
always interpreted as the representative starting at o.

Let x,ye X and we 2. We use the notation ¢(x, y) to denote the con-
fluence point of the geodesic paths [0,x] and [0, y]. Similarly, ¢(x,®) denotes
the confluence point of the geodesic path [0,x] and the geodesic ray w. We
write B, for the closed ball centered at o of radius » and S, for the sphere
centered at o of radius n, respectively. For convenience, we set B_; = F.
Let w, = Card &,, Card S indicating the cardinality of the set S. Then it is
known that w, = (¢ + 1)¢""! for n>1 and wy = 1.
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We denote by G the group of isometries of X and by K the stabilizer of o
in G. Then G/K can be identified with X via the correspondence g — ¢ - 0.
We endow the group G with the Haar measure dg such that the mass of K
is equal to 1. Let C(G/K) denote the space of continuous functions on G/K
and C.(G/K) the subspace of C(G/K) with compact support. Then, under
the above identification, we have for f e C.(G/K) that

Lf@wzgyv»

xeX

For g e G, we put

a(g) =1lg-ol,
Qg) = (g+1)g" 9" (for g #0), Qo) =1.
We set
E(x) ={weQ:x=o0y} (1)

We define the K-invariant, G-quasi-invariant probability measure v on Q by

V(E(x)) = (x e X\{o}).

(g + 1)gH=!
Let .# denote the g-algebra generated by E(x). Then (Q,.#,v) is a measure
space. For E € .4, yp indicates the characteristic function of E. Let .#,
denote the o-subalgebra of .# generated by E(x) with |x| <n. For a .#-
measurable function 7, we indicate by E,n the conditional expectation of #
relative to .#,, that is,

1

B )

j n(e')dv(e). 2)
E(wy)

Here we set E_;j7 =0. With these conventions, the set {E,n:neZs} is a
martingale associated to # € L'(Q2). Let us set D,y = E,# — E,_17. Then D,z
is called the n-th martingale difference of 7 € L'(2). D,n is written as

men=LfAuwmmdMWdL

where

In(@, ") = V(E(@n)) ™ L) (@) = VE@n-1)) " L, (@)-
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For the explicit expression of J,(w,w’), see [9, Proposition 4.3]. The height
function /,(x) of x € X with respect to w e Q is defined by

he(x) = lim d(x, o). (3)

m—oo

By definition, the Poisson kernel p(g,w) is the Radon—Nikodym derivative
dv(g~'w)/dv(w). As shown in [6, p. 37], it holds that

plx,w) = g,
In analogy with the terminology for semisimple Lie groups, we define the
Poisson transform of # € L?(Q) by
P = | peo) Y Tie)ie) (e 0), @)

We set, for ne Z,,

{x} (Ix] < n),
S(n,x —{
=AU e Xy = o™ =x9) (x| > ).
For a function f on X, we define its average ¢,f by

1
enf (x) = myesz(;x)f(ﬁ- (5)

We write f# =& f and call f# the spherical mean of /. For a function f on
X and n e Zsy, we define

Anf(x) = & f (x) = &n-1f(x).
Here we set ¢ ;f =0. The Laplace operator . on X is defined by

2160 = 7 S 10) ©

y~X

As described in [6, p. 35], it is satisfied that
LPn(x) = As) P’y (x), (7)

where A(s) = {\/q/(qg+ 1)} cos(s log q).
We say that a function f on X is radial if f(x) depends only on |x|. For

a function space E(X), we denote the subspace of radial functions in E(X) by
E(X)”. We naturally identify E(X) with E(G/K) and E(X)” with E(K\G/K),
respectively. The convolution f % ¢ of f e Z(¥X) and ¢ e Z(X)” is given by

(f *0)(g) = JGf<g1>w<g;1g>dg1. (8)
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3. The Helgason—Fourier transform on X

Retain the notation in §2. We shall first review the spherical represen-
tations of G and the Helgason—Fourier transform on X to explain the notation
and parametrization. We use the notation <-,-» and | -| to denote the
canonical inner product and the corresponding norm on L?(Q), respectively.
We set 7 =2rn/logq and T=R/7Z. We say that a function F(s) on R is
Weyl-invariant if it satisfies F(s) = F(—s) and F(s+ 1) = F(s).

Let se C. Define the action 7, of G on L?(Q) by the formula

(m(g)m) (@) = plg - 0,0) VY (g w). 9)

Let seC be such that s¢ +iv—1+3Z. According to [6, p. 44], the
intertwining operator I, between 7y, and 7n_; is defined by

I, = (PP (10)
For f e C.(X), we define its Helgason—Fourier transform by

fs,0) = (m(NHD)(@) =3 f(x)plx,w) PV (11)

xeX

Then as indicated in [4, Proposition 2.6], the following inversion formula holds:

10 = <o | | Fo0p0) P T Pdsavio), (12)

where c¢g = ¢/{2t(q¢+ 1)} and
NG q(1/2)+\/:Ts _ q7<1/2>7\/?15
:q—|— 1 ’ q\/f_ls_qfx/f_ls (13)

c(s)

is a c-function. Further, the Helgason—Fourier transform extends to an iso-
metric mapping from L2(X) into L3(T x @, cg|c(s)| dsdv(w)) and its range
coincides with the subspace of L2(T x Q, c|c(s)| *dsdv(w)) consisting of func-
tions which satisfy the following symmetry condition:

J F(s,a))p(x,w)“/z)*\/*_l“'dv(co):J F(—s,a))p(x,w)(l/2>+\/7_1‘ydv(w). (14)
el Q

Let #, denote the subspace of L*(Q) comprised of all functions F such
that D,F = F. Let ae X¥\{o} and for ease of notation write a’ for all“-1.
We define the function &, on Q by &,(w) =1 and for a # o

Eulw) = v(E(@) ™ g0 (@) = v(E(@) ™ Zpiar (@)- (15)

Then it is easy to check that D&, = &,.
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Let ae X and se C. We define the function ®@,, on X by
By () :J p(x, @)V TIE (w)dv(w). (16)

Q

We call @, the generalized spherical function on X. When a = o, @, ; coin-
cides with the spherical function ¢, on X, which is defined in the preceding
papers [4, 3, 5]. By the definition of the generalized spherical function, it holds
that

¢a,s(g . 0) = <7Ts(g)17 éa>a Qa,s(x) = Pséa(x)-
Define the function Q,(s) on C by

Qo(s) =1, (17)

4 _n —1(n—1)s —ls —1/2—v—1s
Q,,(S) :q%q /2q\/_1( 1) (q1/2+\/_1 —q 1/2 \/_1) (n > 1) (18)

We note that the function Q,(s) is an analogue of Kostant’s polynomial for
semisimple Lie groups. In the following, we use the notation { to denote

__sin(ns log q)

Y(n,x) = sn(sTog q) (neZsp,s€R).

Applying Theorem 2.1 in [9], we can immediately obtain the explicit expression
of the generalized spherical function @, .

PrROPOSITION 1.  We have the following expressions:
(1) (The case a #0) Let we E(x). Then we have

0 (Ix[ < lal),
g~ DY (x| — lal +1,5) Qi (8)Eu(@) (x| = a]).

(2) (The case a=o0) We have

@, = {

|x]
- —1Ls)|x q —1-v—-12s —12js
g,(x) = ¢ /2" ”'{1+q+1(1q DD 4 12’}-
]:

REMARK 1. Taking into account c(s) + c¢(—s) = 1, we can easily check that
the expressions of ¢(x) in Proposition 1 coincide with the ones described in
[5, p. 138].

Finally in this section, we remark that the Paley—Wiener theorem for the
spherical transform was already proved by Betori and Pagliacci [1]. Let ./
denote the Abel transform on X. For unexplained notation and discussion,
see [1] or [4]. In [1, Theorem 2.7], they proved that ./ is a bicontinuous
isomorphism of C.(X)* onto Ce (Z). They also showed that supp f < By if
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and only if supp «/f = [-N,N]. Let # denote the Fourier transform on Z.
Then the spherical transform factors as f = Z (off). Therefore, using the
result of Betori and Pagliacci and applying the Paley—Wiener theorem on Z, we
have the following proposition.

PROPOSITION 2. Ler fe Cc(%)# be such that supp f < By. Then the
spherical lfansform f satisfies the following conditions:
(1) f(s) is smooth on T,

(2) f(s)=f(=s) and f(s+7)=f(s),

(3)  f(s) extends to a holomorphic function on C and there exists a constant
C >0 such that

1f(s)| < Cg™¥.

Conversely, if F(s) satisfies the above conditions (1)-(3), then there exists
f e C(X)” with supp f = By such that f =F.

The above proposition can be obtained independently by the method of
Cowling and Setti in [5], and so we use this proposition to prove Proposition 5
in §5.

4. Spectral projection on X

In this section, following the analogy with the case of semisimple Lie
groups, we shall give the definition of the spectral projection on X.
For f e C.(X), we define the spectral projection P,f by

Pof(x) = (f * ) (x) = j £(90),(a7 " 9)dan, (19)

where x = g- 0. Applying the functional equation of the spherical function in
[6, p. 55] to the right-hand side of (19) and using Fubini’s theorem, we obtain

Pof(x) = J [ o>J (g1 - 0,0) (g - 0,0) >V B dv(w)dgy

G Q

= J £(s,0)p(x, ) lﬂﬂ/jsdv(w). (20)
I

By using (20), the inversion formula (12) is expressed as

£(%) = cq j Pof (x)le(s)| 2. 21)

To investigate more properties of the spectral projection, we shall compute
A,P;f(x) below.
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ProposITION 3. Let f e C.(X). Then

UyPof(x) = JQ @y, (%) /(5 0)dv(@).

Proor. If se —1v—1+3%Z, then @, _(x) =0 and P;f(x) =0, so that
the assertion is trivial. Hence we can assume s ¢ —%\/—1 +3Z. Under this
assumption, using [9, Lemma 3.3], we have

A,Pyf(x) = (4P (s,4)) (x)
= (P™Duf(s,"))(x)
=P ( > f(y)¢><‘),,.s(y)> (x)

yeX
=S s ] e T e ). e
yeX

On the other hand,
|, px.0) T, (v

_ p(X, 60) 1/27\/7_1SJ\ p(y,a)')UHms&,,(w,w')dv(a)')dv(cu)
JQ Q

1/2+\/ZT3J
Q

— | p(y,0) P2, ) P7YT5, (0,0 )dv(@)dv()

JQ

= | p(3,0) @, (x)dv(). (23)
Q

Substituting (23) into (22), we obtain that

AuPof (x) = Zﬂy)j P02V, (dv()
yeX Q

= JQ (Zf(y)p(y, o) ”“”f) Doy, 5 (X)dv()

yeX
= J @y —s(X)f(5,0")dV(0").
Q

This concludes the proof. O



An analogue of the spectral projection for homogeneous trees 215

Finally in this section, we list the essential properties of the spectral
projection.

COROLLARY 1. The spectral projection Ps has the following properties:
(1) s— Pyf(x) is a Weyl-invariant holomorphic function on C,

(2) ZLPsf(x) = A(s)Psf (x),

() Ou(—s) "' 4,Psf(x) is holomorphic on C.

REMARK 2. Since 4,P,f(x) is an even function with respect to the variable
s, we see that Q,,(s)flQn(—s)flztnPSf(x) is also holomorphic on C.

5. The Paley—Wiener theorem for the spectral projection

In this section, we shall characterize the image of C.(X) under the spectral
projection on X. As an application of this, we shall give an elementary proof
of the Paley—Wiener theorem for the Helgason—Fourier transform, which is
proved by Cowling and Setti in [5].
Let NeZs. Let Cy(X) denote the subset of C.(X) consisting of all
f € C.(X) such that supp ' < By. Tx(T x X) denotes the set comprised of all
functions F on T x X satisfying the following conditions:
(N1) F(s,x) is a Weyl-invariant smooth function on R with respect to the
variable s,

(N2) for each seR, LF(s,x) = A(s)F(s,x),

(N3) for each xe X, F(s,x) extends to a Weyl-invariant holomorphic
function on C,

(N4) for each n € Z=g, Ou(—s) ' 4,F(s,x) is holomorphic on C and there
exists a constant Cy > 0 which does not depend on the choice of n
such that

|0n(—8) " 4, F (5, x)| < CygqH=+NISs!,
We set

T (T x X) O“NTX%
N=0

We shall first show the following proposition, which is the assertion about
the necessary condition in the Paley—Wiener theorem for the spectral projec-
tion.

ProroSITION 4. Let fe Cy(X). Then F(s,x)= P,f(x) belongs to
Tn(T x X).
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Proor. The conditions (N1)-(N3) are already proved in Corollary 1.
We show here that the condition (N4) is fulfilled. By the definition of the
Helgason—Fourier transform (11), we can easily see that

fls,o)] < D7 1f(x)g" g < g (24)
xeBy

for some constant C}, > 0. From Proposition 3, Q,(—s) '4,F(s,x) is holo-
morphic on C and it is satisfied that

(=) AuF (5,) = 2 (x| — 4 1,5) J Eon () (5, 0)dv(0)
Q
for o’ € E(w,). Noting

q"(¢*> - 1)

- +1 s
@) = T2 ey 19 < D™ (e )

we can find a constant Cy > 0 so that
|Qn(_s)_1AnF(S> x)| < CNq(lx‘7n+N)‘%S‘7
concluding the proof. O

The difficult part of the proof of the Paley—Wiener theorem is to prove
that it is also the sufficient condition.
Let Fe 7n(T x X) and set

£) = ca | Fls.0lets)] s (25)
T
Then from the condition (N4) with n =0, we see that
7(9] < Cxeg | 1ets)] s
T

q(q+1)
(¢—1)°

b

4(g+1)*
= Ciea Lw

and hence f(x) is bounded on X.
We put fu(x) =4,f(x). Then

sin’(s log gq)ds =

£i3) = a | Fulsixle)] s
T
where F,(s,x) = 4,F(s,x). By the definition of 4,, we observe that F,(s,x)
satisfies the conditions (N3) and (N4) again. The following lemma is obtained
in the same way as in [5].
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LEMMA 1. Let NeZ-y, FeIN(TxX) and acS, If n> N then
F,(s,a) =0 for all seT.

PROOF. We set ¢(s) = Qu(—s) 'Fy(s,a). Then the condition (N4) yields
that ¢(s) is an entire function of exponential type N. We use the Paley—
Wiener theorem on Z to write

ps) =S glk)g” T

keZ

where ¢(k) =0 unless —N <k < N. It follows from the condition (N3) that

o Qn(*s) — Qn(is)

—5) = Oy(s _an —s,a) = i (—S _an S, a ).
Hs) = 0ulo) a(s.0) = 2 0u(=) s @) = S5 0
As shown in [5, pp. 241-242], it is satisfied that
Z¢(k)q—\/—_lks _ Z _q—2\/—_1s(n—1)—1 + (1 _ q—2) Zq—2\/—_ls(/+n)—/
keZ kel /=0
x glc)g" =1,
and hence
plk) = —q ' p(—k+2n=2)+ (1 =g )Y g 'd(—k+2n+2/). (26)
/=0

From this, when n > N + 1, it is easily verified that ¢(k) =0 for all ke Z. In
case n =N + 1, (26) yields

p(k) = —q~'$(—k +2N),

and so ¢(N)=0. Therefore, in this case, ¢(k) =0 for all keZ. This
concludes the proof. O

Using these facts, we shall prove the following proposition.
PropoSITION 5. Let F € 7y(T x X). Then we have for each n € L that

fn€ Cn(X). Moreover, if n> N, then f,(x)=0 for all xe X.

Proor. We first consider the case when n =0. Since fy and F; are the
spherical means of f and F, respectively, they are radial functions on X. In
addition, the condition (N4) is written as

[Fo(s, x)| < CNqN‘%S‘.

Consequently, from Proposition 2, we have f; e Cy(X).
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Let us next assume n € Z~o. It is to be noted that f,(x) = 0 when |x| < n.
From this, we may assume |x| >n. We put @ = x) and choose an w € E(x).
Because F, = 4,F, and ZF, = A(s)F,, it follows from [9, Lemma 3.2] that

Fy(s,x) = g~ D2y (|x] — |a| + 1, 5)Fy(s, a). (27)

In the case when n > N, Lemma 1 yields that F,(s,a) =0 and therefore
Ju(x) =0 for all xe X.
Suppose that n < N. We set

9a(s) = On(s) ™' Qu(=5) " Fu(s, a).
Then (27) is written as
Fy(s,x) = g~ P2y (|x] = la] + 1,9)9a(s) Qu(5) Ou(—s).

On the other hand, we have

1) = o | s x| 2ds

I L Ga(S W (x| — |a] + 1,5)0u(5)On(—5)lc(s)| 2ds.  (28)

We here compute O, (s)Q,(—s)|c(s)| %, Since
Ou(s) = ¢ "¢ 71003 (gV=1 — g=V"T)e(s),
0u(=s) = ¢ "0 = g e(—s),
we see that
0u(5)u(=5) = ¢ "le()] (¢ — g™ (1)
= 4g7"|c(s)]? sin’(s log ).
Accordingly we have

0u(5)Qu(=5)le(5)| > = 4q ™" sin’(s log q). (29)

Substituting (29) into (28), we obtain

Ja(x) = 461’”61’("”"‘“‘)/204 Ja(s)(|x| = la] + 1,5) sin®(s log g)ds. ~ (30)
T
By the condition (N4), we observe that

104(—3) " Fy(s, a)| < g™,
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We pick 4eR so that 4 < 1/2. Since the zeros of Q,(s) lie in the set
%\/—1 +3Z, we can find a constant d > 0 such that

Qn(s) > dqn\‘\‘rs\

for Qs < 4. Then, by an argument similar to that in [2, Theorem 3.2(J)], we
can see

19a(s)| < CqN I
for Ss < 4. As g4(s) is a holomorphic function on C, we have
|ga(s)| < Cq(N7n>‘S‘Y|.

We here apply the Paley—Wiener theorem for the Fourier transform on Z to
the expression (30). We consequently obtain that f,(x) =0 for |x| —|a| + 1 >
N —n+1. This concludes the proof. ]

Using Proposition 5, we can obtain the following proposition.

PrOPOSITION 6. Let Fe Tn(T x X). We set

f(x) =cq JT F(s,x)|c(s)| " ds.

Then f e Cy(X).

Proor. Let neZso and set f,(x) = 4,f(x). Then Proposition 5 yields
that f, € Cy(X) and f, =0 when n> N. Let xe X be such that |x| > N.
We choose an integer M so that |[x| < M. Then f(x) can be written as the
following finite sum:

S(x) =emf(x) = fo(x) + fi(x) + -+ fn(x).
Since f, € Cy(X), we have f e Cy(X). O

Summarizing the arguments in this section, we arrive at the following
theorem.

THEOREM 1. The spectral projection Py gives a linear isomorphism from
C.(X) onto 7 (T x X). Moreover, the image of Cy(X) under Ps coincides with
IN(T x X) for all N € Zs,.

In the remainder of this section, we shall give an elementary proof of the
Paley—Wiener theorem for the Helgason—Fourier transform due to Cowling and
Setti. Our proof is a direct consequence of Theorem 1.

Let Zx(T x Q) denote the set of all functions F on T x Q satisfying the
following conditions:
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H1) F(s,w) is a smooth function on T with respect to the variable s,

(H2) F(s+t,0) = F(s,w),

H3) F(s,w) extends to a r-periodic holomorphic function on C and there
exists a constant Cy > 0 such that

|F(s,0)] < Cng™,

(H4) F satisfies the symmetry condition (14).
With the notation above, Cowling and Setti have proved the following theorem.

THEOREM 2 ([5, Theorem 1]). The Helgason—Fourier transform gives a
linear isomorphism of Cy(X) onto Zn(T x Q).

In order to prove the above theorem, Cowling and Setti investigated
dim Zy (T x Q) and showed that dim Zy (T x Q) = Card 4. Our proof is a
consequence of Theorem 1 and simpler than the one of Cowling and Setti.

Proor. Let Fe Zy(T x Q). We first show that the Poisson transform
P—F(s,-) of F(s,w) satisfies the conditions (N1)—(N4). The condition (N2) is
already shown in Corollary 1. The symmetry condition (14) and the condition
(H2) imply that P—°F(s,-) is Weyl-invariant. Thus Corollary 1 yields that
the conditions (N1) and (N3) are fulfilled. By the definition of the Poisson
transform, we have

PR (s, )| < jQ 1(x, )2V |F (s, ) dv(0)

- ) g2 Oy g NS gy (g9)

< CpgHMI,

Thus the condition (N4) is an immediate corollary of Proposition 3. Therefore
we see that P*F € 7y(T x X). We set

f(x) = cq L PF (s, x)|c(s)| 2ds. (31)

Applying here Proposition 6, we have f € Cy(X). This concludes the proof.
O
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