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Abstract. Let G be a minimal chart with exactly seven white vertices. In this paper,

we show that G is a chart of type (7), ð5; 2Þ, ð4; 3Þ, ð3; 2; 2Þ or ð2; 3; 2Þ if necessary we

change the labels. We investigate minimal charts with loops or lenses.

1. Introduction

Kamada introduced a method to describe surface braids as oriented

labeled graphs in a disk, called charts ([2], [3], [4]) (see Section 2 for the

precise definition of charts). In a chart there are three kinds of vertices; white

vertices, crossings and black vertices. In this paper, we investigate properties

of minimal charts which we need to prove that there is no minimal chart with

exactly seven white vertices (see Section 2 for the definition of minimal charts).

Let G be a chart. For each label m, we denote by Gm the ‘subgraph’ of

G consisting of edges of label m and their vertices. In this paper,

crossings are vertices of G but we do not consider crossings as vertices

of Gm. The vertices of Gm are white vertices and black vertices.

An edge of Gm is the closure of a connected component of the set obtained by

taking out all white vertices from Gm.

A chart G is of type ðm; n1; n2; . . . ; nkÞ or of type ðn1; n2; . . . ; nkÞ briefly if it

satisfies the following three conditions:

(1) For each i ¼ 1; 2; . . . ; k, the chart G contains exactly ni white vertices

in Gmþi�1 VGmþi.

(2) If i < 0 or i > k, then Gmþi does not contain any white vertices.

(3) Both of the two subgraphs Gm and Gmþk contain at least one white

vertex.

Note that n1 b 1 and nk b 1 by the condition (3).

The following is the main result in this paper:
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Theorem 1.1. Let G be a minimal chart of type ðm; n1; n2; . . . ; nkÞ. Sup-

pose that G contains exactly seven white vertices. If necessary we change the

label mþ i by mþ k � i for all label i, then G is a chart of type (7), ð5; 2Þ, ð4; 3Þ,
ð3; 2; 2Þ or ð2; 3; 2Þ.

Among six short arcs in a small neighborhood of a white vertex, a center

arc of each three consecutive arcs oriented inward or outward is called a middle

arc at the white vertex (see Figure 3). The other arcs are called non-middle

arcs. There are two middle arcs in a small neighborhood of each white vertex.

Let G be a chart. Let D be a disk such that qD consists of an edge e1 of

Gm and an edge e2 of Gmþ1 and that any edge containing a white vertex in e1
does not intersect the open disk IntðDÞ. Let w1 and w2 be the white vertices

in e1. If the disk D satisfies one of the following conditions, then D is called a

lens of type ðm;mþ 1Þ (see Figure 1):

(1) Neither e1 nor e2 contains a middle arc.

(2) One of the two edges e1 and e2 contains middle arcs at both white

vertices w1 and w2.

If D satisfies the above condition (1) (resp. (2)), then the lens D is called a lens

of type 1 (resp. type 2). We also say that D is a lens of G.

In [5] we showed that in a minimal chart, there exist at least three white

vertices in the interior of any lens. In this paper we shall show the following

theorem:

Theorem 1.2. Let G be a minimal chart. The complement of any lens

contains at least three white vertices.

Hence we have the following corollary:

Corollary 1.3. Let G be a minimal chart with at most seven white

vertices. Then there is no lens of G .

Let G be a chart. A loop is a closed edge of Gm which contains only one

white vertex but may contain crossings. Finally we shall investigate minimal

charts with loops.

Fig. 1. (a) is of type 1 and (b) is of type 2.
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Theorem 1.4. Let G be a minimal chart with exactly six white vertices.

Suppose that G contains a loop of label m. If necessary we take the reflection of

the chart G , then G is C-move equivalent to a minimal chart which contains the

chart as shown in Figure 2 where e A fþ1;�1g.

This paper is organized as follows. In Section 2, we give notations and

definitions. In Section 3, we review useful lemmata proved in [5]. In Section

4 and 5, we investigate 2-angled disks and loops. In Section 6, we investigate

the subgraph Gm containing at most three white vertices, and we prove

Theorem 1.1. In Section 7, we prove Theorem 1.2. In Section 8, we prove

Theorem 1.4.

In this paper for a set X we denote the interior of X , the boundary of

X and the closure of X by IntðX Þ, qX and ClðX Þ respectively. If X is a

polyhedron in S2, we denote a regular neighborhood of X in S2 by NðXÞ.
The following is the list of the new words in this paper:

(p. 1) edge, type ðm; n1; n2; . . . ; nkÞ (or type ðn1; n2; . . . ; nkÞ),
(p. 2) middle arc, non-middle arc, lens (of type 1/of type 2), loop,

(p. 5) terminal edge, free edge, minimal chart,

(p. 6) ring, simple hoop,

(p. 7) pseudo chart,

(p. 8) admissible boundary arc, ðD; aÞ-arc of label k, ðD; aÞ-arc free,

inward arc, outward arc,

Fig. 2
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(p. 10) bipartition of G with the partition point b wit respect to the

label k, associated disk of the loop,

(p. 12) white vertex of type k with respect to Gm,

(p. 13) k-angled disk with s feelers,

(p. 22) y-curve, pair of eyeglasses, oval, skew y-curve, pair of skew eye-

glasses (of type 1/of type 2),

(p. 26) bicolored 2-angled disk (of type ðs1; s2Þ),
(p. 33) solar eclipse.

2. Preliminaries

In this section, we define charts and notations.

Let n be a positive integer. An n-chart is an oriented labeled graph in a

disk, which may be empty or have closed edges without vertices, called hoops,

satisfying the following four conditions:

(1) Every vertex has degree 1, 4, or 6.

(2) The labels of edges are in f1; 2; . . . ; n� 1g.
(3) In a small neighborhood of each vertex of degree 6, there are six

short arcs, three consecutive arcs are oriented inward and the other

three are outward, and these six are labeled i and i þ 1 alternately for

some i, where the orientation and the label of each arc are inherited

from the edge containing the arc.

(4) For each vertex of degree 4, diagonal edges have the same label and

are oriented coherently, and the labels i and j of the diagonals satisfy

ji � jj > 1.

A vertex of degree 1, 4, and 6 is called a black vertex, a crossing, and a white

vertex respectively (see Figure 3).

C-moves are local modification of charts in a disk as shown in Figure 4

(see [1], [4] for the precise definition). Kamada originally defined CI-moves as

follows (C-I-moves are special cases of CI-moves): A chart G is obtained from

a chart G 0 by a CI-move, if there exists a disk D such that

Fig. 3
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(1) the two charts G and G 0 intersect the boundary of D transversely or

do not intersect the boundary of D,

(2) G VDc ¼ G 0 VDc, and

(3) neither G VD nor G 0 VD contains a black vertex,

where ð� � �Þc is the complement of ð� � �Þ.
Two charts are said to be C-move equivalent if there exists a finite sequence

of C-moves which modify one of the two charts to the other.

Let G be a chart. An edge of G or Gm is called a free edge if it has

two black vertices. An edge of G or Gm is called a terminal edge if it has a

white vertex and a black vertex. Note that free edges of Gm, terminal edges of

Gm, and loops may contain crossings of G .

For each chart G , let wðGÞ and f ðGÞ be the number of white vertices, and

the number of free edges respectively. The pair ðwðGÞ;�f ðGÞÞ is called the

complexity of the chart. A chart is called a minimal chart if its complexity is

minimal among the charts C-move equivalent to the chart with respect to the

lexicographic order of pairs of integers.

In the following lemma, we investigate the di¤erence of a chart in a disk

and in a 2-sphere. This lemma follows from that there exists a natural one-to-

Fig. 4. For the C-III-1 move, the edge containing the black vertex does not contain a middle arc

in the left figure.
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one correspondence between fcharts in S2g=C-moves and fcharts in D2g=C-
moves, conjugations ([3, Chapter 23 and Chapter 25]).

Lemma 2.1 ([5, Lemma 2.1]). Let G and G 0 be charts in a disk D. Sup-

pose that G is ambient isotopic to G 0 in the one point compactification of the

open disk IntðDÞ, i.e. the 2-sphere S2. Then there exist hoops C1;C2; . . . ;Ck in

IntðDÞ such that

(1) the chart G is obtained from G 0 U 6
k

i¼1

Ci

 !
by C-moves in the disk D,

(2) the chart G 0 and hoops C1;C2; . . . ;Ck are mutually disjoint, and

(3) each hoop Ci bounds a disk containing the chart G 0 in the disk D.

Moreover the chart G is minimal if and only if G 0 is minimal.

Lemma 2.1 says that we can move the point at infinity in S2 to any

complementary domain of the chart. To make the argument simple, we

assume that the charts lie on the 2-sphere instead of the disk. In this paper,

all charts are contained in the 2-sphere S2.

We have the special point in the 2-sphere S2, called the point at infinity,

denoted by y. In this paper, all charts are contained in a disk such that the

disk does not contain the point at infinity y.

A hoop is a closed edge of a chart G without vertices (hence without

crossings, neither). A ring is a closed edge of Gm containing crossings but

not containing a white vertex. A hoop is said to be simple if one of the

complementary domain of the hoop does not contain any white vertices.

It was shown in [5] the following: if a minimal chart G does not satisfy one

of the following six conditions, then there exists another minimal chart G 0 such

that G 0 satisfies all of the six conditions and G 0 is C-move equivalent to G , or

we have a contradiction to the minimality of G . We can assume that all

minimal charts G satisfy the following six conditions (see [5]):

Assumption 1. No terminal edge of Gm contains a crossing. Hence any

terminal edge of Gm is a terminal edge of G and any terminal edge of Gm

contains a middle arc.

Assumption 2. No free edge of Gm contains a crossing. Hence any free

edge of Gm is a free edge of G .

Assumption 3. All free edges and simple hoops in G are moved into a

small neighborhood Uy of the point at infinity y.

Assumption 4. Each complementary domain of any ring must contain at

least one white vertex.
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Assumption 5. Hence we assume that the subgraph obtained from G by

omitting free edges and simple hoops does not meet the set Uy. Also we assume

that G does not contain free edges nor simple hoops, otherwise mentioned.

Therefore we can assume that if an edge of Gm contains a black vertex, then it

is not a free edge but a terminal edge and that each complementary domain of

any hoops and rings of G contains a white vertex, otherwise mentioned.

Assumption 6. The point at infinity y is moved in any complementary

domain of G .

We use the following notation:

In our argument, we often need a name for an unnamed edge by using

a given edge and a given white vertex. For the convenience, we use the

following naming: Let e 0, ei, e
00 be three consecutive edges containing a white

vertex wj . Here, the two edges e 0 and e 00 are unnamed edges. There are six

arcs in a neighborhood U of the white vertex wj. If the three arcs e 0 VU ,

ei VU , e 00 VU lie anticlockwisely around the white vertex wj in this order, then

e 0 and e 00 are denoted by aij and bij respectively (see Figure 5). There is a

possibility aij ¼ bij if they are contained in a loop.

3. Lemmata

Lemma 3.1 ([5, Theorem 1.1 and Corollary 6.3]). Let G be a minimal

chart. Then the following hold:

(1) There exist at least three white vertices in the interior of any lens.

(2) If G is a minimal chart of type ðm; n1; n2; . . . ; nkÞ, then there does not

exist any lens of type ðm;mþ 1Þ nor ðmþ k � 1;mþ kÞ.

Let G be a chart. If an object consists of some edges of G , arcs in edges

of G and arcs around white vertices, then the object is called a pseudo chart.

Let G and G 0 be C-move equivalent charts. Suppose that a pseudo chart

X of G is also a pseudo chart of G 0. Then we say that G is modified to G 0 by

Fig. 5
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C-moves keeping X fixed. In Figure 6, we give examples of C-moves keeping

pseudo charts fixed.

Let D be the closure of an open disk U . A simple arc a in qU ¼ D�U

is called an admissible boundary arc of D provided that aVClðqU � aÞ ¼ qa.

Let G be a chart, and D the closure of an open disk U . Let a be a simple

arc in qU ¼ D�U . We call a simple arc g in an edge of Gk a ðD; aÞ-arc of

label k provided that qgH IntðaÞ and IntðgÞHU . If there is no ðD; aÞ-arc in

G, then the chart G is said to be ðD; aÞ-arc free.

Let G be a chart and D the closure of an open disk U . Let a be a simple

arc in qU . For each k ¼ 1; 2; . . . , let Sk be the pseudo chart which consists of

all arcs in DVGk intersecting the set ClðqU � aÞ. Let Sa ¼ 6
k

Sk.

Lemma 3.2 ([5, Lemma 3.3]) (Disk Lemma). Let G be a minimal chart

and D the closure of an open disk U. Let a be an admissible boundary arc of

D. Suppose that the interior of a contains neither white vertices, isolated points

of ClðUÞVG , nor arcs of ClðUÞVG . If U does not contain white vertices of G ,

then for any neighborhood V of a, there exists a ðD; aÞ-arc free minimal chart G 0

obtained from the chart G by C-moves in V UD keeping Sa fixed (see Figure 7

and 8).

Let G be a chart, and v a vertex. Let a be a short arc of G in a small

neighborhood of v with v A qa. If the arc a is oriented to v, then a is called an

inward arc, and the otherwise a is called an outward arc.

The following lemma will be used in the proof of Lemma 5.2 and 5.5.

Fig. 6. C-moves keeping thicken figures fixed.
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Lemma 3.3 ([5, Lemma 5.2]). Let G be a minimal chart. Let e1 be an edge

of Gm with qe1 HGmþe ðe A fþ1;�1gÞ. Let w1 and w2 be the white vertices of

the edge e1. Suppose that

(1) one of the two edges a11 and b12 contains an inward arc and the other

contains an outward arc, and

(2) one of the two edges a12 and b11 contains an inward arc and the other

contains an outward arc (see Figure 9).

Then the edge e1 contains at least one crossing in Gm VGmþ2e. In particular

if both edges a11 and b12 are terminal edges, or if both edges a12 and b11 are

terminal edges, then e1 contains at least two crossings in Gm VGmþ2e.

Let a be an arc, and p, q points in a. We denote by a½ p; q� the subarc of

a whose end points are p and q.

Fig. 7. The open disk U is a shaded area and ClðUÞ is a disk.

Fig. 8. The open disk U is a shaded area and ClðUÞ is not a disk.

Fig. 9
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Let G be a chart and a, b, c mutually di¤erent three points of an arc a

with b A a½a; c�. The arc a½a; c� is said to be a bipartition arc of G with the

partition point b with respect to the label k provided that

(1) a½a; c�VClðGk � a½a; c�ÞH fa; cg,
(2) a½a; b�VG j ¼ q for all j ð j > kÞ, and

(3) a½b; c�VG i ¼ q for all i ði < kÞ.
The following lemma will be used in the proof of Lemma 7.1.

Lemma 3.4 ([5, Lemma 4.1]) (Bipartition Lemma). Let G be a chart, and

D a disk without any white vertices of G . Let a be a proper arc of the disk

D. Let a, c be the end points of a, and b an interior point of a. Suppose that

there exists an integer m with ClðGm � aÞV IntðDÞ ¼ q such that G i V a is at

most finitely many interior points of a for each i ði0mÞ. Then there exists a

chart G � obtained from G by C-I-R2 moves and C-I-R3 moves in D keeping

Gm fixed such that (see Figure 10)

(1) the number of points in G i V a is equal to the number of points in

G �
i V a for each i ði0mÞ, and

(2) the arc a½a; c� is a bipartition arc of G � with the partition point b with

respect to the label m.

4. Loops

Let G be a chart. Let l be a loop of label m, and w the white vertex in

l. Let e be the edge of Gm with w A e and e0 l. Then the loop l bounds

two disks on the 2-sphere. One of the two disks does not contain the edge e.

The disk is called the associated disk of the loop l (see Figure 11).

Let D be a disk. We denote the number of white vertices in IntðDÞ by

wðDÞ.

Lemma 4.1. Let G be a minimal chart with a loop l of label m, and

let e A fþ1;�1g be the integer such that the white vertex in l is contained in Gmþe.

Let D be the associated disk of l. Then IntðDÞ (resp. S2 �D) contains at least

one white vertex of Gmþe (resp. Gm). Hence wðDÞb 1 and wðClðS2 �DÞÞb 1.

Fig. 10
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Proof. Let e and e 0 be the edges of Gm and Gmþe respectively such that

w A e, w A e 0, e0 l, and e 0 HD (see Figure 11).

Since the edge e does not contain a middle arc at the white vertex w, it is

not a terminal edge by Assumption 1. Hence there exists a white vertex of Gm

in S2 �D.

Since the edge e 0 of Gmþe does not contain a middle arc at w in D, we

have wðDÞb 1 in a similar way as above.

Lemma 4.2. Let G be a minimal chart with a loop l of label m. Let D be

the associated disk of the loop l. Then wðDÞb 2 and wðClðS2 �DÞÞb 2.

Proof. By Lemma 4.1, there exists a white vertex of Gmþe in IntðDÞ. If

IntðDÞ contains only one white vertex of Gmþe, then there exists a loop l 0 of

Gmþe in IntðDÞ. By Lemma 4.1, the associated disk of the loop l 0 contains

another white vertex in its interior. Hence we have wðDÞb 2.

Similarly we have wðClðS2 �DÞÞb 2.

We note that the statement ‘‘wðClðS2 �DÞÞb 2’’ in Lemma 4.2 will be

extended to ‘‘wðClðS2 �DÞÞb 3’’ in Lemma 8.2.

5. 2-angled disks

Let G be an n-chart. Let F be a closed domain with qF HGm�1 U
Gm UGmþ1 for some integer m, where G0 ¼ q and Gn ¼ q. By the condition

(3) for charts, in a small neighborhood of each white vertex, there are three

inward arcs and three outward arcs. Also in a small neighborhood of each

black vertex, there exists only one inward arc or one outward arc. We often

use the following fact, when we fix (inward or outward) arcs near white vertices

and black vertices:

The number of inward arcs contained in F VGm is equal to the number

of outward arcs in F VGm.

When we use this fact, we say that we use IO-Calculation with respect to Gm in

F . For example in a chart G, consider the pseudo chart as shown in Figure

Fig. 11
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12. Let D be the disk whose boundary is contained in Gmþ1 as shown in

Figure 12. Suppose that IntðDÞ contains neither white vertices nor other black

vertices. Then we have m 0 ¼ m. For, if m 0 0m, then the number of inward

arcs in DVGm is zero, but the number of outward arcs in DVGm is two. This

is a contradiction. Instead of the above argument, we say that

we have m 0 ¼ m by IO-Calculation with respect to Gm in D.

For each pseudo chart G,

IOðG;mÞ ¼ the number of inward arcs of label m in G

� the number of outward arcs of label m in G:

We often use the pseudo chart around a white vertex w as shown in Figure

13. The pseudo charts (a), (b), (c) and (d) are said to be of type 1, 2, 3 and 4

with respect to Gm respectively. When we want to emphasize white vertices,

for the pseudo chart around a white vertex w of type k with respect to Gm,

we often say that w is the white vertex of type k with respect to Gm. In

IO-Calculation we often use the table of pseudo charts as shown in Figure

14. We call the table IO-table.

Let G be a chart. Let D be a disk. If qD consists of k edges of the

subgraph Gm, then D is called a k-angled disk of Gm. Let N be a regular

Fig. 12

Fig. 13
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neighborhood of qD in D. If ðN � qDÞVGm consists of s arcs, then D is

called a k-angled disk with s feelers.

Let D be a 2-angled disk of Gm with at most one feeler, and e an edge of

Gm containing a white vertex w1 in qD but not contained in D. If necessary

we take the reflection of the chart G or change the orientations of all of the

edges, we have the above six 2-angled disks as shown in Figure 15. The three

ones on the upper side are 2-angled disks without feelers and the others are 2-

angled disks with one feeler.

By IO-Calculation with respect to GmG1 or Gm in 2-angled disks and by

Assumption 1, we have the following lemma:

Lemma 5.1. Let G be a minimal chart. Let D be a 2-angled disk of Gm

with at most one feeler. If D is not of type (0–a) nor (0–c), then wðDÞ > 0.

Fig. 14. IO-table.

Fig. 15. The white vertex w1 is in Gm VGmþe and the white vertex w2 is in Gm VGmþd where

e; d A fþ1;�1g.
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5.1. 2-angled disks without feelers

Lemma 5.2. Let G be a minimal chart. Let D be a 2-angled disk of Gm of

type (0–a) as shown in Figure 15(0–a). If wðDÞ ¼ 0, then a regular neighbor-

hood NðDÞ contains one of the two pseudo charts as shown in Figure 16.

Proof. We use the notations as shown in Figure 15(0–a). By Assump-

tion 3 and Assumption 4, the disk D contains neither free edges, rings nor

hoops.

If the edge e1 is not a terminal edge of Gmþe, then e1 ¼ e2. Thus we have

two lenses in D not containing white vertices in their interiors. This contra-

dicts Lemma 3.1 (1). Hence e1 is a terminal edge. Similarly, e2 is a terminal

edge of Gmþd.

If d0 e, then we have the pseudo chart as shown in Figure 16a.

Now suppose d ¼ e. Suppose that there exists at most one proper arc

separating w1 and w2 in D which is contained in an edge of Gmþ2e.

Let e3 and e4 be the edges of Gm in qD. For i ¼ 1; 2 let ai be an arc

almost parallel to the edge eiþ2 such that DV ai ¼ qai ¼ fw1;w2g. Let pi and

qi be points in ai near w1 and w2 respectively. Let a 0
i ¼ ai½ pi; qi� for i ¼ 1; 2

and D 0 the disk with qD 0 ¼ a1 U a2 and D 0 ID (see Figure 17).

Applying Disk Lemma (Lemma 3.2) for the disk D 0 and the boundary arc

a 0
i , we have that G is ðD 0; a 0

1Þ-arc free and ðD 0; a 0
2Þ-arc free. Hence we can

assume G is ðD; e3Þ-arc free and ðD; e4Þ-arc free. Hence for i ¼ 3; 4 the edge

Fig. 16

Fig. 17. The gray disk is the disk D 0.
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ei contains at most one crossing in Gm VGmþ2e. This contradicts Lemma

3.3. Therefore there exist at least two proper arcs separating w1 and w2 in D

each of which is contained in an edge of Gmþ2e. Hence we have the pseudo

chart as shown in Figure 16b.

Lemma 5.3. Let G be a minimal chart. Let D be a 2-angled disk of Gm of

type (0–b) as shown in Figure 15(0–b). Then wðDÞb 1. If wðDÞ ¼ 1, then a

regular neighborhood NðDÞ contains one of the two pseudo charts as shown in

Figure 18.

Proof. We use the notations as shown in Figure 15(0–b). By Lemma

5.1, we have wðDÞb 1.

Suppose wðDÞ ¼ 1. By IO-Calculation with respect to Gmþe in D, there

exists a white vertex w3 of type 2 with respect to Gmþe in IntðDÞ. Since

w3 A Gmþe, we have w3 A Gm or w3 A Gmþ2e.

We show that w3 A Gmþ2e. If w3 A Gm, then there exists a terminal edge

of Gm not containing a middle arc at w3. This contradicts Assumption 1.

Hence w3 A Gmþ2e. Therefore we have the pseudo charts as shown in Figure

18.

Lemma 5.4. Let G be a minimal chart. Let D be a 2-angled disk of Gm of

type (0–c) as shown in Figure 15(0–c). Then wðDÞb 2.

Proof. We use the notations as shown in Figure 15(0–c).

If e1 ¼ e2, then the edge e1 separates D into two lenses. By Lemma 3.1

(1), wðDÞb 6. Suppose that e1 0 e2.

Neither e1 nor e2 contains a middle arc at w1 or w2, neither e1 nor e2 is

a terminal edge by Assumption 1. If e ¼ d, then there exist at least two

white vertices in D by IO-Calculation with respect to Gmþe. Thus wðDÞb 2.

If e0 d, then each of e1 and e2 possesses a white vertex in IntðDÞ. Thus

wðDÞb 2.

Lemma 5.5. Let G be a minimal chart. Suppose that D is a 2-angled disk

of Gm of type (0–c) as shown in Figure 15(0–c) and wðDÞ ¼ 2. If necessary we

change the orientations of all edges and if necessary we take the reflection of the

Fig. 18
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chart G , then a regular neighborhood NðDÞ contains one of the 14 pseudo charts

as shown in Figure 19 by C-moves in D keeping qD fixed.

Proof. We use the notations as shown in Figure 15(0–c).

Suppose e0 d. By the proof of Lemma 5.4, both of edges e1 and e2
contain white vertices di¤erent from w1 and w2. Hence there exist a white

vertex of Gmþe and a white vertex of Gmþd in IntðDÞ. Since there exists only

one white vertex of Gmþe in IntðDÞ, there exists a loop of label mþ e in

IntðDÞ. The associated disk of the loop contains at most one white vertex in

its interior. This contradicts Lemma 4.2. Hence e ¼ d.

By the proof of Lemma 5.4 and IO-Calculation with respect to Gmþe in D,

there exist two white vertices w3 and w4 of Gmþe in IntðDÞ such that (1) one of

w3 and w4 is of type 1 with respect to Gmþe, and the other is of type 3 with

respect to Gmþe, or (2) one of w3 and w4 is of type 2 with respect to Gmþe, and

the other is of type 4 with respect to Gmþe.

Fig. 19
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If there exists a loop of label mþ e containing w3 or w4, then we have a

contradiction in a similar way as above. Hence there does not exist any loop

of label mþ e containing w3 or w4.

For the case (1), we can show that there exists a 2-angled disk without

feelers containing w3 and w4, say D 0 (see Figure 19a). Since wðD 0Þ ¼ 0, by

Lemma 5.2, 5.3 and 5.4 the disk D 0 is a 2-angled disk of type (0–a). Hence

the both edges in qD 0 are oriented from one of w3 and w4 to the other. By

IO-Calculation with respect to Gm in ClðD�D 0Þ, we have fw3;w4gHGm or

fw3;w4gHGmþ2e.

If fw3;w4gHGm, then there exist two lenses of ðm;mþ eÞ in D whose

interiors do not contain any white vertices. This contradicts Lemma 3.1 (1).

Hence fw3;w4gHGmþ2e.

Applying Disk Lemma (Lemma 3.2) several times, we can assume that if a

connected component of DVGmþ3e intersects the 2-angled disk D 0, then the arc

is a proper arc in D separating w3 and w4 (cf. Figure 17). By Lemma 5.2, a

regular neighborhood NðD 0Þ contains the pseudo chart as shown in Figure 16b.

Hence DVGmþ3e contains at least two proper arcs each of which separates w3

and w4. Hence a regular neighborhood NðDÞ contains the pseudo chart as

shown in Figure 19a.

For the case (2), there exists an edge e3 of Gmþe containing w3 and w4.

Since w3 and w4 are white vertices of type 2 or 4 with respect to Gmþe, there

exist terminal edges e4 and e5 of Gmþe containing w3 and w4 respectively.

The arc e1 U e2 U e3 separates the disk D into two disks, say D1 and D2.

By IO-Calculation with respect to Gm in D, we have fw3;w4gHGm or

fw3;w4gHGmþ2e.

Suppose fw3;w4gHGm. By IO-Calculation with respect to Gm in D1 and

D2, both of e4 and e5 are contained in D1 or D2. There exists a lens of

ðm;mþ eÞ in D whose interior does not contain any white vertices. This

contradicts Lemma 3.1 (1). Hence fw3;w4gHGmþ2e.

There are two possibilities: (i) Both of e4 and e5 are contained in D1 or

D2 (see Figure 19b), or (ii) one of e4 and e5 is contained in D1 and the other is

contained in D2 (see Figure 19c).

Let e 04, e 05 be the edges of Gmþ2e containing w3 and w4 respectively and

di¤erent from a43, b43, a54 and b54. There are three possibilities: (a) Neither

e 04 nor e 05 is a terminal edge (see Figure 19b-1 and Figure 19c-1), (b) only one of

e 04 and e 05 is a terminal edge (see Figure 19b-2, b-3 and Figure 19c-2, c-3), or (c)

both of e 04 and e 05 are terminal edges (see Figure 19b-4, b-5, b-6, b-7 and Figure

19c-4, c-5, c-6).

Applying Disk Lemma (Lemma 3.2) twice, DVGmþ2e is one of pseudo

charts as shown in Figure 19b and c. Applying Disk Lemma (Lemma 3.2)

several times, we can assume that if a connected component of DVGmþ3e
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intersects the edge e3, then the arc is a proper arc in D separating w3 and

w4.

Suppose that the edges e 04 and e 05 satisfy the conditions (i) and (b) (see

Figure 19b-2, b-3). By Lemma 3.3, e3 contains at least one crossing in

Gmþe VGmþ3e. Hence DVGmþ3e contains at least one proper arc separating

w3 and w4.

Suppose that the edges e 04 and e 05 satisfy the conditions (i) and (c) (see

Figure 19b-4, b-5, b-6, b-7). By Lemma 3.3, e3 contains at least two crossings

in Gmþe VGmþ3e. Hence DVGmþ3e contains at least two proper arcs separating

w3 and w4.

Suppose that the edges e 04 and e 05 satisfy the conditions (ii) and (b) or the

conditions (ii) and (c) (see Figure 19c-2, c-3, c-4, c-5, c-6). Without loss of

generality we can assume that e 04 is a terminal edge. Suppose e3 VGmþ3e ¼ q.

Let a be an arc connecting the black vertex in e 04 and a point in a54 such that

IntðaÞV ðGmþe UGmþ2e UGmþ3eÞ ¼ q. By C-II moves, we can assume IntðaÞV
G ¼ q. Since we apply a C-I-M2 move between e 04 and a54, we have a new

terminal edge containing w4 but not containing a middle arc at w4. This

contradicts Assumption 1. Hence e3 contains at least one crossing in Gmþe V
Gmþ3e. Hence DVGmþ3e contains at least one proper arc separating w3 and

w4.

5.2. 2-angled disks with one feeler

Lemma 5.6. Let G be a minimal chart. Let D be a 2-angled disk of Gm of

type (1–a) as shown in Figure 15(1–a). Then wðDÞb 1. If wðDÞ ¼ 1, then a

regular neighborhood NðDÞ contains the pseudo chart as shown in Figure 20.

Proof. We use the notations as shown in Figure 15(1–a). By Lemma

5.1, we have wðDÞb 1.

Suppose wðDÞ ¼ 1. By IO-Calculation with respect to Gmþd in D, there

exists a white vertex w3 of type 2 with respect to Gmþd. There exists a 2-

Fig. 20
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angled disk D 0 of Gmþd with wðD 0Þ ¼ 0 and D 0 HD. Since the both two edges

in qD 0 are oriented from w2 to w3, the 2-angled disk D 0 is of type (0–a) or (1–a).

By Lemma 5.1 and 5.2, the 2-angled disk D 0 is of type (0–a). By IO-

Calculation with respect to Gm in ClðD�D 0Þ, we have w3 A Gmþ2d. Hence

e1 is a terminal edge. By Lemma 5.2, we have the pseudo chart as shown in

Figure 20.

Lemma 5.7. Let G be a minimal chart. Let D be a 2-angled disk of Gm of

type (1–b) or (1–c) as shown in Figure 15(1–b) or (1–c). Then wðDÞb 3.

Proof. We use the notations as shown in Figure 15(1–b) and (1–c).

Since the edge e2 of Gm does not contain a middle arc at w2, by

Assumption 1 there exists a white vertex w3 of Gm with qe2 ¼ fw2;w3g. Hence

wðDÞb 1.

If there exists only one white vertex of Gm in IntðDÞ, then there exists a

loop of Gm in D. By Lemma 4.2, wðDÞb 3. Hence we can assume that there

exist at least two white vertices of Gm in IntðDÞ.
Suppose wðDÞ ¼ 2. Then there exists a 2-angled disk D 0 of Gm in D with

wðD 0Þ ¼ 0 and w3 A qD 0. Let w4 be the white vertex in qD 0 with w4 0w3.

Let e4 be the edge of Gm with e4 C w4 and e4 Q qD 0. Then e4 is a terminal

edge. Thus the both edges in qD 0 are oriented from one of w3 and w4 to

the other one. Since e2 QD 0, the 2-angled disk D 0 is of type (0–a) or (1–a).

Since wðD 0Þ ¼ 0, the 2-angled disk D 0 is of type (0–a) by Lemma 5.2 and 5.6.

If D is of type (1–b) (see Figure 21a), then none of the six edges e1, b22,

a23, b23, a44, b44 contain middle arcs at w1, w2, w3, w3, w4, w4 respectively. By

Assumption 1 none of the six edges are terminal edges. The four edges e1,

b22, a23, b23 contain outward arcs at w1, w2, w3, w3 respectively. We have a

contradiction by IO-Calculation with respect to GmGd in ClðD�D 0Þ. Thus

wðDÞb 3.

If D is of type (1–c) (see Figure 21b), then none of the six edges e1, a22,

a23, b23, a44, b44 contain middle arcs at w1, w2, w3, w3, w4, w4 respectively. By

Fig. 21
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Assumption 1, none of the six edges are terminal edges. The four edges e1,

b22, a44, b44 contain outward arcs at w1, w2, w4, w4 respectively and the three

edges a22, a23, b23 contain inward arcs at w2, w3, w3 respectively. By IO-

Calculation with respect to GmGd in ClðD�D 0Þ, the edge b22 of Gmþd is a

terminal edge. If a44 ¼ a22 or a44 ¼ a23, then we have a contradiction by IO-

Calculation. Thus we have a44 ¼ b23. However there exists a lens of type

ðm;mG dÞ in D whose interior does not contain any white vertices. This

contradicts Lemma 3.1 (1). Therefore wðDÞb 3.

By Lemma 5.2, 5.3, 5.4, 5.6 and 5.7, we have the following corollary:

Corollary 5.8. Let G be a minimal chart. Let D be a 2-angled disk

of Gm with at most one feeler. If wðDÞ ¼ 0, then D is of type (0–a) and a

regular neighborhood NðDÞ contains one of the two pseudo charts as shown in

Figure 16.

If D is a 2-angled disk of type (1–b) or (1–c), then so is ClðS2 �DÞ. By

Lemma 5.7, we have the following corollary. We shall use this corollary in [6].

Corollary 5.9. Let G be a minimal chart with at most seven white

vertices. Then there does not exist any 2-angled disk of Gm of type (1–b)

nor (1–c).

6. Types of charts

Lemma 6.1. Let G be a minimal chart of type ðm; n1; n2; . . . ; nkÞ. For

each label i, if a connected component of G i contains a white vertex, then it

contains at least two white vertices. Hence n1 > 1 and nk > 1.

Proof. Let S be a connected component of G i containing only one white

vertex. In a neighborhood of the white vertex, among three arcs contained

in edges of G i there exists only one middle arc. Thus there exists a terminal

edge of S which does not contain a middle arc. This contradicts Assump-

tion 1.

In our argument we often construct a chart G . On the construction of a

chart G , for a white vertex w, among the three edges of Gm containing w, if we

have specified two edges and if the last edge of Gm containing w contains a

black vertex (see Figure 22a and b), then we remove the edge containing the

black vertex and put a black dot at the center of the white vertex as shown in

Figure 22c, we call it a BW-vertex.

For example, the graph as shown in Figure 23a means one of the four

graphs as shown in Figure 23b.
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Lemma 6.2. Let G be a minimal chart. Let S be a connected component

of Gm containing a white vertex. If S contains at most three white vertices, then

it is one of six subgraphs as shown in Figure 24.

Proof. By Lemma 6.1, S contains at least two white vertices.

Suppose that S contains exactly two white vertices. If S does not contain

any terminal edge, then S is one of the two subgraphs as shown in Figure 24a

and b. If S contains at least one terminal edge, S is the subgraph as shown in

Figure 24c.

Suppose that S contains exactly three white vertices. By IO-Calculation

with respect to Gm, S contains exactly one terminal edge of Gm. Hence S is

Fig. 22

Fig. 23

Fig. 24
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obtained by adding one BW-vertex on an edge of the two subgraphs as shown

in Figure 24a and b. Now S is contained in the 2-sphere. Thus S is one of

the three subgraphs as shown in Figure 24d, e and f.

We call the subgraphs a, b, c, d in Figure 24 a y-curve, a pair of eyeglasses,

an oval and a skew y-curve respectively. We call the subgraphs as shown in

Figure 24e and f pairs of skew eyeglasses of type 1 and 2 respectively.

Lemma 6.3. Let G be a minimal chart of type ðm; n1; n2; . . . ; nkÞ. Suppose

that n1 ¼ 2 (resp. nk ¼ 2), and Gm (resp. Gmþk) contains a y-curve. Then

n2 > 3 (resp. nk�1 > 3).

Proof. Suppose n1 ¼ 2 and Gm contains a y-curve. The y-curve sepa-

rates the 2-sphere into three 2-angled disks of Gm. Two of them are of type

(0–c), say D1 and D2. We use the notations as shown in Figure 25a.

By Lemma 3.1 (2), a11 0 b12 and b11 0 a12. By Assumption 1, none of

a11, b11, a12, b12 are terminal edges. By IO-Calculation with respect to Gmþ1 in

Di for i ¼ 1; 2, IntðDiÞ contains at least two white vertices of Gmþ1. Therefore

n2 > 3.

Similarly we can show for the case nk ¼ 2.

Lemma 6.4. Let G be a minimal chart of type ðm; n1; n2; . . . ; nkÞ. Suppose

that n1 ¼ 2 (resp. nk ¼ 2), and Gm (resp. Gmþk) contains a pair of eyeglasses.

Then n2 > 1 (resp. nk�1 > 1).

Proof. Suppose that n1 ¼ 2 and Gm contains a pair of eyeglasses. Then

Gm contains two loops. By Lemma 4.1, the associated disk of each loop

contains at least one white vertex of Gmþ1. Hence n2 > 1.

Similarly we can show for the case nk ¼ 2.

Lemma 6.5. Let G be a minimal chart of type ðm; n1; n2; . . . ; nkÞ. Suppose

that n1 ¼ 2 (resp. nk ¼ 2), and Gm (resp. Gmþk) contains an oval. Then n2 > 1

(resp. nk�1 > 1).

Fig. 25
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Proof. Suppose that n1 ¼ 2 and that Gm contains an oval, say S. Then

the oval S separates the 2-sphere into two 2-angled disks of Gm, say D1 and

D2.

If D1 is a 2-angled disk with one feeler, then so is D2. By IO-Calculation

with respect to Gmþ1 in Di for i ¼ 1; 2, there exists a white vertex of Gmþ1 in

IntðDiÞ. Hence n2 > 1.

Hence we may assume that D1 is a 2-angled disk with two feelers and D2

is a 2-angled disk without feelers. We use the notations as shown in Figure

25b. Since none of the four edges a11, b11, a22 and b22 contain middle arcs

at w1, w1, w2 and w2 respectively, none of the edges are terminal edges by

Assumption 1.

By IO-Calculation with respect to Gmþ1 in D1, we have n2 0 1. If n2 ¼ 0,

then a11 ¼ b22 and b11 ¼ a22. Hence there exist two lenses of type ðm;mþ 1Þ.
This contradicts Lemma 3.1 (2). Hence n2 > 1.

Similarly we can show for the case nk ¼ 2.

By Lemma 6.2, 6.3, 6.4 and 6.5, we have the following proposition:

Proposition 6.6. Let G be a minimal chart of type ðm; n1; n2; . . . ; nkÞ. If

n1 ¼ 2 (resp. nk ¼ 2), then n2 > 1 (resp. nk�1 > 1). Hence there does not exist

a minimal chart of type ðm; 2; 0; . . . ; nkÞ, ðm; 2; 1; . . . ; nkÞ, ðm; n1; n2; . . . ; 0; 2Þ nor

ðm; n1; n2; . . . ; 1; 2Þ.

In a similar way as the one of Lemma 6.5, we have the following lemma.

We shall use this lemma in [6].

Lemma 6.7. Let G be a minimal chart. Let D be a 2-angled disk

of Gm with two feelers such that qD is contained in an oval of Gm. Then

wðDÞb 2.

Lemma 6.8. Let G be a minimal chart of type ðm; n1; n2; . . . ; nkÞ. Suppose

that n1 ¼ 3 (resp. nk ¼ 3), and Gm (resp. Gmþk) contains a skew y-curve. Then

n2 > 1 (resp. nk�1 > 1).

Proof. Suppose n1 ¼ 3 and Gm contains a skew y-curve, say S. Then

S separates the 2-sphere into three disks. One is a 3-angled disk of Gm with

one feeler, say A. One is a 2-angled disk of Gm without feelers, say B. We

use the notations as shown in Figure 26. Without loss of generality we can

assume that the terminal edge of Gm contains an outward arc at the white

vertex w1.

By Assumption 1, the terminal edge contains a middle arc. Hence the

other edges of Gm containing w1 are oriented to w1. Without loss of generality

we can assume the edge qAV qB is oriented from w2 to w3. The other edge in

qB is oriented from w3 to w2.
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By IO-Calculation with respect to Gmþ1 in the domains A and B, there

exists a white vertex of Gmþ1 in both IntðAÞ and IntðBÞ. Hence n2 > 1.

Similarly we can show for the case nk ¼ 3.

Let G be a chart containing a pair of skew eyeglasses S of Gm of type 1

(see Figure 27a). Let D1 be the associated disk of the loop l in S and D2 a 2-

angled disk of Gm with qD2 HS and D1 VD2 ¼ q. Let e4 be the terminal

edge in the pair of skew eyeglasses. Without loss of generality, we can assume

that the two edges e3 and a31 contain outward arcs at w1. We use the

notations as shown in Figure 27a. Suppose that G is a minimal chart. Then

the loop l and the other edges are oriented automatically as shown in Figure

27a. Note that the terminal edge e4 is oriented from w3 to the black vertex.

Lemma 6.9. Let G be a minimal chart of type ðm; n1; n2; . . . ; nkÞ. Suppose

that n1 ¼ 3 (resp. nk ¼ 3), and Gm (resp. Gmþk) contains a pair of skew

eyeglasses of type 1. Then n2 > 1 (resp. nk�1 > 1).

Proof. Suppose n1 ¼ 3 and Gm contains a pair of skew eyeglasses of

type 1. We use the notations as shown in Figure 27a and b. By Lemma 4.1,

IntðD1Þ contains a white vertex of Gmþ1.

If the terminal edge e4 of Gm is contained in the disk D2, then there exists

a white vertex of Gmþ1 in IntðD2Þ by IO-Calculation with respect to Gmþ1 in

D2. Thus n2 > 1.

Fig. 26

Fig. 27
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Suppose that e4 QD2 (see Figure 27b). Suppose that there does not exist

any white vertex of Gmþ1 in S2 � ðD1 UD2Þ. Since none of the five edges b31,

a32, b32, a43 and b43 contain middle arcs at w1, w2, w2, w3 and w3 respectively,

none of the edges are terminal edges. There are three possibilities: a32 ¼ a31,

a32 ¼ a43 and a32 ¼ b43. By IO-Calculation with respect to Gmþ1, we have

a32 ¼ b43. However the curve a32 U e2 bounds a lens of type ðm;mþ 1Þ. This

contradicts Lemma 3.1 (2). Hence there exists a white vertex of Gmþ1 in

S2 � ðD1 UD2Þ. Therefore n2 > 1.

Similarly we can show for the case nk ¼ 3.

Since a pair of skew eyeglasses of type 2 contain two loops, we can prove

the following lemma by the similar way as the one of Lemma 6.4.

Lemma 6.10. Let G be a minimal chart of type ðm; n1; n2; . . . ; nkÞ. Sup-

pose that n1 ¼ 3 (resp. nk ¼ 3), and Gm (resp. Gmþk) contains a pair of skew

eyeglasses of type 2. Then n2 > 1 (resp. nk�1 > 1).

By Lemma 6.2, 6.8, 6.9 and 6.10, we have the following proposition:

Proposition 6.11. Let G be a minimal chart of type ðm; n1; n2; . . . ; nkÞ. If

n1 ¼ 3 (resp. nk ¼ 3), then n2 > 1 (resp. nk�1 > 1). Hence there does not exist

a minimal chart of type ðm; 3; 0; . . . ; nkÞ, ðm; 3; 1; . . . ; nkÞ, ðm; n1; n2; . . . ; 0; 3Þ nor

ðm; n1; n2; . . . ; 1; 3Þ.

We show the first main theorem as follows:

Proof of Theorem 1.1. Since G contains exactly seven white vertices,

we have n1 þ n2 þ � � � þ nk ¼ 7. Moreover since n1 > 1 and nk > 1 by Lemma

6.1, we have n1 ¼ 2; 3; 4; 5 or 7. If necessary we change the label mþ i by

mþ k � i for all label i, then we can assume n1 b nk.

If n1 ¼ 7, then the chart G is of type (7).

If n1 ¼ 5, then nk ¼ 2 ðkb 2Þ. Since there is no chart of type ð. . . ; 0; 2Þ
by Proposition 6.6, the chart G is of type ð5; 2Þ.

If n1 ¼ 4, then nk ¼ 2 or 3. Since there is no chart of type ð. . . ; 0; 2Þ nor

ð. . . ; 1; 2Þ by Proposition 6.6, we have nk ¼ 3. Since there is no chart of type

ð. . . ; 0; 3Þ by Proposition 6.11, the chart G is of type ð4; 3Þ.
If n1 ¼ 3, then nk ¼ 2 or 3. Since there is no chart of type ð3; 0; . . .Þ nor

ð3; 1; . . .Þ by Proposition 6.11, we have nk ¼ 2. Since there is no chart of type

ð. . . ; 0; 2Þ nor ð. . . ; 1; 2Þ by Proposition 6.6, the chart G is of type ð3; 2; 2Þ.
If n1 ¼ 2, then nk ¼ 2. Since there is no chart of type ð2; 0; . . .Þ,

ð2; 1; . . .Þ, ð. . . ; 0; 2Þ nor ð. . . ; 1; 2Þ by Proposition 6.6, the chart G is of type

ð2; 3; 2Þ.
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7. Complements of lenses

Let G be a chart and D a disk. If qD consists of an edge of Gm and an

edge of Gmþ1, then D is called a bicolored 2-angled disk. Let w1 and w2 be the

white vertices in qD. For i ¼ 1; 2, let Ni be a regular neighborhood of wi

in D. If ðNi � qDÞVG consists of si arcs, then we say that D is a bicolored

2-angled disk of type ðs1; s2Þ. Note that a lens is a bicolored 2-angled disk of

type ð0; 0Þ.

Lemma 7.1. Let G be a chart. Let D be the bicolored 2-angled disk of

type ð2; 2Þ as shown in Figure 28. Suppose that wðDÞ ¼ 2 and the two white

vertices w3 and w4 are in Gmþe VGmþ2e where e A fþ1;�1g. Then G is not

minimal.

Proof. We use the notations as shown in Figure 28. Suppose e ¼ þ1.

Let b be a point in the interior of the edge e5. By Bipartition Lemma

(Lemma 3.4), the edge e5 ¼ e5½w4;w2� is a bipartition arc of G with the

partition point b with respect to the label m. Using C-I-R2 moves, C-I-R3

moves and C-I-R4 moves, we can push the arcs in edges of G i for all i < m

intersecting the edge e5 to the other side of the white vertex w4. Hence we can

assume that e5 VG i ¼ q for all i < m. Hence e5 VGm�1 ¼ q.

Similarly we can assume that e4 VG i ¼ q for all i < m. Thus e4 V
Gm�1 ¼ q.

The arc e3 U e4 U e5 separates D into two disks. For i ¼ 1; 2 let Di be the

one of the two disks with ei HDi.

Since Gm does not contain any crossings of label m� 1 and since

ðe4 U e5ÞVGm�1 ¼ q, we have qD1 VGm�1 ¼ e3 VGm�1. By Disk Lemma

(Lemma 3.2), G is ðD1; e3Þ-arc free (cf. Figure 17). Hence we can assume

that qD1 VGm�1 ¼ q. By Disk Lemma (Lemma 3.2), G is ðD2; e2Þ-arc free,

too. Hence qD2 VGm�1 ¼ q and e2 VGm�1 ¼ q.

Since e2 VGm�1 ¼ q, we can apply a C-I-M2 move between the two

terminal edges of Gm along the edge e2. Then we obtain a new free edge.

Hence the number of free edges increases. Therefore G is not minimal.

Similarly we can show for the case e ¼ �1.

Fig. 28. The gray disk D is of type ð2; 2Þ.
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Lemma 7.2. Let G be a minimal chart. Let D be a bicolored 2-angled

disk of type ð2; 2Þ as shown in Figure 29a. Then wðDÞb 3.

Proof. We use the notations as shown in Figure 29a. Suppose wðDÞa 2.

If e3 ¼ e4, then the edge e3 separates D into two disks. One of the two

disks is a lens D 0 in D with wðD 0Þa 2. This contradicts Lemma 3.1 (1).

Hence e3 0 e4. Similarly we have e5 0 e6.

By IO-Calculation with respect to Gmþe in D, there exist two white vertices

w3 and w4 of Gmþe in IntðDÞ. Without loss of generality we can assume that

qe3 ¼ fw1;w3g.
Suppose that qe4 ¼ fw2;w3g. Let e be the edge of Gmþe adjacent to w3

with e0 e3 nor e0 e4. Then e does not contain a middle arc at w3. Hence e

must contain the vertex w4. Since there is no white vertex di¤erent from

w3 and w4 in IntðDÞ, there exists a loop of label mþ e containing the white

vertex w4 whose associated disk does not contain any white vertex in its

interior. This contradicts Lemma 4.2. Therefore qe4 ¼ fw2;w4g.
Since there exist only two white vertices in IntðDÞ, there is no loop

adjacent to the white vertices w3 nor w4. Hence there exists an edge e7 of

Gmþe with qe7 ¼ fw3;w4g in D. Hence there are two possibilities of pseudo

charts as shown in Figure 29b and c.

For the case (b), the set e3 U e4 U e7 U e8 separates D into three disks. For

i ¼ 1; 2 let Di be the one of the three disks with ei HDi. Let D3 be the last

one.

Since e3 contains an outward arc at w3, one of e7 and e8 contains an

inward arc at w3. Since qD3 ¼ e7 U e8 and since the disk D3 is a 2-angled disk

without feelers such that wðD3Þ ¼ 0, we have that D3 is of type (0–a) and both

of e7 and e8 contain inward arcs at w3 by Corollary 5.8.

By IO-Calculation with respect to Gm in D1, both vertices w3 and w4 are in

Gm or Gmþ2e at the same time.

If w3 and w4 are in Gm, then in D1 there exists a lens of type ðm;mþ eÞ
whose interior does not contain any white vertices. If w3 and w4 are in Gmþ2e,

then in D2 there exists a lens of type ðmþ e;mþ 2eÞ whose interior does not

contain any white vertices. For each cases we have a contradiction to Lemma

3.1 (1).

Fig. 29
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For the case (c), the set e3 U e4 U e7 separates D into two disks. For

i ¼ 1; 2 let Di be the one of the two disks with ei HDi.

If fw3;w4gHGmþ2e, then e5 0 e6 implies that e5 and e6 are terminal

edges. This contradicts Lemma 7.1. Hence fw3;w4gQGmþ2e.

If one of the two vertices w3 and w4 is in Gmþ2e, then there exists a loop of

label m in D whose associated disk contains at most one white vertex in its

interior. This contradicts Lemma 4.2. Thus we have fw3;w4gHGm.

Let e 0 and e 00 be the terminal edges of Gmþe containing w3 and w4

respectively. By IO-Calculation with respect to Gm in D1 and D2 at the

same time, both edges e 0 and e 00 are in D1 or D2. Then there exists a lens D 0

of type ðm;mþ eÞ in D1 or D2 with wðD 0Þ ¼ 0. This contradicts Lemma 3.1

(1). Therefore wðDÞb 3.

If D is a bicolored 2-angled disk of type ð2; 2Þ as shown in Figure 29a,

then so is ClðS2 �DÞ. By Lemma 7.2, we have the following corollary. We

shall use this corollary in [6].

Corollary 7.3. Let G be a minimal chart with at most seven white

vertices. Then there does not exist any bicolored 2-angled disk of type ð2; 2Þ as

shown in Figure 29a.

Proposition 7.4. Let G be a minimal chart. For any lens D of type 1,

S2 �D contains at least three white vertices.

Proof. Without loss of generality we can assume that D is of type

ðm;mþ 1Þ. Suppose that S2 �D contains at most two white vertices. Let

D1 ¼ ClðS2 �DÞ. Then wðD1Þa 2 and D1 is a bicolored 2-angled disk of

type ð4; 4Þ. We use the notations as shown in Figure 30a.

If e1 ¼ e2 or e 01 ¼ e 02, then D1 contains a bicolored 2-angled disk of type

ð2; 2Þ as shown in Figure 29a. By Lemma 7.2, wðD1Þb 3. This is a con-

tradiction. Hence e1 0 e2 and e 01 0 e 02.

If e1 is a loop, then by Lemma 4.2 the associated disk D 0 of the

loop contains at least two white vertices in its interior. Since wðD1Þa 2,

IntðD1Þ �D 0 does not contain any white vertices. This implies that e2 is a

loop whose associated disk does not contain any white vertices in its interior.

This contradicts Lemma 4.2. Hence e1 is not a loop. Similarly we can show

that none of e2, e 01 and e 02 are loops.

Since for i ¼ 1; 2 neither ei nor e 0i contains a middle arc at wi, by

Assumption 1 there exist white vertices wiþ2 and w 0
iþ2 di¤erent from w1

and w2 with wiþ2 A ei and w 0
iþ2 A e 0i (see Figure 30b).

Suppose w3 ¼ w4 ¼ w 0
3 ¼ w 0

4. Then the four edges e1, e2, e 02, e 01 are

situated around w3 in this order. However e1 and e 02 contain inward arcs
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at w3, and e2 and e 01 contain outward arcs at w3. This contradicts the con-

dition (3) for charts. Hence two of w3, w4, w
0
3, w

0
4 are di¤erent white vertices.

Suppose w3 ¼ w 0
3. Then w4 0w3 or w 0

4 0w3. Let e3 be the edge of Gmþ1

containing w3 but di¤erent from a13 and b13. Let D2 be the bicolored 2-angled

disk bounded by e1 U e 01 in D1. Since IntðD1Þ �D2 contains w4 or w 0
4 and

since wðD1Þa 2, we have wðD2Þ ¼ 0. There are three possibilities: e 01 ¼ b13,

e 01 ¼ a13 and e 01 ¼ e3. If e 01 ¼ b13, then D2 is a lens with wðD2Þ ¼ 0. This

contradicts Lemma 3.1 (1). If e 01 ¼ a13, then wðD2Þ ¼ 0 implies that in D2

there exists a loop of Gmþ1 containing w3 whose associated disk does not

contain any white vertices in its interior. This contradicts Lemma 4.2. Thus

e 01 ¼ e3. Then b13 and a33 are contained in D2, but one of them does not

contain a middle arc at w3. Since wðD2Þ ¼ 0, we have a contradiction by

IO-Calculation with respect to Gm or Gmþ1 in D2. Hence w3 0w 0
3.

Similarly we can show w4 0w 0
4.

If w3 ¼ w 0
4, then e1 U e 02 separates the two white vertices w 0

3 and w4 in D1.

This means that D1 contains three di¤erent white vertices w3, w
0
3 and w4. This

contradicts wðD1Þa 2. Hence w3 0w 0
4. Similarly w 0

3 0w4. Hence we have

w3 ¼ w4 and w 0
3 ¼ w 0

4.

Let e4 be the edge of Gm containing w3 but di¤erent from e1 and e2.

Since e4 does not contain a middle arc at w3, we have qe4 ¼ fw3;w
0
3g by

Assumption 1. Since one of the edges a43 and b43 does not contain a middle

arc at w3, there exists an edge e 04 of Gmþ1 with qe 04 ¼ fw3;w
0
3g (see Figure 30c).

Fig. 30
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However e4 U e 04 bounds a lens D 0 of type ðm;mþ 1Þ with wðD 0Þ ¼ 0. This

contradicts Lemma 3.1 (1). Therefore wðD1Þb 3.

Proposition 7.5. Let G be a minimal chart. For any lens D of type 2,

S2 �D contains at least three white vertices.

Proof. Without loss of generality we can assume that D is of type

ðm;mþ 1Þ. Suppose that S2 �D contains at most two white vertices. Let

D1 ¼ ClðS2 �DÞ. Then wðD1Þa 2 and D1 is a bicolored 2-angled disk of

type ð4; 4Þ. We use the notations as shown in Figure 31a.

If e1 ¼ e2, then D1 contains a bicolored 2-angled disk of type ð2; 2Þ as

shown in Figure 29a. By Lemma 7.2, wðD1Þb 3. This is a contradiction.

Hence e1 0 e2.

If e1 ¼ e 02, then the edge e1 splits D1 into two disks, say D 0
1 and D 0

2. By

IO-Calculation with respect to Gm in D 0
i for i ¼ 1; 2, there exists a white

vertex of Gm in IntðD 0
i Þ. Since wðD1Þa 2, we have wðD 0

1Þ ¼ 1 and wðD 0
2Þ ¼ 1.

Hence there exists a loop of Gm in D 0
i whose associated disk does not contain

any white vertices in its interior. This contradicts Lemma 4.2. Hence e1 0 e 02.

Similarly we can show e 01 0 e2.

If e 01 ¼ e 02, then e 01 U e 0 bounds a lens D2 in D1 with wðD2Þa 2. This

contradicts Lemma 3.1 (1). Hence e 01 0 e 02.

Since for i ¼ 1; 2 neither ei nor e 0i contains a middle arc at wi, by

Assumption 1 there exist white vertices wiþ2 and w 0
iþ2 di¤erent from w1

and w2 with wiþ2 A ei and w 0
iþ2 A e 0i (see Figure 31b).

If w3 ¼ w4 ¼ w 0
3 ¼ w 0

4, then the four edges e1, e 01, e 02 and e2 of Gm are

Fig. 31
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situated around the white vertex w3. This contradicts the condition (3) for

charts. Hence fw3;w4;w
0
3;w

0
4g contains at least two white vertices.

Since wðD1Þa 2, the set fw3;w4;w
0
3;w

0
4g consists of two di¤erent white

vertices. If three of the four vertices w3, w4, w 0
3 and w 0

4 are the same, then

there exists a loop of Gm whose associated disk does not contain any white

vertices in its interior. This contradicts Lemma 4.2. Hence there are three

cases: (1) w3 ¼ w 0
4 and w 0

3 ¼ w4, (2) w3 ¼ w 0
3 and w4 ¼ w 0

4, (3) w3 ¼ w4 and

w 0
3 ¼ w 0

4.

For the case (1), we have w3 ¼ w 0
4 ¼ w 0

3 ¼ w4 or the arc e1 U e 02 in Gm

intersects e 01 U e2 in Gm. This is a contradiction.

For the case (2), e1 U e 01 bounds a 2-angled disk D3 of Gm with at most one

feeler such that wðD3Þ ¼ 0 (see Figure 31c). By Corollary 5.8, D3 is a 2-angled

disk of type (0–a). Similarly e2 U e 02 bounds a 2-angled disk D4 of Gm of type

(0–a). Since IntðD1Þ � ðD3 UD4Þ does not contain any white vertices, there

exists a lens D5 of type ðm;mþ 1Þ with wðD5Þ ¼ 0. This contradicts Lemma

3.1 (1).

For the case (3), there must exist an edge e3 of Gm containing w3 and

w 0
3 (see Figure 31d). Let D6 be the 3-angled disk of Gm without feelers such

that qD6 ¼ eU e1 U e2 and wðD6Þ ¼ 0. Since wðD6Þ ¼ 0, there exists a terminal

edge in D6 not containing a middle arc at the white vertex. This contradicts

Assumption 1. Therefore wðD1Þb 3.

By Proposition 7.4 and 7.5, we complete the proof of Theorem 1.2.

8. Minimal charts with six white vertices

Lemma 8.1. Let G be a minimal chart with a loop l of label m and let

e A fþ1;�1g be the integer such that the white vertex in l is contained in

Gmþe. Let D be the associated disk of the loop l. Suppose that wðDÞ ¼ 2. If

necessary we reverse the orientation of all edges, and if necessary we take the

reflection of the chart G , then a regular neighborhood NðDÞ contains the pseudo

chart as shown in Figure 32a by C-moves in D keeping qD fixed.

Proof. Let w1 be the white vertex in l, and e 0 the edge of Gmþe

containing w1 with e 0 HD. Since the edge e 0 of Gmþe does not contain a

middle arc at w1, by Assumption 1 there exists a white vertex w2 of Gmþe with

qe 0 ¼ fw1;w2g.
If there exists a loop in IntðDÞ, then wðDÞb 3 by Lemma 4.2. This is a

contradiction. Hence there does not exist any loop in IntðDÞ.
Since there does not exist any loop in IntðDÞ, the white vertex w2 is not

contained in a loop. Since wðDÞ ¼ 2, in D there exists a 2-angled disk D 0 of

Gmþe with at most one feeler and w2 A D 0 (see Figure 32b). Since wðD 0Þ ¼ 0, a

31Properties of minimal charts II



regular neighborhood NðD 0Þ contains one of the two pseudo charts as shown in

Figure 16a and b by Corollary 5.8.

Let w3 be the white vertex in qD 0 di¤erent from w2. Since IntðDÞ �D 0

does not contain any white vertices, there is a terminal edge of Gmþe contain-

ing w3 in ClðD�D 0Þ. By Lemma 3.1 (1), there does not exist a lens in

D. Hence all four edges b12, a13, a22 and b23 meet the loop l. Therefore

fw2;w3gHGmþ2e. Thus NðD 0Þ contains the pseudo chart as shown in Figure

16b.

Let E be a regular neighborhood of e 0 UD 0 in D and l 0 ¼ Clðl� EÞ. By

Disk Lemma (Lemma 3.2), we can assume that G is ðClðD� EÞ; l 0Þ-arc free

(cf. Figure 17). Hence ða22 U b12 U a13 U b23ÞVD consists of two arcs. The

two arcs split D into three disks. Let D1 be the one of the three disks with

e1 HD1. Now e1 U e2 splits the disk D1 into three disks. One of the three

disks is the 2-angled disk D 0. For each i ¼ 1; 2, let D 0
i be the one of the three

disks di¤erent from D 0 with ei HD 0
i and let gi ¼ lV qD 0

i .

Since G is ðClðD� EÞ; l 0Þ-arc free, G is ðD1; giÞ-arc free ði ¼ 1; 2Þ. By

applying Disk Lemma (Lemma 3.2) four times, we can assume that G is

ðD 0; eiÞ-arc free and ðD 0
i ; eiÞ-arc free ði ¼ 1; 2Þ. Thus if a proper arc L con-

tained in an edge of Gmþ3e in D separates w2 and w3 in D, then each of

LV g1, LV e1, LV e2 and LV g2 consists of exactly one point. Hence LVD 0

consists of a proper arc of D 0. Therefore by Lemma 5.2, there must exist at

least two proper arcs separating w2 and w3 in D each of which is contained in

an edge of Gmþ3e as shown in Figure 32a.

Lemma 8.2. Let G be a minimal chart with a loop l of label m. Let D

be the associated disk of the loop l. Then S2 �D contains at least three white

vertices.

Proof. If S2 �D contains at least three white vertices of Gm, then we

have nothing to do. We may assume that S2 �D contains at most two white

vertices of Gm. By Lemma 6.2, the loop l is contained in a pair of eyeglasses

or a pair of skew eyeglasses.

Fig. 32. The gray disk is D and the dark gray disk is D 0.
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If l is contained in a pair of eyeglasses or a pair of skew eyeglasses of type

2, then there exists a loop l 0 of Gm in S2 �D. By Lemma 4.2, the associated

disk of l 0 contains at least two white vertices. Thus S2 �D contains at least

three white vertices.

If l is contained in a pair of skew eyeglasses of type 1, then we can show

that S2 �D contains at least three white vertices in a similar way to the proof

of Lemma 6.9.

A subgraph of a chart is called a solar eclipse, if it consists of two loops

and contains only one white vertex.

Lemma 8.3. Let G be a minimal chart with a loop l of label m and let

e A fþ1;�1g be the integer such that the white vertex in l is contained in

Gmþe. Let D1 be the associated disk of the loop l. If there is no lens of G , and

if wðD1Þ ¼ 2, then S2 �D1 contains at least two white vertices of Gmþ2e. In

particular, if l is contained in a solar eclipse, then S2 � ðD1 UD2Þ contains at

least two white vertices of Gmþ2e where D2 is the associated disk of another loop

in the solar eclipse.

Proof. By Lemma 8.1, a regular neighborhood NðD1Þ contains the

pseudo chart as shown in Figure 32a. We use the notations as shown in

Figure 32a and b.

If there does not exist any white vertex of Gmþ2e in S2 �D1, then a13 ¼ b12
and a22 ¼ b23. Hence a13U e1 and a22U e2 bound lenses of type ðmþ e;mþ 2eÞ.
This is a contradiction. Hence there exists at least one white vertex of Gmþ2e

in S2 �D1. By IO-Calculation with respect to Gmþ2e in ClðS2 �D 0Þ, there

exist at least two white vertices of Gmþ2e in S2 �D1 where D 0 is the 2-angled

disk of Gmþe in D1.

If l is contained in a solar eclipse, then none of the edges a13, a22, b12
and b23 intersect the disk D2. Hence the same argument holds as the one

above.

Lemma 8.4. Let G be a minimal chart with at most seven white vertices.

If there exists a solar eclipse, then the associated disk of each loop of the solar

eclipse contains at least three white vertices in its interior. Hence there is no

solar eclipse in a minimal chart with at most six white vertices.

Proof. Let l and l 0 be the loops in the solar eclipse with lHGm and

l 0 HGmþe where e A fþ1;�1g. Let w1 be the white vertex in the solar eclipse,

and let D1 and D2 be the associated disks of l and l 0 respectively. Then

D1 VD2 ¼ fw1g.
Suppose that wðD1Þa 2. By Lemma 4.2 we can assume that IntðD1Þ

contains exactly two white vertices, say w2 and w3. By Lemma 8.1, a regular

neighborhood NðD1Þ contains the pseudo chart as shown in Figure 32a. We
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use the notations as shown in Figure 32a. Since w1 A Gm VGmþe and lHGm,

we have fw2;w3gHGmþe VGmþ2e.

By Corollary 1.3, there is no lens of G . By Lemma 8.3, there exist at

least two white vertices of Gmþ2e in S2 � ðD1 UD2Þ, say w4 and w5.

Since G contains at most seven white vertices, by Lemma 4.2 IntðD2Þ
contains only two white vertices, say w6 and w7. By Lemma 8.1, a regular

neighborhood NðD2Þ contains the pseudo chart as shown in Figure 32a. Since

w1 A Gm VGmþe and l 0 HGmþe, we have fw6;w7gHGm VGm�e.

By Lemma 8.3, there exist at least two white vertices of Gm�e in S2 �
ðD1 UD2Þ, say w8 and w9. This contradicts the fact G contains at most seven

white vertices. Hence wðD1Þb 3 and wðD2Þb 3.

We show the third main theorem as follows:

Proof of Theorem 1.4. Let l be a loop in Gm, D1 the associated disk of

l, and w1 the white vertex in l with w1 A Gm VGmþe where e A fþ1;�1g.
By Lemma 8.2, S2 �D1 contains at least three white vertices. Since G

contains at most six white vertices, by Lemma 4.2 IntðD1Þ contains exactly two

white vertices, say w2 and w3. By Lemma 8.1, a regular neighborhood NðD1Þ
contains the pseudo chart as shown in Figure 32a.

By Corollary 1.3, there is no lens of G . By Lemma 8.3, there exist at

least two white vertices of Gmþ2e in S2 �D1, say w4 and w5. By Lemma 4.1

there exists at least one white vertex of Gm in the exterior of D1, say w6.

Since Gm contains only two white vertices w1 and w6, by Lemma 6.2 there

exist a pair of eyeglasses of Gm. Let l 0 be the loop of Gm with w6 A l 0, and e1
the edge of Gm with qe1 ¼ fw1;w6g. Let D2 be the associated disk of the loop

l 0 (see Figure 33).

By Lemma 4.2, IntðD2Þ must contain exactly two white vertices w4 and

w5. Without loss of generality, we can assume that a11 contains an outward

middle arc at the white vertex w1 (see Figure 33). For the edge b11, there are

three cases: b11 ¼ a11, b11 ¼ a16, or b11 ¼ b16. By Lemma 8.4 and Corollary

1.3, we have b11 ¼ b16.

Fig. 33
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Since b11 ¼ b16, we have a11 0 a16. Since the exterior of D1 UD2 does

not contain any white vertices, the both edges a11 and a16 must be terminal

edges. Since b11 ¼ b16, we have w6 A Gmþe. By Lemma 8.1, a regular neigh-

borhood NðD2Þ contains the pseudo chart as shown in Figure 32a.

The edge b11 splits the open disk S2 � ðD1 UD2 U e1Þ into two open disks.

One of the two open disks contains Intða16Þ, say E. Applying Disk Lemma

(Lemma 3.2), we can assume G is ðClðEÞ; e1Þ-arc free (cf. Figure 8 and 17).

Hence there are four arcs in ClðEÞ each of which is contained in an edge of

Gmþ2e and connects a point in l 0 and a point in e1. Moreover there are four

arcs contained in edges of Gmþ3e in E each of which connects a point in l 0 and

a point in e1. Therefore there are four edges of Gmþ2e and there are at least

two rings of Gmþ3e as shown in Figure 2.
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