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ABSTRACT. We study the monoid generated by certain Zariski-van Kampen generators
in the positive homogeneous presented fundamental group of the complement of the
logarithmic free divisor, called the type Bj in the list by Sekiguchi. Although the
monoid is cancellative, it turns out that the monoid is not Gaussian and, hence, is
neither Garside nor Artin. Nevertheless, we show that the monoid carries certain
particular elements similar to the fundamental elements in Artin monoid. Hence, we
can solve the word problem and the conjugacy problem in the monoid and determine
the center of it and the explicit form of the growth function for it. As a result, we can
also solve the word problem and the conjugacy problem in the fundamental group, and
determine the center of it (Theorem 5.8).

1. Introduction

A hypersurface D in C' (I € Zso) is called a logarithmic free divisor ([S1,
S2]), if the associated module Derqi(—log(D)) of logarithmic vector fields is a
free Oci-module. Classical example of logarithmic free divisors is the dis-
criminant loci of a finite reflection group ([S1], [S2]). The fundamental group
of the complement of the discriminant loci is presented ([B]) by certain positive
homogeneous relations, called Artin braid relations. The group (resp. monoid)
defined by that presentation is called an Artin group (resp. Artin monoid) of
finite type [B-S], for which the word problem and other problems are solved
using a particular element A, the fundamental element, in the corresponding
monoid ([B-S], [D], [G]).

In [Sel, 2], Sekiguchi made a list of 17 weighted homogeneous polynomials
that define logarithmic free divisors in C>. They are labeled by the type
Xe {Ai, Aih Bi, Bii7 PN 7Bvii7 Hi, I‘Iii7 N 7Hviii}- Then, the fundamental groups
of the complements of the divisors are presented by using Zariski-van Kampen
method in [I]. In [S-I], it turns out that the defining relations can be rewritten
by a system of positive homogeneous relations in the sense explained in §2 of
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the present paper, so that we can introduce monoids defined by them. We
have shown in [S-I] that, among 17 monoids, five are Artin monoids ([B-S]), and
eight are free abelian monoids. However, four remaining types Bj, By, Hij,
Hiii, the monoids are not Gaussian, and hence are neither Garside ([D-P]) nor
Artin. Nevertheless, we have shown that all the 17 monoids carry certain
particular elements similar to the fundamental elements in Artin monoids. In
this paper, we focus our attention to the type B; monoid among the remaining
four monoids. As a result, some decision problems in the fundamental group
can be solved (Theorem 5.8). Moreover, we show that the fundamental group
is a solvable group and admits a faithful 5 x 5-matrix representation (Corollary
5.12).

Let us explain more details of the content. The explicit form of type
B; Sekiguchi-polynomial is z(—2y° 4+ 4x3z + 18xyz + 27z%) and is denoted by
Ap,(x,y,z). We put Dy, := {4p,(x,y,z) =0}. Then, the fundamental group
of the complement of the divisor Dg, is presented by Zariski-van Kampen
method, where we need to choose a generator system of the fundamental group
by fixing pathes in a reference fiber. There is an ambiguity of choosing
Zariski-van Kampen generator system, where any two Zariski-van Kampen
generator systems can be transformed to each other by an action of braid.
In §3, we choose a suitable generator system of the fundamental group
7 (C*\Dg,, %) for solving some decision problems on it (Proposition 3.1).
We fix the presentation and denote the presented group by Gp,. For the
presented group Gp,, we associate a monoid G+ defined by it. We will show
that the associated monoid Gy satisfies the cancellation condition (Proposition
5.5) and naturally injects into the group Gp,. Hence, we can say that the
solvability of the word problem and the conjugacy problem and determinative-
ness of the center in the monoid imply those in the group Gp, (Lemma
4.2). In this way, we solve the word problem and the conjugacy problem
in the group Gg,, and determine the center of it. Moreover, we will deter-
mine the set 7 (Gy ) of fundamental elements and the set 22 (Gy ) of quasi-
central elements. As a corollary, we will show that the subsemigroup
7 (G )(= 22 (Gg,)) is an infinitely generated idealistic subsemigroup (Remark
5.9). Moreover, we show that the group Gp, is not word hyperbolic (|Gr2])
(Remark 5.10). We will show that the growth function for the monoid Ggi isa
rational function and the explicit form of it can be determined (Theorem
5.8). By observing the distribution of the zeroes of the denominator poly-
nomial of the growth function for the monoid Gy , it is conjectured that the
group Gp, contains a free abelian subgroup of rank 4 of finite index. Indeed,
we can show that the group Gp, contains a subgroup of index three. By using
this proposition, we will show that the group Gg, is a solvable group and
admits a faithful 5 x 5-matrix representation.
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2. Positive homogeneous presentation

In this section, we first recall from [B-S] some basic definitions and nota-
tions. Next, for a positive homogeneously finitely presented group

G =<LIR),

we associate a monoid defined by it.

Let L be a finite set. Let F(L) be the free group generated by L, and let
L* be the free monoid generated by L inside F(L). We call the elements of
F(L) words and the elements of L* positive words. The empty word ¢ is the
identity element of L*. If two words 4, B are identical letter by letter, we
write 4 = B. Let G = <{L|R) be a positive homogeneously presented group
(i.e. the set R of relations consists of those of the form R; = S; where R; and S;
are positive words of the same length), where R is the set of relations. We
often denote the images of the letters and words under the quotient homo-
morphism

F(L)— G

by the same symbols and the equivalence relation on elements 4 and B in G is
denoted by 4 = B.

Next, we recall some terminologies and concepts on a monoid M. An
element U € M is said to divide V € M from the left (resp. right), and denoted
by U|,V (resp. U|,V), if there exists W e M such that V= UW (resp.
V =WU). We also say that V is left-divisible (resp. right-divisible) by U,
or V is a right-multiple (resp. left-divisible) of U. We say that M admits the
left (resp. right) divisibility theory, if for any two elements U, V of M, there
always exists their left (resp. right) least common multiple, i.e. a left (resp.
right) common multiple which divides any other left (resp. right) common
multiple.

Next, we recall from [S-I] some terminologies and concepts on positive
homogeneously presented monoid.

DeFINITION 2.1. Let G =<L|R) be a positive homogeneously finitely
presented group, where L is the set of generators (called alphabet) and R is
the set of relations. Then we associate a monoid G* = {L|R),,, defined as the
quotient of the free monoid L* generated by L by the equivalence relation defined
as follows:

1) two words U and V in L* are called elementarily equivalent if either
U=V or V is obtained from U by substituting a substring R; of U by S;
where R; = S; is a relation of R (S;=R; is also a relation if R;=S; is a
relation),



102 Tadashi ISHIBE

i) two words U and V in L* are called equivalent, denoted by U =V, if
there exists a sequence U = Wy, Wy,..., W, =V of words in L* for neZs
such that W; is elementarily equivalent to W;_| for i=1,... n

1. Due to the homogeneity of the relations, we define a homomorphism:

/:G+—>Z20

by assigning to each equivalent class of words the length of the words.

2. We say that G* is cancellative, if an equality AXB= AYB for
A,B, X, Y € GV implies X = Y.

3. The natural homomorphism n: G — G will be called the localization
homomorphism.

4. An element A € G* is called quasi-central (also see |B-S] 7.1), if there
exists a permutation o4 of L/~ (:= the image of the set L in Gt) such that

s-A=4-a4(s)

holds for all generators s € L/~. The set of all quasi-central elements is denoted
by 2%(G*). The order of an element 6, in the permutation group S(L/~) is
denoted by ord(a). Note that A°%4) belongs to the center Z(G*) of the
monoid G*.

5. An element A€ GT is called fundamental if there exists a permutation
oy of L/~ such that, for any se L/~, there exists A;e GT satisfying the
following relation:

A=s-A;= A;-04(s).

We denote by F(G*) the set of all fundamental elements of G*. Note that
e€ 97 (GT) but ¢¢ F(G*1). It is easy to show that

F(GH)2Z(GY) = 22(G)F(GY) = F(G).

6. A fundamental element A is called a minimal fundamental element if
any fundamental element dividing A from right or left coincides with A itself.

7. A quasi-central element A is called indecomposable, if it does not
decompose into a product of two nontrivial quasi-central elements. We note that
the identity element ¢ is not indecomposable. We call a fundamental element
prime, if it is an indecomposable quasi-central element.

In general, a minimal fundamental element may not be prime. Here is an
example.

EXAMPLE 2.2. Let us consider the following monoid:

¢h = ba,
M, :<a,b,c bcab,> .

ac=ca’,
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We can easily show that acb is a minimal fundamental element, but ac and b are
nontrivial quasi-central elements. Hence, acb is not prime.

3. Positive homogeneous presentation of Gy,

In this section, we recall from [S-I] a positive homogeneous presentation
of the fundamental group of the complement of the type Bj logarithmic free
divisor that is given by using Zariski-van Kampen method (see [Ch], [T-S] for
instance). There is an ambiguity of choosing Zariski-van Kampen generator
system. We choose one of them and consider some dicision problems of
words.

In [S-I] §4, we presented the fundamental group of the type B; positive
homogeneously. We then showed the following proposition:

PropoSITION 3.1.  For any choice of Zariski-van Kampen generator system
{a,b,c} (up to a permutation), the fundamental group of type By admits only
one of the following two presentations 1 and 11

c¢bb = bba,
I <a,b,c bc = ab, >,

ac = ca

ababab = bababa,
II: <a,b,c b=c, >

aabab = baaba

For example, an explicit form of an isomorphism from the presentation 1 to the
presentation 11 is given by the correspondence

aw baba 'b7', b babab 'a” b7, ¢ c.

)

In this paper, we adopt the presentation I and denote this presented group
by Gg,. For the presented group Gp,, we associate the monoid Gy . We
have an important remark on the monoid G;ﬁ.

REMARK 3.2. Since both sides of the defining relations of G;; . contain the
same number of the letter b, for arbitrary word W in G*ﬁ, the number of the
letter b in W ought to be preserved in the process of rewriting W.

4. Word problem and Conjugacy problem

In the present section, we define the word problem and the conjugacy
problem in a monoid.
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DEeFINITION 4.1, Let GT = (L|R),  be a positive homogeneously presented
monoid.

1) For arbitrary two words U, V in L*, give an algorithm that decides
whether U =V in Gt or not.

2)  For arbitrary two words U, V in L*, give an algorithm that decides
whether there exists an element A in Gt such that AU = VA (then we write
U ~ V) or not.

The problems 1), 2) are called the word problem and the conjugacy
problem Editor in a monoid G, respectively.

mo

LEMMA 4.2. Let G be a positive homogeneously presented group, and let G
be the associated monoid. Assume that the monoid G* is a cancellative monoid
and 7 (G") # . Then:

(1) The localization homomorphism ©: Gt — G is injective.

(2)  The word problem in G is solvable if and only if the word problem
in G is solvable.

(3) The conjugacy problem in G* is solvable if and only if the conjugacy
problem in G is solvable.

Proor. (1) Let 4e€ #(G') be a fundamental element. We can easily
show that, for any Ue GT, U devides A’ from the left and the right.
Hence, we show that the monoid G satisfies Ore’s condition (see [C-P)).
Therefore, the localization homomorphism 7z is injective.

(2) We put A:= 494 which belongs to the center Z(G*) of the
monoid G*. For any two elements U, V in G, there exists a non-negative
integer k in Zso such that both (z(4))*U and (z(4))*V are equivalent to
positive words. Since the localization homomorphism 7z is injective, there
exists a unique element U’ e G (resp. V' € G') such that

(V') = (n(4)" U (resp. =(V') = (n(0))"V).

Therefore, we have shown that U = V' can be shown in G algorithmically if
and only if U’ = V' can be shown in G* algorithmically.

(3) If two elements U and V in G are conjugate, then there exists a word
B such that BU = VB. There exists a non-negative integer / in Zs( such that
(n(A))'B is equivalent to a positive word. Since 7(A) belongs to the center of
the group G, we say that two elements U and V in G are conjugate precisely
when there is a positive word A such that AU is equivalent to VA. Therefore,
due to the injectivity of the localization homomorphism 7z, we can show that
the conjugacy problem in G is solvable if and only if the conjugacy problem
in G is solvable. U



On the monoid in the fundamental group of type Bj 105

5. Main results

In this section, we state the main results on Gy and Gg,. First we
prepare some lemmas.
For each jeZs, let

W(j) :={we G, |w contains the letter b just j-times}.
For each k e Z-(, we put
A = (d*b), Ay := ba"bb.
LemMmA 5.1. The following relations hold for i =1,2,...:
a'b = be', bba' = ¢'bb.

ProoF. By using the defining relations ab = bc, bba = cbb repeatedly, we
show the equations. ]

LEMMA 5.2. If we W(j) (j =4), then b3|,w and b*|,w.

Proor. First of all, 49 = b* belongs to the center & (Gg,) of the monoid
Gf;ﬁ. Secondly, w inevitably contains a substring whose form is generally
written as ba?ciba’c*ba’c'b (p,q,r,s,t,u € Lso). Lastly, we have an equality

bafcib = bclal’b = albbc?.

Therefore, by applying the defining relations to the substring ba?c?ba’c*ba’cb,
we have:

ba’ciba’c*ba'c'b = a’bbc’a’c’a'bbe’ = a’c"bbbba? ¢! = bbba’c M ba’ ¢!
LEmMA 5.3. adj = Aga, cAy = Agc.
Proor. We have an equality:
aba*bb = bea*bb = ba*cbb = ba*bba.
In the same way, we have an equality:
cba*bb = cbbc*b = bbac*b = bbc*ab = bbc*be = ba*bbe. O
We recall three facts from [S-I] §5, §7 and §8.

PrOPOSITION 5.4.  The monoid G;i _ admits neither the left divisibility theory
nor the right divisibility theory.

PRrROPOSITION 5.5. The monoid Gg“ is a cancellative monoid.

PROPOSITION 5.6. For any A€ 2% (Gg ), ord(ay) is equal to 1.
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As a consequence of Proposition 5.4, the monoid Ggi . 1s not Gaussian and,
hence, is neither Garside monoid nor Artin monoid.

We show that for an arbitrary element w in Ggi _ we choose a unique word
in the free monoid {a,b,c}" that represents w, which we call the normal form
of w. Thanks to Lemma 5.2 and Proposition 5.5, for any element w in W (j)
(j = 4), there exist a unique integer m in Zs( and a unique element w’ in W ()
(j < 3) such that w = h¥"w’.  Therefore, it is sufficient to show the existence of
this notion for we W (j) (j < 3).

Lemma 5.7. If we W(j) (j <3), then w has the following normal forms:
Jj=0: alct=:(p.q)y (p,q€Zx)

j=1 alctba" =:(p,q,r); (p.q:r € Zx)

j =2 aPclbbe” =: (p,q,r), (p.q.r € Zxo)

j =3 a’clba’vb =: (p,q,r)s (p,q,r € L)

ProOF. We can easily show that w can be equivalently transformed into
the above form. Therefore, we only prove the uniqueness of the normal form.

j=0: We assume that a’c? =a’c’ (p+qg=s+1t) and p>s. Due to
the cancellativity, we cancell ¢ from left so that we obtain a new relation
a’>c? = ¢'. Next, we cancell ¢/ from right so that we obtain a relation
ar—=c¢"1. If p—s (=1t—q) > 1, this relation is contrary to Proposition 7.7
in [S-I]. Hence, we conclude p—s=t—¢q=0.

j=1: We assume that a’c%ba" = a’c'ba" (p+q+r=s—+t+u), and
g>t. We cancell ¢’ from left so that we obtain a relation c¢? 'bcfa” =
bcta¥. If g—t>1, this relation is contrary to Proposition 7.7 in [S-1].
Hence, we conclude ¢ =t Next, we cancell b from left so that we obtain
a relation ¢?a” = ¢*a*. From the case of j =0, we obtain p=ys, r=u.

j=2: We assume a?c?bbc” = a*c'bbc?. We can easily show an equiv-
alent relation a”c%ba"b = a*c'ba"b and cancell b from right. From the case of
j=1, we obtain p=s, g=1t, r=u.

j=3: We assume a’c?ba’bb = a*c'ba"bb. We cancell bb from right so
that we obtain a relation a”c?ba” = a*c'ba". From the case of j=1, we
obtain p=s, g=1t, r=u. OJ

THEOREM 5.8. The following 1), ii), iii), iv), and v) hold.

i) The element Ay belongs to 2% (G )\7(Gy ). The elements Ay
(k= 1) belong to 7 (Gy ) and ord(ay,) (k >0) is equal to 1.

i) a) The element Ay is an indecomposable quasi-central element.

b) The fundamental elements Ay (k > 1) are prime.

c) If 4 is an indecomposable quasi-central element, then there exists a non-
negative integer k in Zso such that A is equivalent to Ay.

d) We have AklAIQ = Ak1+k2A0 (kl,kz € Zzo).
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iii) The center Z(Gg,) is isomorphic to Z* and generated by Ay and Aj.
iv) The word problem and the conjugacy problem in Gg, are solvable.
v) The spherical growth function for the monoid Gl;rﬁ is the following.

2 -ttt
D ant" =
n=0 (l_t)

where we put a, := #{we G]-g:‘ |£(w) = n}.

PrOOF. i) Since 4y belongs to the center of G , 4y belongs to 2% (Gg, ).
Due to the cancellativity of G+ﬁ, we can easily show that 4y does not belong to
7 (Gg.). Next, we prove 4 belong to #(Gy ). For the proof of this, it is
sufficient to show that A, are quasi-central elements which are divisible by the
generators a, b and ¢ (see [S-1, Proposition 7.4]). Actually, it is easy to show
the following:

(@*b)? = (ba*)* = (bc*)* = (Fb)°.
And, we can also show that
a- Ay = a-ba*ba*ba* = ba*cba*ba"* = ba*bbc*aa® = ba*ba*ba* - a = 4y - a,
b Ay =b-c*bc*bc*b = i - b
and
¢ Ap = a*cba®ba*b = a*cbbc*a*b = a*bbc*ad®b = a*ba*ba*b - ¢ = 4, - c.

Lastly, according to the Corollary of Theorem 5 in [S-1], we can show that
ord(g,,) is equal to 1.

i) a),b) Since 4, contain the letter b just 3-times, it is sufficient to show
that, if we W(j) (j <2) is a quasi-central element, then w is equivalent to .
We consider the following three cases:

J=0: As ord(g,) is equal to 1, a relation - (p,q), = (p,q), - b ought to
hold. Thus, an equation (¢,0, p); = (p,¢,0), holds. Due to Lemma 5.7, we
conclude p=¢=0.

j=1: In the same way, we have a relation a-(p,q,r), = (p,q,r), - a.
Thus, an equation (p+1,q,r); = (p,¢q,r+ 1), holds. A contradiction.

Jj=2: We have a relation ¢ (p,q,r), = (p,q,7), - ¢. Thus, an equation
(p,q+1,r), = (p,q,r+ 1), holds. A contradiction.

¢) Due to Lemma 5.2, 4 belongs to W(j) (j <3). If 4 belongs to
W(j) (j <2), 4 cannot be a quasi-central element. Thus, 4 belongs to W(3).
So, we put 4= (p,q,r);. In particular, we have a relation b-(p,q,r); =
(p,q,7r);-b. Cancelling bbb from left, we have an equation (q,7,p), =
(p,q,r);- Hence, we obtain p=¢g=r. Then, we have 4 = (p, p, p); = 4,.
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d) We have
— ki .k ky Lk — kit+ky Jki+k
dj Ay, = a™' ¢ A a™ ¢ Ay, = a2 e T Ay Ay,
— Jki+ky Jk+k —
=a" "M A 14, bbb = Ay 11, Ao

iii) By the consideration in ii), we easily show that, if w belongs to
Z(Gy )\{¢}, then there exists a unique pair (k,/) € Z»o x Zzo such that w is
equivalent to AkAé. And, due to Lemma 4.2, we say that the localization
homomorphism 7 : Gl‘{ii — Gp, 18 injective. For an arbitrary element U in
Z(Gp,), there exists a positive integer m € Zs( such that A4{"U is equivalent
to a positive word. Since we can regard 4{"U as an element in (G ), there
exists a unique pair (k,/) € Zso x Zso such that A]"U is equivalent to
MAL(= AK 475 ALY, Thus, we show that Z(Gp,) can be generated by Ao
and 4;. Next, we consider an equation

AGAY = AR AL (ki ko, b € Z)

to determine the center Z(Gp,). Applying Lemma 5.7 to this equation, we
obtain k; =k and /; =/. Hence, the center Z°(Gp,) is isomorphic to 7>

iv) By Lemma 5.7, it is sufficient to show that we can solve the word
problem and the conjugacy problem in Ggi .. Because of the homogeneity of
the defining relations in G*ﬂ, we can obtain algorithmically all the possible
expressions of word W in Gf{i . 1n a finite number of steps. Hence, for arbitrary
two words U,V € Ggﬁ, by comparing two types of complete lists of all the
possible expressions of words U and V', we can solve the word problem in G;i -
Next, we consider the conjugacy problem in Ggi . It is sufficient to show that,
for arbitrary two words U,V (e W(j) (j < 3)) of the same length n, we decide
in a finite number of steps whether U ~ V or not. We consider the following
four cases:

j=0: We prove the following Claims:
Claim 1. If (p,n—p)y ~ (¢,n—q), (0<p<g<n), then we say that
p=0and ¢ =n.

Proor. First, we easily show that (n,0), ~ (0,n),. Assuming that

(p,n—p)y ~ (gsn—q)y (1<p<qg<n),

mo

then we say there exists an element w in Gy such that

we(p,n—p)y = (qg;n—q)y-w

By Lemma 5.2, we may assume we W(j) (j <3). Applying Lemma 5.7 to
the equality w - (p,n — p), = (¢,n — q), - w, we show that a contradiction occurs
for any we W(j) (j <3). O
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j=1: We prove the following claim:
Claim 2. If w,w"e W(1), then w ~ w'.

Proor. We have
c’a - (pyq,r), = a’al clba” = "1 a"alba”
= PTG = (0, p + g +1,0), - P

Hence, we say (p,q,r), 0,p+q+r,0).

j=2: We prove the following claim:
Claim 3. If w,w'e W(2), then w ~ w'.

Proor. We have

a’’ePb - (p,q,r), = a”Pbal clbbe” = a1t PbaPbbe” = a4 baPbbcP !
= a7 bba’ " ¢Pb = (p+ q +1,0,0), - a?cPb.

Hence, we say (p,q,r), ~ (p+q+7r,0,0),. O

mo
j=3: We prove the following claim:
Claim 4. (p,q,r); ~ (r,p,q); ~ (4,7, P)s3.

mo mo

Proor. First, we have b - (p,q,7); = ba’c?ba’bb = (q,r, p); - b. Next, we
have bb- (p,q,r); = bba’ciba"bb = c?bbcibbc’b = a’cPbalbbbb = (v, p,q), - bb.
O

Hence, we can choose a representative (p,q,r); (p,q =r).

As (p,q,1); = (p—r1,q9 —1)y4, and 4, belongs to the center Z(Gy ), the
case j =3 can be reduced to the case j=0.

These complete the proof.

v) First, let oy, :=#{we W(k)|/(w)=n} (k=0,1,...,n), and let
b= #{w e WQB)|{/(w) =m} (m=3,4,....,n,n+ l,n + 2). We consider
the following three cases: a3, a3n1 and asz,.o.

Case as,: By Lemma 5.7, we show f,, = (1/2)(m —2)(m —1). And, due
to Lemma 5.2, we can easily show that

03,30 = P3, %3n—1,3n = P4y - -, 03 30 = Pz,
In the same way, we show that
%30 = (3n/2)(3n = 1)(= B3p01), 130 = (31/2)(3n+ 1)(= f3,40)

and o3, = 3n+ 1. Hence,
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3n 3n
az, = § Ok, 3n = 00,30 + § Ok, 3n
k=0 k=1

3n
=3n+1+(1/2) > k(k+1) = (1/2)(9n +9n* + 8n +2).
k=1

Case a3, 1: In the same way, we show that

3n+1 3n+1
a3p1 = E Ok, 3n+1 = 00,3n+1 E O, 3n+1
k=0 k=1

3n+1
=3n+2+(1/2) Y k(k+1) = (1/2)(9n° + 18n” + 17n +6).
k=1

Case as,p: In the same way, we show that

3n+2 3n+2
azpqn = E Ok, 3n+2 = 00,3n+2 + E Ok, 3n+2
k=0 k=1

3n+2
=3n+3+(1/2) > k(k+1) = (1/2)(92° +27n* + 32n + 14).
k=1

Next, we easily show:

o 0 ©
4 3k 3k+1 3k+2 2
) {ZayJ +Za3k+1t + +Za3k+2t + }—t —t+ 1.
k=0 k=0 k=0

Hence, we obtain the explicit formula. O

REMARK 59. In [S-1] §6, we raised a question: let G be a positive
homogeneously presented group and let G be the associated monoid. Then,
are there finitely many elements Ay, Ay, ..., Ay € F(G™T) such that the following
holds?

F(GM) =22(GHAU2Z(GT)A,U---U2Z(GH) 4.

As a consequence of Theorem 5.8, we have constructed a counterexample. We
claim that 7 (Gy )(= 2% (Gy.)) is an infinitely generated idealistic subsemi-
group. For the proof of this, we assume that F (G]Jgﬁ) is finitely generated:
27 (Gg )M, U 22 (G ) Ak, U ---U 22 (G ) Ay,  However, when we take an
integer 1 large enough, A; cannot belong to

2% (Gy )4, U 22 (Gg ) Ak, U -+ U 22(Gy ) Ay,

A contradiction.
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REMARK 5.10.  Since the group Gy, contains Z* as a subgroup, Gy, is not
word hyperbolic ([Gr2]).

In [S3, S4], the distribution of the zeroes of the denominator polynomials
of the growth functions associated with Artin monoids is investigated. Since
the zeroes of the denominator polynomials of the growth function for the
monoid G;ﬁ only consist of 1 with multiplicity 4, he asked whether the group
Gp, contains a free abelian subgroup of rank 4 of finite index. Actually, we
show this in the following Lemma.

LemmA 5.11.  For an arbitrary element w in Gy, the element w has the
following normal form:

<p7q7r7s> = bp(AlA(;l)qarcS (P7q7”aS€Z)-
Proor. We assume that

p,q,r,sy =<p'q" . r",s">  (p,pa.q r.r' 55" €Z).

Since 4,4, ! belongs to the center of the group Gpg, and ac = ca, we say that
<p=pq—q,r—r',s—s">=¢ Without loss of generality, we assume that
q—q' >0. Then, an equation

bp—p'ﬁi]*‘l'ar—r’cs—s’ _ b3q—3q’

holds. If p— p’ >0, then we multiply a’c* (z,u > 0) from the right. Thus,
both sides of the equation are equivalent to positive words. Since the local-
ization homomorphism 7 is injective, an equation

- —q' ! o 2,
b pAi{ qal I+tc.S‘ s+u;b3q 3qatcu

holds. Due to Remark 3.4, we can easily show that p = p’. Thus, an
equation

) - o _ !
Ai{ qar r+tcs s'+u = b3q 3q atcu

holds. Due to Limma 5.7, we show that g =¢', r=1r', s=s’. Similarly, if
p—p' <0, we conclude that p = p’, g=¢q', r =1', s=s'. Therefore, we have
shown the uniqueness of the normal form.
For an arbitrary element w in Gg,, there exists a non-negative integer k in
Z-o such that (n(4,))*w is equivalent to a positive word. Since the local-
ization homomorphism 7 is injective, there exists a unique element w’ in Ggi :
such that #(w’) = (n(4,))*w. Applying Lemma 5.7 to the element w’, we can
easily show that w can be equivalently transformed into the above form.
O

As a corollary of the theorem, we show the following.
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COROLLARY 5.12.  The following 1), ii), iii), iv) and v) hold.

1) The group Gp, contains a subgroup of index three isomorphic to VA

i) The group G, has a polynomial growth rate.

iii) The group Gy, is solvable.

V) A faithful 5 x 5-matrix representation p : Gy, — GL(5,Z) of the group
Gpg. is constructed:

1 0 0
, where N=10 0 -1
1 1 -1

{p,q,1,8)

1
0
0
0
0

v) The group Gg, is torsion free.

Proor. 1) Let H be the subgroup of Gg, generated by 4o, 4,4, ! aand c.
Due to the commutativity of each pair of the generators and Lemma 5.11, we
show that H is isomorphic to Z*. It is easy to show that H is a subgroup of
index three.

ii) Due to the Gromov’s theorem on groups of polynomial growth
([Grl]), the group Gp, has a polynomial growth rate.

iii) Since there is a sequence of subgroups

{1} <H < Gy,

such that Gp,/H is an abelian group, the group Gp, is solvable.
iv) For any integers p, ¢, r, s, t in Z, we have three equalities:

(pigrysy - DY = b - {p,g,r, ),
(pyg,r, sy - b =3 p g+, =5 — 5D,
p,q,r, s> b2 =32 p g4rs—r, —r).
Therefore, we have three equalities:
{p,q,r,s>-3t,q,r',s'>=Lp+3t,q+q',r+r s+,
p,q,r,sy-Bt+ 1,41, s'>=Lp+3t+1,4 +q+s,17 —s5,5 +1r—s,
{p,q,r,sy - Bt+2,4 v, s'>=<p+3t+2,g +q+r ' +s—rs —r

Hence, we show that the map p is a group homomorphism. Due to Lemma
5.11, we show that p is a faithful representation.

v) We assume that {p,q,r, HF = ¢ for integers p, ¢, r, s in Z and k in
Z-o. Since the first 2 x 2-matrix of the normal form {p,¢q,r,s) is a unipotent
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matrix with the (1,2) entry equal to p, we have p =0. Since 4,4, belongs
to the center of the group Gp, and ac = ca, we show that

<07q7 r, S>k = <0,kQa k}", kS>

Hence, we say that ¢ =0, r=0, s=0. O
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