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Introduction

Let G be a connected and simply connected solvable Lie group. In this
paper we construct irreducible unitary representations of G by using the
Feynman path integrals on coadjoint orbits [1][13].

In § 1, we compute the path integrals on M = Rn x Rn. Let θ be a 1-form
on M and H a C°°-function on M which satisfies certain conditions. The
path integral KθtH(x", x'; T) (x', x"eR") computed by using the action

jo 7*0 — H(y(t))dt (where y runs over a certain set of paths on M) can be
written by the solution of differential equations defined by θ and H.

In §2, we investigate the path integrals on coadjoint orbits. Let g be

the Lie algebra of G and g* the dual space of g. Fix an element λ of g*

and choose a real polarization p. Following the Kirillov-Kostant theory

[4] [5] [14], we construct an irreducible unitary representation π\ of G. We

put θλ = <A, g~ldgy and Hγ = <Λ,, g~lYg) for any 7eg. We show that the
integral operator of KθλtHγ corresponds to π\(expTY).

§ 1 Path integrals on R* x Rn

In this section, we shall compute the Feynman path integrals on

M = R" x R". Let nl9...9nm be natural numbers such that Σΐ=ιnι = n- We
put I/'" = R"' and V1 = RΠί for ί = 1 ••• m. Let '(x, y) = '(x1 ••• xmyl '-ym) be

the normal coordinates on M = U1 x ••• x Um x V1 x ••• x Vm where x* =
r(xu ••• x ί f" f)e Ul and / = V 1 ••• 3>ίfl")e K* for i = 1 ••• m. Let 0 be a 1-form
on M and H a C°° -function on M. Suppose that 0 and H are expressed in

the following forms respectively:

where
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k = l

C^iU1 x ••• x t/1'1, SOφί, n,, R)), fc = 0, l,...,n,,

α'eC^C/1 x x Um, Ul),

bfeCn(M, U')

and

H = £ V (/ιί0 + £ xίk/ιίk) + c (1.2)

where

ceC00^1 x - x L/m, R).

For f(x, y)eM, we put dx = Ac1'1 Λ ••• Λ Ac1'"1 Λ rfx2'1 Λ ••• Λ dxm'nm and
d(y/2π) = d(yl l/2π) Λ - Λ d(y^/2n) Λ d ( y 2 t l / 2 π ) Λ - Λ ί/(ym'π-/2π). Now for
x', x"eR" and TeR define the path integral KθtH(x", x'; T) by

KβtH(x»,X';T)

f ^ ^ j r i (1'3)

"-+«>] 1 N~* 2π 2π \ J0 J

where

1 / Y — Y / k _ 1 \ \

for ίe
N

XN = x" and x0 = x'.

For simplicity, we put

κ(x,x)= Σ 'aj(x)xj + c(x),

v'(x, x) = χ
J=l

and
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μ'(x, x) = τl(x9 x) + v'(x, x)xl.

From the form of μ\ for xeR" = U1 x ••• x Um, the differential equation

w + Aφv,w) = Of

w(0) = x

has a unique solution w(x, ί). As the next theorem shows, the path integral

KθtH(x"9 x' T) is described by using the solution w.

THEOREM 1.

KθtH(x"9x' 9T)

dw(χ', Γ)
= δ(x" - w(x',

^Ί Γ
Jo

where - - — denotes the Jacobian.
dxf

PROOF. By the definition of γ in (1.3), we can assume that bl = 0 and by

integrating with respect to y, we obtain

Kβifl(x",x';Γ)

dx,
f NT

ι

f r

κ(x(t),x(t))dt
Jo

where

v / * A T/N

XN = x" and x0 = x'.

In order to integrate with respect to x, we define zNtkeRn by the equations

ZN,k ~ ZN,k-l

, *N,k~ *N,k-l I , * ~ 1 τ \ zN,k - ̂ JV.k-1 \ 7,
Z v f c _ i H : t T , — ! αί,

Z)V>o = x' (1-5)

Now we suppose that (1.5) is well-defined when N is sufficiently large. We put
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for f e
T / N V N ) I N N

Then we obtain

( i— Γτ 1
= lim δ(x" - zN(T))exp W ~ M κ(z"®> έw(0)Λ ?•

I Jo J

-1

Hence, to complete the proof, we have only to show that the following

(i) and (ii) hold.

(i) zl

N(t) is well-defined when N is sufficiently large and zl

N(t) and zl

N(t)

converge to w^x', ί) and vv^x', ί) respectively uniformly on [0, T] for i = 1 •••m.

(ϋ)

N m

lim Π Π
v-*^ A A A A

v'(zw(ί), zN(t))
T/N

-at
-i dw(x', T)

dx'

Since μ'(x, x) is independent of xi + 1,...,xm, xl

9...9x
m, we can use the

induction with respect to ί to show (i). The following discussion shows the

facts that z^(ί) is well-defined when N is sufficiently large and z^(ί) and z^(ί)

converge to w^x', ί) and vvf(x', ί) respectively uniformly on [0, T].

Now for ί =!•••/— 1 suppose that zl

N(t) is well-defined when N is

sufficiently large and that zl

N(t) and zl

N(t) converge to w'(x', ί) and vvl(x', ί)

respectively uniformly on [0, Γ].

For simplicity, we put αN, α, βN and β as follows:

α(ί) = v'(w(x', ί), vv(x', ί)),

(̂0 = t'ίz^W, zN(t))

and

= τ'ίwίy, ί), w(x', ί)).

Now since w'(x', ί) = α(ί)w'(x', ί) -I- β(t), we obtain
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We put

TIN

and

BN k = Mm + M*)N,k \ n, |^_ N V / .

N 7 7

_

CN,k=

Then, from the definition of zNtk9 we have

From the hypothesis of the induction, α^ and βN converge to α and β
respectively uniformly on [0, T]. When T/N is sufficiently small, ANtk has
the inverse matrix. Hence when N is sufficiently large, zNtk is well-defined and

Now we can find a positive number Γ such that for any positive number
ε there exists a number N0 for which

. iB* .* .*- ! - w ' x ' ,

/ k - 1 \ / k - 1 \ ΓNT

,lBN,kw'( x', —— T) - w'i x', — — T - α(t)w(x',
\ N J \ N J J * ι r

CNT

wjX,*- J i

-
^,lBN,kw' x', —— T) - w' x', — — T - α(t)w(x', t)dt

N J

I
β(t)dt

2 N 2 N

for any N > N0. Using the above inequality repeatedly and using z'N _ 0

w'(x', 0), we obtain

L w'fx', A τ)| < Y f 1 + -Y- < (e'1^^-1)-.I *•* V Jv y|| , rΛ N) N r
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Therefore

lim max z^ - w< x', ̂  Γ = 0.
jv +oo fc = o jv| | "•* \ N J\\

This shows that zl

N(t) converges to w*(f) uniformly on [0, Γ]. And from the

following inequality

7 -7
N,k - ZN,k-l

T/N
WΊ X ,

T/N

N

— - αi
N N N

T/N

T/N N N

T/N

we obtain

N

lim max IK*-* ~ Z'N'k-ί - w'l x',
! '

k- 1

TV
Γ =0.

This shows that zl

N(t) converges to wl(t) uniformly on [0, Γ]. Thus we have
proved (i).

Now we have

lim max
ΛT->oo k = 0- N

Hence we obtain

N

N
lim Πv_*^ 1 1

k=l
/„,- K «N(ί)-

JV
Γ/JV

= lim
' k=ι

exp (-1 r Λ(t)dt\
\ 2jt^T

a i 7

i Γ
= exp- Λ(t)dt

2j 0

', Γ)

dx'



Kirillov-Kostant theory and Feynman path integrals 393

Since dwl(x\ T)/dxfί = 0 for i > /, consequently we obtain (ii). Q

§2 Path integrals on coadjoint orbits

Let G be a connected and simply connected solvable Lie group, g the

Lie algebra of G, g* the dual space of g. For λ e g*, we put GA =

{geG\Ad*(g)λ = λ}. Then the coadjoint orbit Oλ is canonically identified

with the homogeneous space G/GΛ. Let gA be the Lie algebra of Gλ and we

consider a real polarization p(gA c= p c g). We fix a Lie subgroup P of G

the Lie algebra of which coincides with p. Here we suppose that

Ad*(P)λ = λ + p1 where p1 = (ζeg*|C(X) - 0 for any AΓep}.

First we choose the coordinates on Oλ to define the path integrals on

Oλ. We take a chain g: => g2 =>•••=> gm => gm+1 of ideals in g, beginning with

g! = g, ending with gm + 1 = {0}, such that the factor algebras g f /gi+ι

(ί = 1, . . . , m) are all abelian. We put n = dim G/P and nf = dim &/(& + ! + g^ Π p).

Then we have n = Σ™= x nt. Now &/(&+! + g, n p) ̂  (g< n p)/(gί+ ! n p).
Therefore we can take X i t j € Q ι ( i = 1 ••• w,7 = 1 ••- nf) such that

7=1

We define the mapping φ: Rn = Ul x ••• x Um -* G by

where x = '(x1 •• xm) and xf = f(x ί f l •• xί'"ί) Let Gf be the analytic subgroup

of G corresponding to g f. Then the analytic subgroup of G corresponding
to 9i+ι + 9 i Π p can be written as GI + 1(G fnP). This shows that the mapping
R"9xι-x/>(x)PeG/P is an onto-diffeomorphism.

For ί = l- m and j = 1 •• mί, we take ζyep1 such that ζy(Xkfί) = 5ik5j,
and take an immersion map ^ : R " = 7 1 x x F m c ^ P such that

where 3; = '(j;1 ym) and y = '(y1'' 1 yl ni). Then the mapping R" a y h-» ι^(y) GA

eP/GA and the mapping M3f(x, y)ι->^(x)^Cv)GA6G/GA are onto-diffeomor-

phisms.

We take a 1-form θλ on M and a C°° -function on M for Yeg as follows:
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where g = φ(x)ψ(y) and '(x, y)eM. From the definition of ψ, we have

i— 1 ...m
J=l...m

and from the definition of φ, we have

<ζtj,φ-1(x)dφ(x)^

= dx' > + <ζίj, g^

where

Hence 0Λ is expressed as in the form (1.1) and similarly we can see that Hγ

is expressed as in the form (1.2).

Now following the Kirillov-Kostant theory, we construct a unitary
representation of G. We assume that the Lie algebra homomorphism

lifts to a unitary character ηλ of P. We denote by ηp the character of P

such that \Ω\2 is the line bundle associated with ηp, where \Ω\2 denotes the
square root of absolute value of the volume bundle on G/(GπP). We put

Let Lξλ denote the line bundle associated with ξλ over the homogeneous
space G/P. Then the space C°°(Lξ.) of all complex valued C°° -sections of
Lξλ can be identified with

For any geG we define an operator π\(g) on C°°(Lί;ι): For /eC°°(Lί;ι)

By using the difϊeomorphism Rw9xι-^</)(x)eG/P, we can regard π$ (g) as an
operator on C°°(RΠ). Then πp

λ(g) is an isometry on L2(R") so that we obtain a
unitary representation of G on L2(R").

The next theorem shows that the integral operator whose kernel function
is the path integral KθλfHγ(x", x'; T) coincides with the operator π\(exp TY).

THEOREM 2.
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(κt3L,aτ(x", x'; T)f(x')dx' = (π*λ(expTY)f)(x")

395

where

PROOF. First for xeR" and ίeR, we define v(x, t)eR" and p(x, ί)eP by

exp(- tY)φ(x) = φ(v(x, t))p(x, t).

Then we have

dv(x, T)
(πl(expTY)f)(x) = ξ^(p(x, T))f(v(x, T))

dx
(2.1)

The differential equations (1.4) corresponding to θλ and Hγ is written as
the system

=0,
at

w(0) = x.

By the uniqueness of the solution w(x, ί)> we have w(x, t) = v(x, — t). Hence
from Theorem 1, we get

= δ(x"-v(x', -T))exp\J- V, -t) at
', -T)

dt I ]\ dx'

By using the second kind coordinates on P, it is easy to show that

λ,P(χ', -t)-expW-

Hence we get

dt

Kβλ,HY(x", *;T) = δ(x" - v(x', - Γ)KΛ(p(x', -

= δ(x'-υ(x",T))ξ;ί(p(x",T))

Now Theorem 2 follows from (2.1) and (2.2).

dυ(x', - T)

dx'

dv(x", T)

dx" (2.2)

D



396 Hisatoshi YASUNAGA

References

[ 1 ] A. Alekseev, L.D. Faddeev and S. Shatashvili, Quantization of symplectic orbits of compact

Lie groups by means of the functional integral, J. Geometry and Physics 5 (1989), 391-406.

[ 2 ] A. Alekseev and S. Shatashvili, Path integral quantization of the coadjoint orbits of the

Virasoro group and 2d gravity (preprint LOMI-E-16-88).

[ 3 ] A. Alekseev and S. Shatashvili, From Geometric Quantization to Conformal Field Theory,

Comm. Math. Phys. 128 (1990), 197-212.

[ 4 ] L. Auslander and B. Kostant, Quantization and representation of solvable Lie groups,

Bull. Amer. Math. Soc. 73 (1967), 692-695.

[ 5 ] L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie

groups, Invent. Math. 14 (1971), 255-354.

[ 6 ] C. Chevalley, On the topological structure of solvble groups, Ann. of Math. 42 (1941),

668-675.

[7] L.J. Corwin and F.P. Greenleaf, "Representations of nilpotent Lie groups and their

applications," Cambridge Univ. Press, Cambridge, 1989.

[8] L.D. Faddeev and A.A. Slavnov, "Gauge fields: Introduction to quantum theory,"

Benjamin Inc., Massachusetts, 1980.

[ 9 ] R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Mod.

Phys. 20 (1948), 367-387.

[10] R.P. Feynman and A.R. Hibbs, "Quantum mechanics and path integrals," Mc-Graw Hill

Inc., New York, 1965.

[11] H. Fujiwara, Affine structures of some solvable Lie groups, Mem. Fac. Sci. Kyusyu Univ.

33 (1979), 343-353.

[12] C. Garrod, Hamiltonian Path-Integral Methods, Rev. Mod. Phys. 38 (1966), 483-^94.

[13] T. Hashimoto, K. Ogura, K. Okamoto, R. Sawae and H. Yasunaga, Kirillov-Kostant

theory and Feynman path integrals on coadjoint orbits I, (to appear).

[14] A. A. Kirillov, "Elements of the theory of representations," Springer-Verlag, Berlin, 1976.

[15] B. Kostant, Quantization and unitary representations. Part I. Prequantization, in "Lect.

Notes in Math. Vol. 170," Springer-Verlag, Berlin-Heidelberg-New York, 1970, pp. 87-208.

[16] G.D. Mostow, Factor spaces of solvable groups, Ann. of Math. 60 (1954), 1-27.

[17] L. Pukanszky, "Leςons sur les representations des groupes," Dunod, Paris, 1967.

[18] A.G. Reiman and M.A. Semenov-Tjan-Sanskii, Current algebras and nonlinear partial

differential equations, Soviet Math. Dokl. 21 (1980), 630-634.

[19] S.S. Schweber, On Feynman Quantization, J. Math. Phys. 3 (1962), 831-842.

[20] E. Witten, Coadjoint orbits of the Virasoro group, Comm. Math. Phys. 114 (1988), 1-53.

[21] N. Woodhouse, "Geometric quantization," Oxford university press, Oxford, 1980.

Department of Mathematics,

Faculty of Science,

Hiroshima University




