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Introduction

The alternating Schouten product was studied in a totally algebraic way
in Bhaskara and Vismanath [3]. In this paper we shall be first concerned
with this product and show that [P,Q] =0 if and only if [P,Q] =0 and
(p — 1) Alt (P ® Q) = 0 for alternating multiderivations P and Q of degree p and
g — 1 respectively, where Q = Alt (qQ) is an alternating multilinear map of
degree q (Theorem 2).

We shall then study an extension of a Poisson algebra by an derivation
which is the abstract concept of a generalized Poisson algebra introduced by
Berezin [2], while Kubo and Mimura [4] and Kubo [5] worked on abstract
Poisson algebras, especially Poisson Lie structures on some polynomial algebras
and their factor algebras. Let F be a Poisson algebra with bracket [,] and
D a derivation of the associative algebra F. We define a D-extension (F, {,))
of F whose bracket {,) on F is given by <a, b) = [a, b] + D(a)b — aD(b) for
a, be F. By using Theorem 2 we give an equivalent condition to that an
algebra (F, {,>) is a Lie algebra. Then we consider an extension of a Poisson
algebra constructed from the three dimensional split simple Lie algebra.

Throughout this paper let f be a field of characteristic zero and F a
commutative associative algebra over f with unit.

We would like to thank Dr. N. Kawamoto and Dr. T. Ikeda for their
valuable comments.

Alternating Schouten products of multiderivations

Notations and terminology are based on Bhaskara and Viswanath [3].
For the sake of convenience we list the terms that we use here.

For p 2 1, we denote by L,(F) the set of all multilinear maps of F into
itself of degree p. We define Ly(F) = F and L_,(F) = 0.
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Let u, veF, PeL,(F) and Qe L,(F) (p,q=1). The compositions of
these multilinear maps are defined as follows: (a) u'v=0. (b) u-P=0,
and P-u(v,,...,v,—4) =P, v,,...,0,04) for v;eF. (c) P-Q(vy,...,0,,
Wi, oo, W) = P(QWy, ..., W), 01, ..., 0,—) for v, wieF. (d) Plvy,...,v,)=
P(vy, ..., v, Uy, Visy, ..., U,). The tensor product P® Q € L, (F) is defined by
PRQ)Wy,..s Vyy Wi,y .oy W) = P(vy, ..., 0,)Q(Wy, ..., w,) for v, w;e F.

Suppose p = 1, P e L,(F) and ¢ is a permutation of p-elements. U, P € L,(F)
is defined by (U,P)(vy,...,0,) = P(Vy1),---» Vg(p)) fOr v;€ F. The alternating
operator Alt is defined by Alt P =(1/p!)) ,sgnoU,P for PeL,(F) (p=1)
and Altv=v for ve F. Obviously we have Alt(U,P)= sgn o Alt P. When
Alt P = P, we call P an alternating map. We state the following

LEmMMA 1 ([3; Proposition 1.4]). Let P € L,(F), Q € L,(F). Then
(1) Alt(P-(AltQ))=Alt(P-Q) (p,q=0) and
2 pAlt((AltP)-Q) =37, (-1)*" Alt(P;'Q) (p21,420)

The alternating Schouten product of P e L,(F) and Q € L,(F) (p,q = 0) is
defined by

[P, 0] = Alt (p(Alt P)- Q + (—1)q(Alt Q) P).

In [3] the following results are proved: (1) If P, Q and R are alternating maps
of degree p, q and r respectively, then (—1)*"[[P, Q], R] + (—1)*"[[Q, R], P] +
(—1[[R, P], @] =0 ([3; Theorem 2.7]). (2) If P and Q are multiderivations,
so is [P, Q].

For QeL,(F) (@21), we define O, QeL/(F) by Q(v,...,v,)=
v,0Q(vy, ..., v,) for v;e F and 0 = Alt (90). We denote by A,(F), AD,(F) the
set of all alternating multilinear maps, alternating multiderivations of F of
degree p respectively.

The purpose of this section is to prove the following

THEOREM 2. Let P and Q be alternating multiderivations of degree p and
q—1 (p,q = 1) respectively. Then [P, 01=0 if and only if [P,Q]=0 and
(p—DAIL(P®Q)=0.

To prove this theorem we need some lemmas.

LemMma 3. (1) If PeL,(F)and Qe A,,(F) (p=0,q2=1), then
= o _f(-1YQ'P ifjz2
©yp= ‘{U,(P®Q) ifj=1’

where sgn o = (—1)P4™1),
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(2) If Pe AD,(F)and Qe L,_,(F) (p,q = 1), then
P-Q=UP-Q+(-1)'P®Q,
where sgn ¢ = (—1)P7L.

(3) IfQeL,y(F) (q21),then foru,,...,u,€F,

_ 1 .
Alt Q(uy, ..., u,) =&Z‘}=1 (=17 u; Alt Q(uy, ..., G, ..., 1) .

PrROOF. Letuy,...,up,—y €F. (1) If j =2, then
Q) Pltss s thprgt) = (Pl oy thprgey), s ooes thgy)
=Q(u1,...,uj_1,P(uq ooy Upigoy)s Ujs oy Ug_g)
= (=1 2u; Q(P(ugy ..., Uprge1)y Uzs -5 Ugey)
=(—1YQ - P(uy, ..., upsg-1) -

Let o be the permutation of (p + g — 1)-elements given by o(1) =g, ..., a(p) =
p+q—1o(p+1)=1,...,0(p+q—1)=qg—1. Thensgno=(—1)4"" and

(Q_)I'P(ula' *o p+q 1)_Q(P(uq"" p+q 1)9“1""9”11—1)
= P(uqa [ERE) up+q—l)Q(u1’ (XX} uq—l)
= o(P®Q)(u19' . p+q 1)

(2): Let o be the permutation of (p + g — 1)-elements given by a(1) = p,
o@?=1, ..., 0@)=i—-1 ..., a(p)=p—1 o(j)=j P+ 1=jSp+q—1).
Then sgno = (—1)*"'. Foruy, ..., upy,—; € F, we have

(P-Q)(uys ..oy Uprg—y) = PUQpiys .o Upigoq)s Uys ey thpy)
= UpP(QUpsys - vs Upige)y Upsonvs Up_y)
+ QUpt1s-es Uprgo1)PUp, Uy, ..., Uy q)
=P QUp Uy, ..oy lipy .oy Uprgey)
(=) P ROy, ..., Upig1)
=(U,P-Q+ (—1F"'P®Q) Uy, .., Upsg1) -

(3): For a permutation o of g-elements with ¢(1) =j, we denote by &
the permutation of ¢ — 1 elements such that (1) = 0¢(2), ..., (j — 1) = a(j),
g(j+1)=0(j+1), ..., (@ =0(g). Then sgna=(—1Y""sgno. Now we
have



40 Fujio KuBo and Fumitake MIMURA
_ 1 _
Alt Q(ul’ R uq) = a Za’ Sgn UQ(ua(l)a LEREY ua(q))

1

= a Za sgn Guu’(l)Q(ua(Z), ceey ua(q))
1 q

= 7' Yd=1 Xor)=j 580 0UQ(Ua2), - - - Uo(q)
1 . i1 R

= E Zj=1 u; Y (—1Y* sgn aU,Q(uy, ..., 8, ..., ug)
1 ‘ 1 .

=azj=1(—1)1 ujAlt Q(ul,...,uj,...,uq). Q.E.D.

LemMa 4. If Pe AD,(F) and Q€ A, (F) (p,q = 1), then
[P,0]=(—1)P"'q{p Alt P-Q + (— )P4 D(g — 1) Alt Q- P
+(p—-1DAIt(P®Q)}.

PRrOOF.
[P, 01 = q[P, O]
= q Alt {p(Alt P)-Q + (—1)*g(Alt Q)- P}
=q{p Alt(P-Q) + (— )" Y4, (1Y Alt (Q);- P)} (by Lemma 1)
=q{p Alt(P-Q) + (—1)**'(g — 1) Alt (Q" P)
+(—1)PAlt(P®Q)} (by Lemma 3(1)).

Therefore by Lemma 3 (2), we have our formula. Q.ED.

PrROOF OF THEOREM 2. Let u,, ..., #,,,-, € F. By Lemma 3(3) and
Lemma 4 we have

[P, 01(1, .. -s prg1) = (= 1P 'q{p Alt P-Q + (— 1P V(g — 1) Alt Q- P
+(p—DALPRQ)}(uy, ..., Upig-1)

= (=1t [ 25T (=) u{p Alt(P-Q)

P+q
+ (=14 (g — DALt (Q-P)}(uy, ... 8y, ., Upsg—1)
+(=1)""q(p — ) Alt (P ® Q)(uy, .-, Upsg-1)
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= (— P TR (1Y P, Q)
B/ PR TR

+(=1"q(p — DALt (P ® Q)(uy, ..., Upsg—1).-

Put u;, = 1. Since P, Q and [P, Q] are multiderivations, we have

[P, Q1(L, gy .y tprgy) = (= 1P° ‘p+ TP, @1z, s prg-a) -
This shows that [P,0]=0 implies [P,Q]=0. Therefore we have
(p—1DAt(P®Q)=0. QED.

We shall prove the following

PROPOSITION 5. Let P and Q be alternating multiderivations of degree
p—1, g — 1 respectively (p,q=1). If p+#q, then [P,01=0 if and only if
Alt (P®Q)=0. If p=gq,then[P,QJ]=0.

Proor. Let uy, ..., u,.,-1 €F and o be the permutation given by
ol)=p,02=1,...,0(p)=p—10(j)=j(p+1=j=p+q—1). Then

P-Quy,...,uprg—1) = P, QUpsy, - oy Upigy)s gy vy tp_y)
= upQ(up+1’ p+q l)P(uh [EEX) up—l)
=P@Qup, thy,..or sy Upigy)

_UP®Q(u1"" p+q 1)
Therefore by Lemma 3 (3),

Alt (P-0)(ty ..., Upsget) = Alt (U, P @ Q)(thys .., Uprgey)
= (1P AP ® Qs ... Upsges)

=(=1" ‘p+q LT (=1 Alt (P ® Q) (uy,

v iy Uy q)
Hence

[ﬁ’ Q](u19"' p+q 1)_pq{p Alt (P Q)+( l)pqq Alt (Q P)}(ul’ p+q 1)

= TR () AP @)

+ (—1)PrHg Al (Q @ P)}(uy, - s -y Upagy)
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= ZL P (- 1PV — gy Alt (PO Q)

cos iy oy Upygy) .

Then the proof will be done similarly to that of Theorem 2. Q.E.D.

Extensions of Poisson algebras by derivations

Assume that F has a Lie bracket [,]. An algebra (F,[,]) is called a
Poisson algebra if [ab, c] = a[b, c] + b[a, c] for a, b, ce F. Let D be a deriva-
tion of an associative algebra F. Then we define a new bracket {,) on F by

{a, by = [a, b] + D(a)b — aD(b) for a, beF.

Let us denote by (F, ¢,)) the algebra F with a product given by {, ), and call
this algebra a D-extension of a Poisson algebra (F, [,]).
It is easy to see the following two propositions.

PROPOSITION 6. Let (F, {,)) be a D-extension of a Poisson algebra (F, [,]).
Then for u,, ..., u,, v€ F,

Qg oo thyy 0 =30ty oty by ODUgg o thy + (n— Duy .. u,D(v) .
In particular for a, b, c € F,
{ab, c¢) = {a, c)b + alb, c) + abD(c).
ProOPOSITION 7. Let Ap, B; be D, d-extensions of Poisson algebras A, B

respectively and ¢ a Poisson isomorphism of A onto B. Then ¢ is an isomorphism
of Ap onto B, if and only if d¢ = ¢D.

We shall give an equivalent condition to that a D-extension (F, {,)) is
a Lie algebra. Let Ge AD,(F) be defined by G(a,b) =[a,b] for a, beF.
Observing D(a, b) = aD(b) — bD(a), we have

{a,b) = (G — D)(a,b) for a, beF.
Therefore (F, <,)) is a Lie algebra iff [G — D, G — D] = 0 ([3; Proposition 2.97)

which is equivalent to [G, D] = 0 because [D, G] = (—1)*[G, D] and [D,D]=0
(Proposition 5). Now we shall prove the following

THEOREM 8. Let (F, {,)) be a D-extension of a Poisson algebra (F,[,]).
Then an algebra (F,<,)») is a Lie algebra if and only if for any elements
a, b, c € F the following equations hold
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(%) D([a, b]) = [D(a), b] + [a,D(b)]  and
[a, b1D(c) + [b, c]1D(a) + [c, a]D(b) = 0.
PROOF. Let G e AD,(F) be given above. By Theorem 2, [G, D] =0 iff

[G,D] =0 and Alt(G® D)=0. This theorem follows from the following
computation:

[G, D1(a, b) = {2 Alt (G- D) + Alt (D*G)}(a, b)
= G(D(b), a) — G(D(a), b) + D(G(a, b))
= —[a, D(b)] — [D(a), b] + D([a, b]),
Alt (G ® D)(a, b, ¢) = 371(G(a, b)D(c) + G(b, c)D(a) + G(c, a)D(b))
= 37([a, b]D(c) + [b, c1D(@) + [c, a]D()). Q.E.D.

Let J(a, b, ¢) = [a, b]D(c) + [b, c]1D(a) + [c, alD(b) for a, b, ce F. By the
proof of Theorem 8, J = 3 Alt (G ® D). This says that J is a multiderivation.
Therefore to verify the condition that J = 0 on F, it is enough to check this for
only generators of an associative algebra F.

PROPOSITION 9. Assume that F is associatively generated by S. If a deri-
vation D of F satisfies the conditions () on S, then so does D on F.

Proor. We shall prove our assertion for the first condition of (x). The
second one is already seen just above.

D([ab, c]) = D(a[b, c] + b[a, c])
= ([a, c]D(b) + a[D(b), c] + D(a)[b, c] + b[D(a), c])
+ (a[b, D(c)] + b[a, D(c)])
= [D(ab), c] + [ab, D(c)] for a,b,ceS.

By this formula and an induction the proof will be completed. Q.E.D.

ExaMpLE. Let L be a finite-dimensional Lie algebra over f with a basis
{xy,...,x,} and R the polynomial algebra f[x,,...,x,]. We consider the
Possion algebra G = L(L; R, {0/0x,}) defined in [4], whose Poisson bracket [,]
on R is given by

da 0b

—— R.
5%, 3%, for a,be

[a’ b] = Zi,j [xi’ xj]

Let D be a derivation of R and Gy, its D-extension. Then an algebra Gj, is
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a Lie algebra by Theorem 8 and Proposition 9 if D satisfies the following
conditions: For i,j, k=1, ..., n,

(*x) D([x;, x;]1) = [D(x;), x;] + [x;, D(x;)]  and
[xi, x,1D(x,) + [xj, X, 1D(x;) + [x4, x;1D(x;) = 0.

We write D(x;) = ) ,,a;,, Where a,, is homogeneous of degree m, and define a
derivation D,, of R by D,(x;)=a;, fori=1,...,nand m=0, 1.... We can
easily see that D satisfies () iff D,, satisfies (*x) for m =0, 1, .... Under this
condition D, is a derivation of the Lie algebra L. Therefore if L is split simple,
there exists an element z € L such that D,(w) = ad z(w) for w e L.

For the three dimensional Lie algebras, Mimura and Ikushima [6] com-
puted all of the Dy-extensions of the Poisson algebras of all C®-functions on
C®-manifolds.

We can give a Lie algebra L such that ad z does not satisfy (**) on an
ad z-extension of a Poisson algebra L(L; f[x,, ..., x,], {0/0x;}) for some z € L.
Let L be the Lie algebra over f described in terms of a basis {x,...,xs} by
the following multiplication table:

[x1,x]=x,, [xy,x3] = x5, [x1, X4] = 2%, ,
[x1,Xx5] = 3xs, [x3, x3] =x,, [x3, X4] = x5,
[x;, x;]1 = 0 if it is not in the table above ([7; Example 2]). Then
[x2, x3] ad x,(x4) + [x3, x4] ad x;(x;) + [x4, x,] ad x,(x3) = 2x2 — x3x5 #0.

L(SL(2, ¥); t[x, y, h], {6/0x, 0/0y, /0h}). Let L be a Lie algebra over f with
a basis {x, y, z} and multiplications [x, y] = h, [h, x] = 2x, [h, y] = —2y. Put
A =1[x,y,z]. We consider the ad h-extension (4, {,)) of the Poisson algebra
L(SL(2, ), A, {0/0x, 0/0y, 0/0h}). We note that (4, {,)) is a Lie algebra because
ad h satisfies (**).

Let A, be a weight space {a€ A:[h,a] =ma}, A, = nz0Am and write
{a, ,b> =<a,b,...,b) where b appears n times in the right hand side. We
have the following formulas:

1) <{x,y) =h+ 4xy, (h,x) =2x — 2hx, <h, y) = —2y + 2hy.
2) (hyxy = =2"n—2)!x" (hyuy) =2(=2)"1(n - 2)1y" (n 2 2).
3) <a, h) = m(ah — a), {(a,x) = [a, x] + (m — 2)ax,

{a,y> =[a, y] + (m + 2)ay for ae A,,.
4) <hPx4, y"> = —2prhP"'x%y" + qrhP*1xa7yrl 4 2(g + r)hPxYy".
5) <hPy", x9) = 2pqhP~x9y" — qrhP*ixaty"t — 2(q + r)hPx9y".
6) (x4 y"> =qrhx?'y"t 4+ 2(q + r)x%y".
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LEmMMA 10. Assume that ae€ A,. Then {a,x) = Ap,s,y {a,y) € Ap_s,
{a,h) €A,

Let B be the subalgebra of the ad h-extension (4, {,>) generated by x, y, h.

ProrosiTION 11.  A,, B as above.

(1) A,<B.
(2 h*¢ B, hence B< A.

Proor. (1): For g, r=2, x? and y" belong to B by the formula 2).
By <(h?x% h) = 2q(h?*'x% — hPx%) and induction on p we have h?x?e B (p = 0,
g =1). Similarly h?y"e B (p =2 0,r 2 1). By 4) and 5)
Chxs,y7> + ChPy, X7 = 2plg — b7 Xy
Therefore if p=0, g, r=1 and q #r, then hPx%y"e B. These show that
A, SB.
(2): Assume that h? € B and write h? = {f;, x> + {f5, y> + {fs, h), fi € A.

By Lemma 10 we may assume that f, e A_,, f, € A, and {f;,h) =0. Then
we put

fl = Zi”" ap’"hpxnyn+1 5 f2 = van bp,nhpxn+1y" 5

b, €. By 3) we have

where a oo

p,n>

h? =3 . (p,n — bp,n) @PRP 7 (xy)"™ — 4RP(xy)"*! — (n + DRP (xp)") .

In this formula, putting xy =0, we have h®> =Y (b, o — a,0)h**! and b, o —
ay,0=1,b5,0 — ap,0 =0. On the other hand, putting h = 0, we have

Z" {2(b0’,, - ao,n) - (bl,n - al,n)}(xy)”+1 =0.

Then 2(by, o — @0,0) — (b1,0 — a1,0) = 0, which is a contradiction. Q.E.D.

Let h* be the smallest ideal of a Lie algebra 4 containing h. We can
write h* =Y, Ch, ,A> ([1; p. 29]). We have the following

COROLLARY 12. (1) A=B+¥[h]. (2) B=h4
Proor. (1): Put C= B+ f[h]. Then
ChPxm, y"y = n*h?* (xy)' ™t — 2nphP T (xy)" + dnhP(xyy'e B (nz 1)

by 4) and the proof of Proposition 11 (1). Putting n = 1 and induction on p
we have hPxy e C. Then by induction on n we see h?(xy)"e C (p =0, n = 1).
Therefore A, = C. Hence by Proposition 11, A = 4, + A, = C.
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(2: Put H=h4 Since <h,,x)> and {(x2%, h)> belong to H, so do x2
and hx?. Therefore x%y = (Chx?, y) + <hy, x2))/2e H. Furthermore {x2, y> =
2hx + 6x2ye H. Hence hxe H. By 1), xe H. Similarly we have y € H.

Conversely by Lemma 2.3 in [1; Chapter 2] we have h4 = (h'™)? = h% = B.

QED.
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