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Introduction. In the author’s previous work [47, generalized scalar and
spectral operators were defined and studied on a separated locally convex
space E for which L(E) is quasi-complete. The present paper studies some
sufficient conditions for a function, especially a polynomial, of two commut-
ing generalized scalar or spectral operators to be again of the same type. In
this respect, this paper is a kind of supplement to [4] and we shall use the
definitions and results given in [ 4] without their detailed descriptions.

We shall be especially interested in the case where basic algebras are C~
or C; (the case considered by Foias [1] on a Banach space) and the results
for this case will be stated after corresponding theorems. As a special case,
we shall see that sum and product of C*-scalar operators are again C”-scalar;
sum and product of C~-spectral operators with compact spectrum are C~-
spectral, under certain assumptions on commutativity.

Finally, one should remark that the theory can be easily extended to a
function or a polynomial of a finite number of commuting generalized scalar
or spectral operators.

§1. @-proper functions.

Let X be a set and ¥ be an algebra of functions on X containing con-
stants and having a locally convex topology. Given a basic algebra ([4], Def.
1.1) @, we consider the following notion:

DermvitTion 1.1. A function f on X will be called @-proper with respect to
(w.r.t.) ¥ if it satisfies the following three conditions:
i) @ofe? forall pe,
ii) @—@of is continuous from ¢ into ¥, and
i) 1€ {pof; ped}.
We remark that if ¢ is @-admissible ([4], Def. 1.4), then any bounded fune-
tion f€ ¥ is @-proper; if, in addition, @ contains constants, then any function
f€ ¥ is @-proper.

Prorosition 1.1, Let X be a locally compact space (resp. a C*-manifold),
let 7 =C(X) or CAX)PC (resp. C7(X) or C(X)PC) and let @=C° or C° (resp.
C” or C7). Then, f1s @-proper w.r.t. ¥ if and only if fe ¥.

Proor: “If” part is obvious from the above remark and [4], Example
1.1-1.4. We omit the proof of “only if” part here, since it is not essential in
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this paper.

Theorem 1.1 and Proposition 2.6 of [4] can be modified by our notion of
@-proper function as follows:

ProrposiTiON 1.2.  Suppose there is a continuous homomorphism V of ¥ in-
to L(E) such that V(1)=1. If fis @-proper w.r.t. ¥, then U defined by Us(p)=
Vipof) is a @-spectral representation on E. ([4], Def. 1.3.) If, in addition, f €
¥, then V(f) is @-scalar.

§2. Tensor product of two commuting representations.

Let @, and @, be two basic algebras contained in B(C). The complete in-
ductive tensor product ¢; &; @, (This notation is due to L. Schwartz [5].
Grothendieck [2] denoted it @, & @,.) of these two algebras can be regarded
as a subalgebra of B(C?*), the space of all locally bounded complex valued func-
tions (Borel measurable) on C*=R*, provided that the topologies of @, and @,
are stronger than the induced topologies from B(C). Let ¥ (@, @) be the sub-
algebra of B(C?) generated by @, &; @, and C (the constant functions). Then,
it is easy to see that

(1) T(@, 0)=01R; P if 1ed R; @y,

(ll) QP'((I)l, d)z) = ((pl @,’ (PZ)EBC lf 1 QE (pl @i ¢2.
In the latter case, we introduce the topology of direct sum in ¥ (@,, @.).

We say that a @;-spectral representation U; and a @,-spectral representa-
tion U, are commuting if

U (p1) Us(pg) = Uz (p2) Ui (1) for all @, €@, and ;€ @,

Proposition 2.1.  If U, and U, are commuting @- and @-spectral repre-
sentstions respectively, then there is a continuous homomorphism V of (D, D;)
wnto L(E) such that

1) V(pgi®@2) = Ui(p)Us(pz) for i€ D1, @y € Dy,

2) V()=L

Proor: V=U,QU, on &P, is defined by the equation 1). It is a homo-
morphism on @, @,. Since the mapping (¢, ps)— V(p:RQps) is separately
continuous from @; x @, into L(E), the mapping ¢:Qp.—V(p:Qps) is continu-
ous with respect to the inductive tensor product topology on @;Q®,. (See [2]
or [5].) Hence, ¥ can be extended continuously over @;&;P,. To prove 2),
we consider the two cases:

(i) The case ¥ (@, @)= D,X;P».

Choose {p.} =@, and {yrs} =@, such that U,(p,)—1I and U,(yrs)—>1. For
any x € E,

V()x= V@) lim U, (p)x
= V(1) lim Us(p) lim Ua(ra)x
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= lim lim V(1) Uy () s ()
= lim lim V(D) V (pu@rp)
= lim lim ¥ (pu@ )

= lim liBm Uy (o) Uy (Yrg) % = x.

Hence, V(1) = 1.

(ii) The case ¥ (D, @;) = (D, X;0,) PC.

We extend V over & (&, @;) by

Vi +o)=VQ)+c for € Q0.
Then, it is easy to see that /' is a continuous homomorphism on ¥ (®,, @,) and
Vyil)=1 Q. E. D.

Turorem 1. Let U, and U, be commuting &.- and @,-spectral representa-
tions respectively. If [ is @-proper w.rt. ¥ (P, D,), then

Wy ()= Vipef)

18 a D-spectral representation, where V is the homomorphism defined in the pre-
vious proposition. If, in addition, f € ¥ (P, @), then V(f) is @-scalar.

Proor: This is an immediate consequence of Proposition 1.2 and the
previous proposition.

Cororrary. If U, and U, are commuting C~-spectral (resp. C:-spectral)
representations, then W, defined above is a C*-spectral representation for any
fcC(RY) (resp. [€ C;(RYPC) and V(f) is C™-scalar for such a function f.

Proor: Grothendieck [2] (II, p. 84) and L. Schwartz [5] (I, p. 94, 11, p.
17) showed that C*5,C~=C>(R") and C:53,C2 = C:(R"). Hence ¥ (C~, C*)=C~
(RY and 7 (C:, C2)=C:(RHEPC. We know by proposition 1.1. that any func-
tion [ € # is C™-proper in these cases. Therefore, the corollary follows from
the theorem.

Remark: The above corollary does not hold for C°-spectral or C?-spec-
tral representations. The example by Kakutani [ 3] gives an indication of
this fact. The difficulty appears in the fact that the topology of C°%,C° is
strictly stronger than the topology of C°(R").

§3 Polynomials of two commuting scalar operators.

Let S;, i=1, 2, be @;-scalar operators on E with commuting @;-spectral re-
presentations U;. Let P(z;, z2) be a polynomial in two variables. Then P(S,,
S,) is formally given as an element of L(E). Is it scalar again? The answer
is partially given by the following proposition.
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ProrosiTiON 3.1.

1) If sp(S) are compact (i =1, 2), then P(Si, S;) is @-scalar whenever
U (D, ;) is P-admissible.

(ii) Suppose both @, and @, contain polynomials, so that S;=U;(z) (i =1,
2), and suppose ¥ (&1, @,) is P-admissible and & contains constants. Then, P(Si,
S,) 18 @-scalar.

Proor: (i) We can choose ¢; € @; (i=1, 2) such that ¢;=1 on a neighbor-
hood of sp(S;). Let f(z1, 22) = P(z21p1(21), 2292(22)). Then f is bounded and f¢
&P, so that f is @-proper w.r.t. ¥(¥,, @,). Hence,

V(f) = P(Ui (Z1¢71 (21)), U (Zz¢)2 (Zz))) = P(S1, Sz)
is @-scalar by Theorem 1.
(i) Under our assumptions, P € @;Q®,. Since @ contains constants, P is

@-proper w.r.t. (&, @,) (see the remark after Def. 1.1). Hence, again by
Theorem I, V(P) = P(U,(z1), Us(25)) = P(Sy, S,) is @-scalar.

Cororrary. (i) Let S, and S, be C-scalar operators with commuting C”-
spectral representations. Then, P(S,, Sz) is C”-scalar for any polynomial P.

(i) Let S, and S, be C:-scalar operators with commuting CZ-spectral re-
presentations. If sp(S;) are compact, then P(Si, Sz) 1s C™-scalar for any polyno-
maial P. (cf. Foias [1], Theorem 4)

Remark. In the case sp(S) (i =1, 2) are compact, we can define (uniquely)
f(81, S2) for any function f(z,, z,) in two variables, holomorphic in a neighbor-
hood of sp(S;) x sp(S2). (Waelbroeck [6]) Here, we may assume that fe #(C7,
C;), so that f(Sy, S,) is C™-scalar.

§4 Polynomials of two commuting spectral operators.

For generalized spectral operators, the following theorem is an easy con-
sequence of the previous section.

Tueorem II. Let T; be @;-spectral operators with @;-spectral representa-
tions U; (i=1, 2). Suppose that Ty, Ts, U,(p1) and Us(p,) belong to a same com-
mutative subalgebra of L(E) and suppose ¥ (P, @.) is P-admissible.

If sp(Ty),i=1, 2, are compact, then P(Ty, T>) is @-spectral for any polyno-
mial P.

Proor: Leti=1or 2. If sp(T;) is compact, then T;=S;+Q;, where S; =
U(z;) and Q; is quasi-nilpotent on E. Then, T}, S;, Q; (i=1, 2) commute each
other, so that

P(Ty, Ty) = P(S1, S2) + R1(S1, Sz, Q1, Q2)Q1 + R2(S1, Sz, Q1, Q2)Q2,
where R, and R, are polynomials.

By Proposition 3.1, P(Sy, S,) is @-scalar and its spectrum is compact. Since
the quasi-nilpotent operators form an ideal in L,(E) (the algebra of all ele-
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ments of L(E) with compact spectrum), R,Q; + R,Q; is again quasi-nilpotent.
Hence, by Th. 4.2 of [ 4], P(Ty, T) is a @-spectral operator.

Remark. This proof can not be applied to the case where the sp(7;) are not
compact, due to the following fact: “Let Q be a quasi-nilpotent operator. If
S € L(E) has non-compact spectrum, then SQ is not necessarily quasi-nilpotent
even if S and Q commute.” (c¢f. Appendix).

If, however, Q is nilpotent, then SQ is again nipotent whenever S and Q
commute. Therefore, the following proposition is an immediate consequence
of Proposition 3.1, (ii):

Prorosition 4.1.  Let T; be as in the previous theorem except that sp(T;)
may mot be compact. Suppose @; contains polynomials, @ contains constants
and T;=U,;(z) + Q; with nilpotent operators Q;(i=1, 2), then P(T,, T>) is P-spec-
tral.

CoroLLARY TO THEOREM I.  Let T;(i=1, 2) be regular C*-spectral operators
with C~-spectral representations U; such that Ty, Ts, Ui(p1), Udp2); @1, @2 € C”
belong to a same commutative subalgebra of L(E). Then P(Ty, Ty) is C*-spectral
for any polynomial P.

Remark: The corresponding statement in € to Proposition 4.1 is a triviali-
ty, since, in this case, T; are C>-scalar. (See [1].)

Appendix. An example of a quasi-nilpotent operator Q and a non-regular
operator S which are commutative but SQ is not quasi-nilpotent.
Let us consider the space

E={f(x y) € C*([0,1] x R); (*f/2x") (0, y) =0, k=0, 1,-.., f(,, y) € S,(R)}.

Here, S,(R) is the space of rapidly decreasing functions in y. The space E is
Fréchet with a countable number of norms ps m,,: (k, m, =0, 1,...)

pk,m,q(f) = SUPxc10,17,5€R ka (am”f/axmayq) (x, y) | .
Let

SF 7= 3G 3 Qf 1) =\ f6 Y.

It is easy to see that S, Q € L(E), Q is quasi-nilpotent and SQ = QS. Now,

5 9 =y | o

2
Taking the function f(x, y) = exp< — M) € E, let us compute a, = [ po,0,0
X

((SQ)"f(x, y))]"". 1f SQ were quasi-nilpotent, then a,— 0 (n— o). We shall
show this is not the case.
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1 1/n
—suplyl ,)1 (So(l——t)”f(t,y)dt>
2/3 V1 + 42 1/n
2sup|y[ ,)1 <Sl/3(1—t)"exp<—v~——-ty >dt>
1
zKSHpW‘I)’|eXP(—3|y|/2n)
y !

>K| 17 € ,)1 (taking y =n)

—eK; (n— o0).

Hence, SQ cannot be quasi-nilpotent.

C1]
£2]
£3]
4]
£5]
6]
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