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Introduction

The alternating Schouten product was studied in a totally algebraic way
in Bhaskara and Vismanath [3]. In this paper we shall be first concerned
with this product and show that [P, Q] = 0 if and only if [P, Q] = 0 and
(p — 1) Alt (P (x) Q) = 0 for alternating multiderivations P and Q of degree p and
q — 1 respectively, where Q = Alt (qQ) is an alternating multilinear map of
degree q (Theorem 2).

We shall then study an extension of a Poisson algebra by an derivation
which is the abstract concept of a generalized Poisson algebra introduced by
Berezin [2], while Kubo and Mimura [4] and Kubo [5] worked on abstract
Poisson algebras, especially Poisson Lie structures on some polynomial algebras
and their factor algebras. Let F be a Poisson algebra with bracket [,] and
D a derivation of the associative algebra F. We define a D-extension (F, < ,»
of F whose bracket ( , ) on F is given by <a, b} = [a, b~] + D(a)b — aD(b) for
a, b e F. By using Theorem 2 we give an equivalent condition to that an
algebra (F, <,» is a Lie algebra. Then we consider an extension of a Poisson
algebra constructed from the three dimensional split simple Lie algebra.

Throughout this paper let I be a field of characteristic zero and F SL
commutative associative algebra over I with unit.

We would like to thank Dr. N. Kawamoto and Dr. T. Ikeda for their
valuable comments.

Alternating Schouten products of multiderivations

Notations and terminology are based on Bhaskara and Viswanath [3].
For the sake of convenience we list the terms that we use here.

For p ^ 1, we denote by LP(F) the set of all multilinear maps of F into
itself of degree p. We define L0{F) = F and L_X(F) = 0.
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Let w, v e F, P e Lp(F) and Q G Lq(F) (p, q ^ 1). The compositions of
these multilinear maps are defined as follows: (a) u • v = 0. (b) u • P = 0,
a n d P'u(vl9...,vp-1) = P(u9vl9...9vp-l) for ^ e F . (c) P-Q(vl9...9vp-l9

W i , . . . , w4) = P ( g ( w 1 , . . . , w,) , vl9...9vp-1) for t;£, w j e F . (d) Pt(vu ...,vp) =
P(v2,..., t>,-, ̂ i , vi+u . . . , i;p). T h e t e n s o r p r o d u c t P ®Qs Lp+q(F) is de f ined b y
(P ® G)fai>. . . , ^ , w 1 ? . . . , wq) = P(vu ..., vp)Q(wl9..., wq) for vi9 Wj e F.

Suppose p ^ 1, P e LP(F) and a is a permutation of p-elements. UffP e LP(F)
is defined by (UaP)(v1, ...,vp) = P(va(1)i..., va(p)) for vt e F. The alternating

operator Alt is defined by Alt P = (1/p!)][], sgn (rl/^P for P6Lp(F) (p ^ 1)
and Alt i? = v for t ;eF. Obviously we have Alt(UffP) = sgn cr Alt P. When
Alt P = P, we call P an alternating map. We state the following

LEMMA 1 ([3; Proposition 1.4]). Let P e Lp(F), Q e Lq{F). Then
(1) Alt(P-(Alt0) = A l t ( P - 0 (p,q^O) and
(2) pA X

The alternating Schouten product of P G LP(F) and Q e Lq(F) (p, q ^ 0) is
defined by

[P, Q] = Alt (p(Alt P)• Q + ( - ir<?(Alt 0 • P).

In [3] the following results are proved: (1) If P, Q and R are alternating maps
of degree p, 4 and r respectively, then ( - l ) p r [ [ ^ Ql K] + ( - l)"T[ft R], ̂ ] +
( - i r [ W ^ ] , G] = 0 ([3; Theorem 2.7]). (2) If P and Q are multiderivations,
so is [P, Q].

For fieL^f) ( « ^ 1), we define Q, QeLq(F) by Q{vl9...9vq) =
vlQ(v2,...,vq) for » , e f and G = Alt(^f0. We denote by Ap(F\ ADp(F) the
set of all alternating multilinear maps, alternating multiderivations of F of
degree p respectively.

The purpose of this section is to prove the following

THEOREM 2. Let P and Q be alternating multiderivations of degree p and
q - \ (p,q^l) respectively. Then [P, Q] = 0 if and only if [P, Q] = 0 and
(p - 1) Alt (P ® Q) = 0.

To prove this theorem we need some lemmas.

LEMMA 3. (1) If P e LP(F) and Q e Aq^(F) (p ^ 0, q ^ 1), then

Ua(P®Q) if 7 = 1 '

where sgn a = (-l)p(q~1\



Extensions of Poisson algebras by derivations 39

(2) IfPeAD^andQeL^F) (p,q^l\then

where sgn a = (— I)*7"1.

(3) IfQeL^F) (q^l\ then for uu...,uqeF,

PROOF. Let ul9 . . . , up+q^ s F. (1): If j ̂  2, then

1 = (Q)j(P(Uq> • • • > Up+q-\\ UD ' • • > W€-l)

, . . . , M.p^_^_|^j »*2? * * • J q—\

Let o be the permutation of (p + g — l)-elements given by a(l) = ̂ f, . . . , o(p) =
p + ̂  - 1, o{p + 1) = 1, . . . , (j(p + q - 1) = q - 1. Then sgn a = ( -1 )^" 1 * and

(2): Let c be the permutation of (p + q — l)-elements given by a(l) = p,

a(2)=l . . . , (x(0 = i - l , . . - , cr(p) = p - l , ( j ( 7 ) = ; ( p + l ^ j ^ P + ^ - l ) .

Then sgn o = (— I)'""1. For ul9 . . . , Wp+^.i G F, we have

(PQ)(uu . . . , Wp+«-i) = ^(«pG(wp + i , . . . , Wp+,-i), Mi , . . . , M^i)

= upP(Q(up+1,..., iip+^-i), w x , . . . , Mp-i)

= P •

(3): For a permutation <J of g-elements with a(l)=j, we denote by o
the permutation of q — 1 elements such that <x(l) = a(2), . . . , o(j — 1) = o-(j),
^( j + 1) = a(j +1) , . . . , ^((j) = a(q). Then sgn o7 = (— 1)J+1 sgn o. Now we
have
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Alt Q(ux,..., uq) = — £<, sgn aQ{ua(l),..., ua(q))

77

= ^ D - i UJ1" (~ i ^ 1 sgn a

= i D-i (-1^1",- Ait e("1; ...,«,•,...,«,). Q.E.D.

LEMMA 4. If P e ADJF) and Qe A.^{F) (p, q ̂  1), then

IP, Q] = ( - i r ^ { p Alt P S + ( - l f " 1 ^ - 1) Alt QP

+ (p - 1) Alt (P ® 0 } .

PROOF.

= q Alt {p(Alt P) • Q + ( - l)M?(Alt 0 • P}

= 9{p Alt (P • 0 + ( - iy> SJ - I ( - iy+1 Alt ((Q), • P)} (by Lemma 1)

= q{p Alt (P-0 + (-ir+1(q - 1) Alt (QP)

+ (-l)pAlt(P(g)Q)} (by Lemma 3(1)).

Therefore by Lemma 3 (2), we have our formula. Q.E.D.

PROOF OF THEOREM 2. Let ult ..., up+q_i€F. By Lemma 3 (3) and
Lemma 4 we have

[P, &(«!,..., i W i ) = ( - l r ^ l P Alt P Q + (-l)**-1^ - 1) Alt QP

+ (p- 1) Alt (P ®fi)}(tt,,...,«,+,_!)

= <"1)'"1 p T ^ T ^ ^ r ' ( " 1 V + 1 Mj{p A l t {P'Q)

+ ( - Yf-lq{p - 1) Alt (P
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. . . , Up .. . , Wp+g-i)

+ (-irMp -1) Ait

Put MX = 1. Since P, Q and [P, Q] are multiderivations, we have

2 , , ^ x ) ( r + _ l i
This shows that [P, Q] = 0 implies [P, g] = 0. Therefore we have
(p- 1) Alt (P (8)0 = 0. Q.E.D.

We shall prove the following

PROPOSITION 5. Let P and Q be alternating multiderivations of degree
p — 1, # — 1 respectively (p,q^.l). If p # g, fften [P, Q] = 0 if and only if
Alt (P ® Q) = 0. Ifp = q9 then [P, Q] = 0.

PROOF. Let ul9 ..., M p + r l 6 F and a be the permutation given by
(j(l) = p, (j(2) = 1, ..., ff(p) = p - 1, <x(j) = ; (p + 1 ̂  j ^ p + q - 1). Then

P'Q(ul9...9up+q.1) = P{upQ(up+l9...,up+q-1)9ul9...9u

= upQ(up+1,..., up+q-x)P(uu ..., up

= P ® 8K» Mi, ..., Mp, ..., Mp+^J

= U<TP®Q(ul9...,up+q_1).

Therefore by Lemma 3 (3),

( y + _{zpr ( y
. . . , Uj9 . . . , Up+q-i) .

Hence

IP, Q](uu ..., Up+rl) = pq{p Alt ( P - 0 + (-1)M€ Alt (e-

= +
T O _ 1 i p r 1 « / { ( - i)p+jp Ait

Alt (Q (

Ait
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rtn
• - q)u: Alt i

. . . , Uj9 . . . , Up+q-i) .

Then the proof will be done similarly to that of Theorem 2. Q.E.D.

Extensions of Poisson algebras by derivations

Assume that F has a Lie bracket [,]. An algebra (F, [,]) is called a
Poisson algebra if [aft, c] = a [ft, c] + ft [a, c] for a, ft, c e F. Let D be a deriva-
tion of an associative algebra F. Then we define a new bracket <, > on F by

<o, ft> = [a, ft] + D(a)ft - aD(b) for a, b e F .

Let us denote by (F, <,» the algebra F with a product given by <, >, and call
this algebra a D-extension of a Poisson algebra (F, [,]).

It is easy to see the following two propositions.

PROPOSITION 6. Let (F, < , » be a D-extension of a Poisson algebra (F, [ , ]) .

Then for uu ...9un9veF9

particular for a, b, c e F,

> = <a, c}b + a<ft, c> + abD(c).

PROPOSITION 7. L^r AD, Bd be D, d-extensions of Poisson algebras A, B

respectively and </> a Poisson isomorphism of A onto B. Then <j> is an isomorphism

of AD onto Bd if and only if d(f> = (f>D.

We shall give an equivalent condition to that a D-extension (F, < , » is
a Lie algebra. Let G e AD2(F) be defined by G(a, ft) = la, ft] for a, ft e F.
Observing D(a, ft) = aD(b) — bD(a)9 we have

<a, ft> = (G - D)(fl, ft) for a , i ) e F .

Therefore (F, < , » is a Lie algebra iff [G - /), G - D] = 0 ([3; Proposition 2.9])
which is equivalent to [G, /5] = 0 because [Z>, G] = ( - 1)4[G, £)] and [A /)] = 0
(Proposition 5). Now we shall prove the following

THEOREM 8. Let (F, < , » be a D-extension of a Poisson algebra (F, [,]).
Then an algebra (F, < , » is a Lie algebra if and only if for any elements
a, ft, c e F the following equations hold
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(*) D([a, ft]) = \D{a\ ft] + [£i, D{b)2 and

[a, b]D(c) + [ft, c]D(a) + [c, a]D(6) = 0 .

PROOF. Let G e AD2(F) be given above. By Theorem 2, [G, Z)] = 0 iff
[G, D] = 0 and Alt (G ® D) = 0. This theorem follows from the following
computation:

[G, D] (a, ft) = {2 Alt (G • D) + Alt (D • G)} (a, 6)

= G(Z)(ft), a) - G(D(a\ b) + D(G(a, ft))

Alt (G <g) D)(a, 6, c) = 3 - ^ ( 0 , b)D(c) + G(ft, c)D(a) + G(c, a)D(b))

= 3-Hla, V]D(c) + [ft, c]Z)(fl) + [c, d]D(b)). Q.E.D.

Let J(fl, ft, c) = [a, ft]D(c) + [ft, c]D(a) + [c, d]D(b) for a, ft, c e F. By the
proof of Theorem 8, J = 3 Alt (G ® D). This says that J is a multiderivation.
Therefore to verify the condition that J = 0 on F, it is enough to check this for
only generators of an associative algebra F.

PROPOSITION 9. Assume that F is associatively generated by S. If a deri-
vation D of F satisfies the conditions (*) on S, then so does D on F.

PROOF. We shall prove our assertion for the first condition of (*). The
second one is already seen just above.

= ([a, c]D(b) + a[D(b\ c\ + D{a)\b, c] + blD(a\ cj)

= U>{ab\ c] + [aft, D(c ) ] for a,b,ce S.

By this formula and an induction the proof will be completed. Q.E.D.

EXAMPLE. Let L be a finite-dimensional Lie algebra over I with a basis
{xl9...,xn} and R the polynomial algebra l [ x l 9 . . . , xn] . We consider the
Possion algebra G = L(L; R, {3/3xJ) defined in [4], whose Poisson bracket [,]
on R is given by

[*> b ] = I u [̂ i» X J ] ^ ^ f o r <*,beR.

Let D be a derivation of R and GD its D-extension. Then an algebra GD is
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a Lie algebra by Theorem 8 and Proposition 9 if D satisfies the following
conditions: For i9 j9 k = 1, . . . , rc,

(*•) D(lxi9 x/]) = [D(x,), x,-] + [xf, D(x,)] and

[xj9 xJD(x,) + [xk, xJDfy) = 0 .

We write D(xt) = £ma,m , where alm is homogeneous of degree m, and define a
derivation Dm of R by Dm(xf) = aim for i = 1, . . . , n and m = 0, 1 We can
easily see that D satisfies (**) iff Dm satisfies (**) for m = 0, 1, . . . . Under this
condition Dx is a derivation of the Lie algebra L. Therefore if L is split simple,
there exists an element z e L such that D^w) = ad z(w) for w e L.

For the three dimensional Lie algebras, Mimura and Ikushima [6] com-
puted all of the D0-extensions of the Poisson algebras of all C00-functions on
C00-manifolds.

We can give a Lie algebra L such that ad z does not satisfy (**) on an
ad z-extension of a Poisson algebra L(L; f [x l 5 . . . , x j , {d/dxj) for some z e L.
Let L be the Lie algebra over ! described in terms of a basis {x l 5 . . . , x 5 } by
the following multiplication table:

[ X j , X2J = X2 , L^ IJ *3J = *3 9 D*l> *4J = 2X4 ,

|_Xi, X5J ̂ ^ JX5 , L̂ 2> -̂ aJ == -̂ 4 5 L*2:> -^4J ̂  ^5 9

[xi9 Xj] = 0 if it is not in the table above ([7; Example 2]). Then

[x2, x 3 ] ad xx(x4) + [x3, x 4 ] ad Xi(x2) + [x4, x2] ad xx{x3) = 2x\ - x3x5 # 0 .

L(SL(2,1); I[x, 37, fc], {d/dx, d/dy, d/dh}). Let L be a Lie algebra over I with
a basis {x, y, z) and multiplications [x, y] = h, \_h, x] = 2x, [h, y] = — 2y. Put
A = f[x, y, z]. We consider the ad ft-extension (A, < , » of the Poisson algebra
L(SL(2,1); A, {5/3x, d/dy, d/dh}). We note that (A, < , » is a Lie algebra because
ad h satisfies (**).

Let Am be a weight space {a e X: [h, a] = ma}9 A* = Xm#o^m> and write
<a, nb} = <fl, b , . . . , fr> where fc appears n times in the right hand side. We
have the following formulas:

1) <*, y> = h + 4xy, </z, x> = 2x - 2ftx, <ft, y} = -2y + 2hy.
2) </z, nx> = -2n(n - 2)!xw, <fc, ny) = 2(-2)"-1(n - 2)!yw (n ̂  2).
3) <a, h) = m(a/i — a), <a, x> = [a, x] + (m — 2)ax,

<a, j> = [a, y] + (m + 2)ay for a e ^m .
4) (hpx\ yr} = -2prhp~1xqyr + qrhp+1xq~1y1'-1 + 2(g + r)fepx^r.
5) </ip / , x^> = ipqh'-txY - qrh^x^y'-1 - 2(q + r)hpxqyr.
6) <x^, yr> = qrhx^y"-1 + 2fo + r )x^ r .
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LEMMA 10. Assume that aeAm. Then <a, x) = Am+2, <fl, y} e Am_2,
<a, h) e Am.

Let B be the subalgebra of the ad /i-extension (A, < , » generated by x, y, A.

PROPOSITION 11. A^9 B as above.

(1) ^ £ B .
(2) h2 $ B, hence B $ A.

PROOF. (1): For q, r ^ 2, x« and / belong to £ by the formula 2).

By </ipx«, h) = 2q(hp+1xq - hpxq) and induction on p we have hpxq e £ (p ^ 0,
q ^ 1). Similarly hpyr e fl (p ̂  0, r ^ 1). By 4) and 5)

(hpxq, / > + <**/, x«> = 2p(<? - r)hp-xxqyr.

Therefore if p ^ 0, f̂, r ^ 1 and f̂ ̂  r, then hpxqyr e B. These show that

(2): Assume that h2 e B and write h2 = </1? x> 4- </2, y> + </3, A>, / , e ̂ 4.
By Lemma 10 we may assume that / 1 e>4_ 2 , f2e A2 and </3, ft> = 0. Then
we put

f — Y a hpxnvn+1 f —Y h hpxn+1vn

Jl — Zjp,n up,nn x y J J2 — 2~>P,n up,nn x J ->

where apn, bPfH e I. By 3) we have

- 4hp(xy)n+1 - (n 4- l)hp+1(xy)n).

In this formula, putting xy = 0, we have h2 — XP(^P,O ~ aP,o)hp+1 a n d ^i,o ~
alf0 = 1, ft0?0 — a00 = 0. On the other hand, putting /* = 0, we have

Z* {2(bo,n - flo.J - ( i i . . - aUR)}(xyy+1 = 0 .

Then 2(h0 0 — a 0 0 ) — (blt0 — alt0) = 0, which is a contradiction. Q.E.D.

Let hA be the smallest ideal of a Lie algebra A containing h. We can
write hA = £ „ </i, nA} ([1; p. 29]). We have the following

COROLLARY 12. (1) A = B + f [A]. (2) £ = /K

PROOF. (1): Put C = B + ![/i]. Then

4nhp(xy)n eB (n ̂  1)

by 4) and the proof of Proposition 11 (1). Putting n = 1 and induction on p
we have hpxy e C. Then by induction on n we see hp(xy)n e C (p ^ 0, n ^ 1).
Therefore >l0 ̂  C. Hence by Proposition 11, A = Ao + A# = C.
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(2): Put H = hA. Since <fc, 2x> and <x2, /i> belong to H, so do x2

and /zx2. Therefore x2y = «/ix2, y> + (hy, x 2»/2 e f/. Furthermore <x2, >>> =
2/zx + 6x2>> e // . Hence hx e H. By 1), xe H. Similarly we have y e H.

Conversely by Lemma 2.3 in [1; Chapter 2] we have hA = (ht[h])B = hB ^ B.
Q.E.D.
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