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Introduction

Let G be a connected and simply connected solvable Lie group. In this
paper we construct irreducible unitary representations of G by using the
Feynman path integrals on coadjoint orbits [1][13].

In §1, we compute the path integrals on M = R" x R". Let 6§ be a 1-form
on M and H a C®-function on M which satisfies certain conditions. The
path integral K, 4(x", x'; T) (x’, x"€R") computed by using the action
{5 v*6 — H(y(t))dt (where y runs over a certain set of paths on M) can be
written by the solution of differential equations defined by 8 and H.

In §2, we investigate the path integrals on coadjoint orbits. Let g be
the Lie algebra of G and g* the dual space of g. Fix an element A of g*
and choose a real polarization p. Following the Kirillov-Kostant theory
[41[5][14], we construct an irreducible unitary representation z% of G. We
put 6, =<4, g 'dg) and Hy = {4, g~ 'Yg) for any Yeg. We show that the
integral operator of Ky, y, corresponds to 7 (exp T'Y).

§1 Path integrals on R" x R"

In this section, we shall compute the Feynman path integrals on
M =R" x R". Let ny,...,n, be natural numbers such that Y n,=n_We
put U'=R" and V=R" for i=1--m. Let ‘(x, y) ="(x'---x™y! - y™) be
the normal coordinates on M = U x .- x U™ x V! x --- x V™ where x'=
(xbL...x")e Ut and y' ="yt y"™) eV for i=1--m. Let 6 be a 1-form
on M and H a C*®-function on M. Suppose that § and H are expressed in
the following forms respectively:

m i-1
0=Y 'ydx + Y fUdx)) + 'd'dx’ + 'b'dy’ 1.
i=1 j=1

j=

where
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fii = fii0 4 i Xk fik
k=1
f#*eC(U! x - x U™, M(n;, nj, R)), k=0,1,...,n,
deC=(U! x - x U™, UY,
bieC*(M, U

and

H=

i

(NgE]

i (hO + Z X*h*) 4 ¢

1 k=1

1]

where

h*eC®(U?! x --- x U'"t, U)), k=0,1,...,n,
ceC®U! x ---x U™, R).

(12)

For ‘(x, y)eM, we put dx =dx"!' A - A dx'" Adx>' A--- A dx™™ and
d(y/2r)=d(y*/2m) A --- Ad(y*™/27) Ad(y*1/27) A -+ A d(y™"/27). Now for

x', x"eR" and TeR define the path integral K, 4(x", x'; T) by

Ko u(x",x'; T)

. V1 YN T
= lim |dx;---dxy_;d—---d="expJ{./—1 *0 — H(y(t))dt
N_,wj 1 N-145 o P{ fo)’ (®) }
where
t
xk_xk_1 k—l ) [k"‘l
t) = -1+ t— T), yo—1 |JeM for te T,
(t) (-xk 1 T/N < N ) Ye-1 N
xy =x" and x4 = x".
For simplicity, we put
k(x, x) = Y '@ (x) X + c(x),
j=1
i—1
t(x, X) = Y, fUOx,..., X' "X — Ki(x!,...,x'1),
i=1

i-1
v‘(x, X) — Z (f”l(xl,...,x'_1)3&’,...,f”""(x1,...,x"1))&’)
j=1

— (R (Y.L XY, R (L XY

and

(1.3)
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wi(x, X) = ti(x, X) + vi(x, X)x'.
From the form of 4/, for xeR" = U* x .- x U™, the differential equation

{w + pu(w, W) =0,

w(0) = x (14

has a unique solution w(x, t). As the next theorem shows, the path integral
Ky u(x", x'; T) is described by using the solution w.
THEOREM 1.
Ko ux", x'; T)
T , 1
= 5(x" — w(x, T))exp{a/ 1 J KW', ), WX, t))dt} dw(;‘i’,ﬂ :
0 X

- denotes the Jacobian.
X

PrOOF. By the definition of y in (1.3), we can assume that b’ =0 and by
integrating with respect to y, we obtain
Ko ug(x", x'; T)
N
= lim Jvdxl "'de_l l—[ 5<xk - xk_l + J‘
N~ k=1

k=1

k.
NT

1(x(), i(t))dt)
T

X exp {«/ -1 jT K(x(t), )E(t))dt}
0

where

x(t)=xk_1+xk_xk_1(t—k—1T> for t(—:-l:k_lT, ET],
T/N N N N

xy =x" and x4 = x".
In order to integrate with respect to x, we define zy ,€R" by the equations
ZNk T ZNk-1
T ZNk — ZNk-1 k—1 ZNk — ZNk-1
= - Bl Zyg-1+ — : t— T), = - dt,
k=lr T/N N T/N

Zy,o =X (1.5)

Now we suppose that (1.5) is well-defined when N is sufficiently large. We put
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— Zy e k—1 k—1_ k
Zn(t) = 2y oy + KT INk 1(:- T> for te[——T, d T].
’ T/N N N N

Then we obtain

Kou(x", x'; T)

= lim 6(x" — ZN(T))exp{\/ -1 LT K(z(t), Z'N(t))dt}

-1

k k
I'h‘ - fNT vi(ZN(t)’ Z.N(t)) ﬁ';:/.;\]t dt

N
Hence, to complete the proof, we have only to show that the following
(i) and (ii) hold.
(i) 2zi(t) is well-defined when N is sufficiently large and zi(t) and z%(¢)
converge to wi(x’, t) and w(x/, t) respectively uniformly on [0, T] fori=1---m.
(ii)
-1

dw(x’, T)
dx’'

1
2

N

N . kT
In.-—f TV(sz(t),sz(t)) TIN dt

Since pi(x, X) is independent of x'*!,...,x™, xi ...,%X™, we can use the
induction with respect to i to show (i). The following discussion shows the
facts that z}(t) is well-defined when N is sufficiently large and z4(t) and z(¢)
converge to wi(x’, t) and wi(x/, t) respectively uniformly on [0, T].

Now for i=1.--1—1 suppose that zi(t) is well-defined when N is
sufficiently large and that zi(t) and Zzi(f) converge to w'(x’,f) and Ww'(x) t)
respectively uniformly on [0, T].

For simplicity, we put ay, a, Sy and f as follows:
ay(t) = V(zn(1), Zn(1)),
a(t) = vVi(w(x', 1), W(x, 1)),
B () = 7' (zn(t), Z5(t))
and
B(t) = T (w(x', 1), w(x', 1)).
Now since w'(x, t) = a(t)w'(x, t) + B(t), we obtain

Wl<xl, E T) = Wl(x/’ k —
N

T

1 N
T) + J at)w(x', t)dt + J B(t)dt.
k;lT k—lT

2=

N
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We put
ko
N kr_
Ay =11, — an(t) YL ar ,
" ( ' f YO N )
N
N t—41T
By, =\1, + on(t) ———dt
N,k < 1 J‘DT N() T/N )
N
and

kT
Crni= f Bn(t)dt.

N

Then, from the definition of zy ,, we have
Ay iy = ByiZni-1 + Cye

From the hypothesis of the induction, ay and By converge to a and f
as

respectively uniformly on [0, T]. When T/N is sufficiently small, Ay, h
the inverse matrix. Hence when N is sufficiently large, zy , is well-defined and

Znx = AxiBrizni-1 + ANiCrie
Now we can find a positive number I” such that for any positive number

¢ there exists a number N, for which
k

g — W (x ‘N T)

ANkBNk<Z§Vk 1—W( )“

k
k ;r ! T> - ( k= ) f"_r (W, ode

IA

Ll
s

+ || Ax, kBN W <x
N

T

k
+ A;,tBN,k—f” B()dt

< 1+F . ! ,k—lT +ls+1£
< — IN k-1 — Xy —— - —+ - —

N\ N 2N 2N
for any N > N,.

Using the above inequality repeatedly and using zy, =
w!(x’, 0), we obtain

k ! r 18 1 &
Lo—wx, —T)| < 1+—> — < (W2,
Nk (x N >“ ,;( N) NSt T
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k
) _ wl x/’ - T>
vk ( N

This shows that z4(t) converges to w'(t) uniformly on [0, T]. And from the
following inequality

zfv,k - zfv,k—l . W’(x’ k—1 T)l
T/N " N

_ [ Ak = L)z + Bu a<k -1 T)w,<x,’ k—1 T) 3 ﬂ<k -1 T> H
T/N N N N
Ay, —1 -1
M<Z;Vk—l — W’(x"_k—‘T>>
T/N : N
s )
T/N N N

B, (k-1
+T/N ﬁ(N >

we obtain

Therefore

lim max =0.

N-ow k=0-

IA

Lo _
lim max |FvAENact MLal il I
N—-w k=0-- T/N N

This shows that z}(t) converges to w'(t) uniformly on [0, T]. Thus we have
proved (i).

Now we have

k k_ kT
1",—f” () L tdt—exp(—le ot(t)dt) N
";LT T/N 2 ;IT

Hence we obtain

lim max
N—-w k=

N AT k¢ |71 N 1 (kr -1
lim I, — oyt dt| = lim exp| — = a(t)dt
N_'wkl;ll J‘%T Ch T/N N_'wklzll p( 2["%7 © >
1 T
=exp~j a(t)dt
2Jo
dw'(x', T) |2
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Since dw'(x’, T)/dx'* = 0 for i > I, consequently we obtain (ii). O

§2 Path integrals on coadjoint orbits

Let G be a connected and simply connected solvable Lie group, g the
Lie algebra of G, g* the dual space of g. For Aeg*, we put G, =
{geG|Ad*(g)A = A}. Then the coadjoint orbit O, is canonically identified
with the homogeneous space G/G;. Let g; be the Lie algebra of G, and we
consider a real polarization p(g, = p =g). We fix a Lie subgroup P of G
the Lie algebra of which coincides with p. Here we suppose that
Ad*(P)A = A + p* where p* = {{eg*|{(X)=0 for any Xep}.

First we choose the coordinates on O, to define the path integrals on
0,. We take a chain g, o g, 2 +- D g, @ gn+; of ideals in g, beginning with
g; =g, ending with g,., = {0}, such that the factor algebras g;/g;:,
(i=1,...,m) are all abelian. We put n=dim G/P and n;=dimg;/(g;4, + ;N P).
Then we have n=Y7,n. Now g/(@i: + 80P ~(@Np)/(Gs10P).
Therefore we can take X, ;eg;(i=1---m,j=1---n) such that

Y RX;;®(gi+1 +8:NP) =g
=1

=
We define the mapping ¢: R" = U! x --- x U™ - G by

¢(x) = exp(x"1 Xy 1) exp(x"™ Xy ,) - exp(x™"™X,,,,)

where x = ‘(x!---x™) and x' ='(x"'-.-x"™). Let G; be the analytic subgroup

of G corresponding to g;. Then the analytic subgroup of G corresponding
to g;+1 + g;Np can be written as G;,,(G;nP). This shows that the mapping
R"sx— ¢(x)PeG/P is an onto-difftcomorphism:

For i=1--m and j=1---m;, we take {;;ep* such that {;(X, ) = 0,0;
and take an immersion map : R"= V! x --- x V™ g P such that
Ad*YONA=A+ Y Y WL,

i=1j=1

where y =(y* ---y™) and y* = ‘(y*!--- y*™). Then the mapping R"3y—y(y)G;
€P/G, and the mapping M>'(x, y) ¢(x)¥(y)G,€ G/G, are onto-diffeomor-
phisms.

We take a 1-form 6, on M and a C*-function on M for Yeg as follows:

6, =<4, g 'dg),
HY = <'l9 g_l Yg>
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where g = ¢(x)¥(y) and ‘(x, y)e M. From the definition of y, we have

0,= Z yi’j<cij,¢—l(x)d¢(x)>

i=1..m
j=1l..n;

+ <4 ¢7H(x)dd(x)> + <4, ¥ (x)dy(x))
and from the definition of ¢, we have
Ly ¢7 1 (x)dd(x))
= T+ Ly g7 gy + Y, X+ <Ly Ko 67 dg])
where -
g=exp(x"1X, )--exp(x"™X, ) exp(x* "N Xy ).

Hence 0, is expressed as in the form (1.1) and similarly we can see that Hy
is expressed as in the form (1.2).

Now following the Kirillov-Kostant theory, we construct a unitary
representation of G. We assume that the Lie algebra homomorphism

pa3Xr— — /—-1{4L X>e/—1R

lifts to a unitary character n; of P. We denote by n, the character of P

such that |QI% is the line bundle associated with 7,, where |Q(% denotes the
square root of absolute value of the volume bundle on G/(GnP). We put

&= Ml

Let L., denote the line bundle associated with £, over the homogeneous
space G/P. Then the space C*(L;,) of all complex valued C®-sections of
L,, can be identified with

{feC=(G); f(gp) = &:(0) "' f(9) (9€G, peP)}.
For any ge G we define an operator 7%(g) on C®(L;,): For feC*(L,,)
@) f)x)=fg"'x)  (x€G).

By using the difftfomorphism R"3 x> ¢(x)e G/P, we can regard =% (g) as an
operator on C®(R"). Then 7%(g) is an isometry on L?(R") so that we obtain a
unitary representation of G on L?(R").

The next theorem shows that the integral operator whose kernel function
is the path integral K,, », (x", x'; T) coincides with the operator 7% (exp TY).

THEOREM 2.
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fKoA,HY (", x5 T)f(x')dx" = (nf (exp TY) f) (x")
where
feCX(R").
Proor. First for xeR"” and teR, we define v(x, t)eR"” and p(x, t)e P by

exp(—tY)p(x) = ¢(v(x, 1))p(x, ).

Then we have

(3(exp TY) ) (x) = &5 ' (p(x, T))Sf (v (x, T)) 21

The differential equations (1.4) corresponding to 6, and Hy is written as
the system

<c.,,¢ o 2 ¢-1(w>Y¢(w>>=o, fmLem, j=1em,
w(0) = x.

By the uniqueness of the solution w(x, t), we have w(x, t) = v(x, —t). Hence
from Theorem 1, we get

KOA,Hy(x”’ x’; T)

=0(x"—v(x', —T))exp {Q /—1 JT <,1, p(x', —1t) dp” ', _t)>dt}
0

do(x',
ax’

dt

By using the second kind coordinates on P, it is easy to show that

| exp{\/ -1 f < 3 <y — r)dl_i’_—”>dt} = &, (p(x, — T)).
0

dt
Hence we get

dv(x', — T)

Ko, uy (X", X5 T) = 6(x" — v(x', — T))&(p(x', — T)) T

dv(x", T) 3
dx" 2.2)
Now Theorem 2 follows from (2.1) and (2.2). O

=o(x' —o(x", T)) &3 ' (p(x", T))
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