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§1. Introduction

The problem how a Hausdorff measure of a product set 4 x B is related
to Hausdorff measures of 4 and B is not completely solved. This problem
was first investigated by F. Hausdorff himself [37] and later by A. S. Besico-
vitch and P. A. P. Moran [17, J. M. Marstrand [4 ] and others. Their works
and investigations of similar problem for capacity (e.g. [6], [7]) show that
evaluation of Hausdorff measures of generalized Cantor sets supplies many
clues to this problem.

In this paper we first evaluate the a-Hausdorff measure of generalized
Cantor sets in the Euclidean space R”. As a concequence we see the existence
of a compact set in R” which has infinite a-Hausdorff measure but zero «-
capacity (0<a<n). Next we estimate Hausdorff measures of product sets
of one-dimensional generalized Cantor sets and then give examples which
show that in case the a-Hausdorff measure of E; is infinite and the g-Haus-
dorff measure of E; is zero, the (@ + B)-Hausdorff measure of E, x E, may either
be zero, positive finite or infinite. Also these examples answer M. Ohtsuka’s
question in [77] (p. 114) in the negative.

The author wishes to express his deepest gratitude to Professor M.
Ohtsuka for his suggesting the problem and his valuable comments.

§2. Definitions and Notation

Let R"(n=1) be the n-dimensional Euclidean space with points x=(x,
X3, -+, X,). By an n-dimensional open cube (closed cube resp.) in R”, we mean
the set of points x =(x,, %3, ---, x,) satisfying the inequalities:

a;i<xi<a;+d (a; < x; <a;+d resp.) for i=1,2, ..., n,

where a; (i=1, 2, ..., n) are any numbers and d>0. We call d the length of
the side, or simply the side, of the open (or closed) cube.

Let U be the family of non empty open sets in R” which is determined
by the following properties:

(i) any n-dimensional open cube belongs to 2,

(ii) if w; and w, belong to A, then so does w;\Uw,,

(iii) if o is an element of 2A, then there exists a finite number of n-
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N
dimensional open cubes I, (v=1,2, ..., N) such that o =\ I,.
v=1

Let A(r) be a continuous increasing function defined for r==0 such that
h(0)=0. Let E be an arbitrary set in R” and p be any positive number. We
put 4(E)=inf {3} h(d,)}, where the infinum is taken over all coverings of

E by at most a countable number of n-dimensional open cubes I, with the
side d,<<p. Since 4{”’(E) increases as p decreases, the limit

A(E)=lim AP (E) (=)
p—0

exists. As is easily seen, 4,(F) is a Carathéodory’s outer measure. Hence
any Borel set is measurable with respect to 4,. For a measurable set E we
call 4,(E) the h-Hausdorff measure of E.

If A(r)=r® (a>0), then we use the notation A4, instead of A4, and call it
the a-Hausdorff measure.

Let « be a positive (Radon) measure in R” with support S, and « be a
positive number such that 0<a<n. The a-capacity C.(F) of a compact set
F is defined by

Gy = tint (L dutrdn(yy,
where the infimum is taken over the class of all positive measures # with
unit mass and S, CF.

We shall define an n-dimensional generalized Cantor set. Let / be a posi-
tive number, ¢, be a positive integer, {£,};_; be a sequence of integers and
{4,}5-,, be a sequence of positive numbers. Suppose a system [/, {k,};-,,
{4,}5-,.] satisfies the following condition (*):

(): k,>1(q=1), kgidg1<2y (g =qo) and kiks- kg 2., <1

Let I be a one-dimensional closed interval with the length 1.

In the first step, we remove from I (kk,.--k,,—1) open intevals each of
the same length so that k& -k, closed intervals Ii" (i=1,2, ..., kiko---k,,)
Frnkqq .

\J I, Next in the second step,
i=1

we remove from each I?’(k, ,;—1) open intervals each of the same length so
that k, .. closed intervals I{":"" (j=1, 2, ..., k, 1) each of length 2, ,; remain.

k1

each of length 1,, remain. Set E¢’=

Frkq, gy
We set E@oD= 1\ \J I¥D.
i=1  j=1
We continue this process and obtain the sets E@, g=qo, qo+1, .... We
define E,= f\Em. Note that E, is a compact set in R'. It is called the

q=4qo
one-dimensional generalized Cantor set constructed by the system [ [, {k,}-,,

{25, ]. We call the product set E,,=E.,x E;)x - x Ey, of n (n>2) one-
dimensional generalized Cantor set E, the n-dimensional symmetric gene-
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ralized Cantor set constructed by the system [/, {k,}7_1, {2,};-,, ). Evidently

E., is a compact set in R". We can see that E, =/ \E@xE®Px-.-xE?,

where E@ x ED x ... x E@ is a product set in R” and consists of (kiks---k,)" n-
dimensional closed cubes with the side 4,. We call E@x--- x E@ the ¢th
approximation of £, (n =1).

§8. Main theorem

Lemma 1. (P. A.P. Moran [5]) Let F be a compact set in R" and let 2 be
the family defined in §2. Assume that there exists a set function @ on 2 satis-
Sying the following conditions:

1) @(w)=0 for every set w € U,

@) if o=\Jos, 0: €A (=1,2, ..., N), then 0(w)=< 3 0(w;),
i=1 i=1

B) if we A contains F, then O(w)=0>, where b is some positive constant,

(4) there exist positive constants a and d, such that if I 1is any n-dimen-
stonal open cube with the side d < d,, then O(1)<ah({d).

Then A(F)=b/a.

Lemma 2. (M. Ohtsuka [6]) Let « be a positive number such that 0<a<n
and let E, be the one-dimensional generalized Cantor set (n=1) or the n-dimen-
stonal symmetric generalized Cantor set (n=2) constructed by the system
Ll kot =15 1Ae) =4, which satisfies condition ().

Then Co(Epy)=0 if and only if 3, (k... ky)"A;%=oco.

a=4q0

Using Lemma 1 we shall prove the following theorem.

TueoreMm. Let E,, be the one-dimensional generalized Cantor set (n=1)
or the n-dimensional symmetric generalized Cantor set (n =2) constructed by
the system [ I, {ks};-1, {44}5-,] which satisfies condition (x). We assume
k<M, (¢=1, 2, ---) (My: a constant). Then

(@) A(Ewy)=01if and only 1f lim(kik;---k,)"h(2,)=0,

g—o

(D) 0< Au(Ey)< oo if and only if 0<Iim (ks -k,)"h(1,)< oo,

g5

(€) AEm)=-c0 if and only tf lim (kiks---ky)"h(1,)= .
g—oo

Proor. If all the “if”-parts are proved, then all the “only if”’-parts are
immediately derived. Hence we shall prove the “if”-parts.

From the definition of the Hausdorff measure we can see that lim (k.-

g—oo

ky)"hM(2,)=0 (< oo resp.) implies A4(E,)=0 (<o resp.). Therefore we shall
prove that lim (&4, -k,)"h(2,)>0 (= o resp.) implies Ay(E,))>0 (=co resp.).

g—oo



374 Kaoru HaTano

We put lim (k1k,..-k,)"h(2,)=A>0. Let B be an arbitrary positive num-

==
ber such that 0<B< 4. Then there exists ¢q; (=qo) such that (kik....k,)"h(2,)
> B for g—=q:. We choose a sequence {1/};_, such that (kik....k,)"h(4;)=B.
Evidently 0<4;<4, and k%, ,h(2}.,)=n2}) for ¢ =q:.

We show that %iqu(a))h(/I;) exists for every w € 9, where N,(w) is the

number of n-dimensional closed cubes in the gth approximation of E,, which
meet w. By the construction of E,, we see that

Nq+1(w)h(i;+1)—§:Nq(w)kZ+ 1h(l;+1) = Nq(w)h(l;) for q qu-

Thus N, (w)h(4;) decreases as g increases. Now we define a set function @ on 2
by &(w)=1limN,(w)k(2;). Take E, as F in Lemma 1. We shall show that @
g—oo

satisfies conditions (1)-(4) in Lemma 1.

It is easy to see that @ satisfies (1), (2) and (8) with 6=B. We set a=
(2M,)" and doy=12,,. Let I be any open cube with the side d <d,. Then there
is a uniquely determined positive integer g(=gq;) such that 1,.,<d=<4,.
Since E,, is symmetric, we have N,(I)<2", so that N, (I)<k?, N,(I)<
(2kq1)" = (@2M)"=a. Hence O(I)=< Ny .:(DMAy. 1) =ah(A,.1) =ah(d). There-
fore @ satisfies condition (4) in Lemma 1.

By Lemma 1, we obtain A4,(E.))=B/a, where a is independent of the
choice of B. Since B is an arbitrary number such that 0< B< A4, we have
A(Ep) = A/a= %li_m(klkzmkq)"h(lq). By this inequality, we see that lim

g—> g—oo

(kikz- - -kg)"h(2,)>0 (= oo resp.) implies A;(E¢y)>0 (=co resp.).

Remark 1. We can easily see that A,(E.,)=0 (0<A4.(E,y)< oo, A(Ewy)
= oo resp.) is equivalent to 4,,,(E1))=0 (0< Aq#(E1y) < o0, Ag;n(E1y)= oo resp.).
In the case of capacity, however, the analogous relations are not always true.
For instance, when n =2 and 0<a<n, we put /=1, k,=2 (¢=1,2, ...) and
A,=(g*2 ") * for g = qo, where ¢, is a positive integer such that 21,.:<2,
for ¢ =g, and 2791, <1. Let E;, be the one-dimensional generalized Cantor
set constructed by the system [I, {k,};-1, {4,};-,,]andlet E,y=E;yx - x Ey,,
i.e., an n-dimensional symmetric generalized Cantor set. Then by Lemma 2,
we can see that Co(E,y)>0 but Co,.(Eq)=0.

Remark 2. Let « be a positive number and g, be a positive integer>1.
We assume that a system [/, {k,};_,, {4,};-,] satisfies condition (x) and %k, <
M;<oo (M;: a constant). Let E,, (E[, resp.) be the one-dimensional general-
ized Cantor set (n=1) or the n-dimensional symmetric generalized Cantor set
(n =2) constructed by the system [I, {k;}7_1, {14511 (U4, k¥ -1, {Ae}5-0]
resp.).

Then in general E,,+ E{,, but C.(Eq)) and C.(E],) are zero simultane-

ously. Furthermore A.(E.,) and A.(E[,) are zero (positive finite, infinite
resp.) simultaneously.
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Remark 3. It is a well known result that if F is a compact set of positive
a-capacity, then A,(F)= oo, provided that 0<a<n (cf. L. Carleson [27]). We
show that the converse is not always true.

Let «a be a positive number such that 0<a<n. We choose I=1, k,=2
(¢g=1,2, ...) and 2,=(q27")"'* for q =>q,, where g is any positive integer such
that 22,,:1<2, for ¢ =¢o and 271, <1. Let F be the one-dimensional gene-
ralized Cantor set (n=1) or the n-dimensional symmetric generalized Cantor
set (n =2) constructed by the system [/, {k,};-;, {,};-,,]- By Lemma 2 and
the theorem, we can easily see that C,(F)=0 but 4,(F)=co.

§4. Lemmas

We shall introduce an auxiliary a-Hausdorff measure 4% Let p be any
positive number. We put AY*(E)=inf {3 rJ} for an arbitrary set E in R”,

where the infimum is taken over all coverings of E by at most a countable
number of closed convex sets with diameters r, <p. Since AL *(E) increases
as o decreases, the limit

AXE) = lim AL *(E) (Z o)
p—0

exists.

There exists a positive constant M., depending only on the dimension n,
such that (1/M;)A,(E) < A¥(E) < M,A,(E) for every set E in R”.

We shall deal with sets in R? in what follows.

Lemma 8. Let «, B, v and 0 be positive numbers such that <1 and 3<1.
Put 1=1, k,=2 (¢=1, 2, ...), 2,=q"279* for ¢ =qo and p,=q~°2"'% for q=>q,,
where qo 1s any positive integer such that 22,.,.<2, for ¢=q, and 2%2, <1.
Let E; (E; resp.) be the one-dimensional generalized Cantor set constructed by
the system [, {k}7-1, {Ae} ;=g (C4y {ha} 715 {4} 7-4,] T€SD.).  Then

R B3
A%, o(Ey X Ep) < Mplim (2925)(29415), where  M; =10 max <1’ (27&> )

g—oo

Proor. The case a<3. There exists a positive integer ¢, (=gq,) such
that 1,<u, for g=¢;. Let o be any positive number which satisfies p<1,,.
We can choose a positive integer ¢, (=¢1) such that #,<p for ¢=>¢,. For
each g = ¢», there is a uniquely determined positive integer p=p(q) such that
Api1<sg =2, We can see that p<g.

Now we assume g_—=>g¢;. Then E{*"V x E{Y (D E; x E,) consists of 27+¢*!
mutually congruent closed rectangles, where E{¢ (E{ resp.) is the ¢gth approxi-
mation of E; (E, resp.). Let ry,;, be the diameter of each rectangle. Then
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ot = VA3 + 42 <N 2 1,< 20,
T FTi<y/ B
Tpi1,¢ =VAzi1 +45 < 9 %o

By the definition of A%,
AZLF(Ey % Ep) < AGUF(EP Y x E) <20 "1l
= (2P 1y, )@ ) < VI0@PAE)(@01f).
Since 2?27 increases with ¢ and p<gq, we have 2?25 <22%. Hence

AZPF(Ey x E) <<V101im (292 )29 uf).

g—oo

Therefore we have

A% (B Bp) = Hm AL F(By x By) <VI10Lim (2127)(2145).

0 g—o
The case f <a. Interchanging 1, and #, in the above proof for the case
a< B3, we observe that there is ¢, such that
AR (B x E) <N10@UAD @) for q=gs,
where p=p(q) is determined so that x,.1<2,<px, and p<g. Obviously
2048 =22%(q/p)*°. We shall prove limg/p<2a/B. Suppose this is not true.
e,

Then there exist sequences {g(m)};-, and {p(m)},_, such that q(m)/p(m)>
3a/28 (m=1,2, ...). By u,,1<2,, we see

a(m)

bPim)+ B " 3
2" <2 (pm)+ 1 g(my <28 6e (2 gy 1) g,

Hence

Baim B3
2 g&)<2<§%q(m)+1> q(m)?” for m=1.

For sufficiently large m, it is contradictory. Thus we have 1Hq/p<2a/ﬂ.
o

Hence

— RS
A oy x o) = lim A3 (s x E) VIO (2 ) lim 242) 214

=

Therefore we have the required inequality in any case.
Remark. This lemma is essentially due to F. Hausdorff [3].

We shall prove the following lemma by a method similar to the proof of
the theorem.
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Lemma 4. Under the same assumptions as in Lemma 3,

Ay o(Br ¢ B) = (1/ M) lim (292%)(2115),  where M4=24max<1, (%ﬁ)”)

g—oo

Proor. If lim(2725)(24%)=0, then the conclusion is obvious. Hence

g—oco

assume A= 1im(2945)(2?4)>0.

g—oo

Let B be an arbitrary positive number which satisfies 0< B< 4. Then
we can choose a positive integer g; (=gqo) such that (2925)(2?4°)>B for
g=qi. Let {u)}7_, be a sequence defined by (2945)(2%#,°)=B. Then 0<
tg<ptg and 2225,y 10y =25 i for g =qu.

We show that lim N, (w)25x,” exists for every w €2, where N (o) is the
g—o0

number of closed rectangles of the form I{? x I} which meet w. Here we
denote by Ii® (I4" resp.) any one of the closed intervals in the ¢gth approxima-
tion of E; (E; resp.). By the construction of E;x E,, we see that N, ;(0)<<
2N, (o) for g=gq,. It follows that

Nyar(@)A§ 1 2,81 S Ny(@)2225 1 1 = Ny(0)AG iy for g=qu.

Thus N (w)A5#,? decreases as g increases. Now we define a set function @
on A by

O(0) = MmN ()25 1",
g—oo

Take E, x E; as F in Lemma 1. We shall show that our @ satisfies the
conditions in Lemma 1. It is easy to see that @ satisfies conditions (1), (2)
and (8) with 6= B. Hence it is enough to show that @ satisfies (4).

The case S<«. There exists a positive integer ¢, (—g¢:) such that
t1q<2Ag:1 for g =qs. Put doy=y,,. Let I beany 2-dimensional open cube with
the side d <d,. Then there exist uniquely determined positive integers p
and ¢ such that 1,,.<d<1, and x,.1<d=<py, Since 2, 1<x,<2,. for
q=qz, we have ¢g<p. The open cube I meets at most 2° rectangles of the
form I{” x I}’ and so meets at most 2 rectangles of the form I+ x [+,
It follows from p>g that N,,,(I)=<2'2?~% Moreover 2 %uy < u?,,, since
27 ﬂf decreases as ¢ increases. Hence we have

o(I) <Np+1(1)/1p+1ﬂp+1 <24+p_q/1a+1ﬂp+1 <241a+1ﬂ§+1 <24d*HP,
Therefore @(1)<2'd**~,

The case a<B. There exists a positive integer ¢, (=g¢:) such that
A,<tg1 for g=g,. For any positive number d which satisfies 0<d<1,,,
there exist uniquely determined positive integers p=p(d) and g=g(d) such
that 2,,,<d =<1, and #,.1<d <4, Since 1,<x,,1<2, it follows that p<gq.
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We can prove limg/p<28/a as we did in the proof of Lemma 8. Accordingly
d—0

we can choose a positive integer ¢gs(=¢3) such that ¢/p<28/a for g = gs.

Put dy=41,,. Let I be any 2-dimensional open cube with the side d (<d,).
We can choose p and ¢ as above for this d. The open cube I meets at most
2% rectangles of the form I{¥ x I}” and so meets at most 2* rectangles of the
form I{¥*V x Iy"+Y, Hence N, (I)<<27?2* and

pe = (501) " < ()"

Then we have

o(1) <Nq+1(1)14+1ﬂ4+1 <24 plaﬂﬂfﬂ

« 207128 2 « 2B\ ;4
2241 +1laq+12p+llfx+l<24< B) ’{p+1ﬂ§+1<24<'aﬁ> d +B~

Therefore
@(1)<24<%ﬁ>w 448,

Thus @ satisfies conditions (1), (2), (3) and (4) in Lemma 1. It follows
from Lemma 1 that A, s(Eix E;)>=B/M,, where M,= 24max< (2(f>w>

Since B is an arbitrary number such that 0< B< A4, we have A, z(E x Ey)=>
(1/Mp)lim (2025) (24 29).
g—oo

By Lemmas 3 and 4, we obtain

CororLARY. Under the same assumptions as in Lemma 3, A, s(E; x Es)
1s zero, positive finite or infinite 1.f and only 1f lim (2947)(2¢ u?) is zero, positive

g—oc0

finite or infinite, respectively.

§5. Examples

In this section we denote by z=(x, y) a point of R®. Let « and j be
positive numbers such that « <1 and 3<1. Let Zbe a set in R? and X be
a set in the x-axis. Denote by Z, the intersection of Z with the line parallel
to the y-axis passing through z=(x, 0). J. M. Marstrand [4] proved that if
M is a positive number such that 44,(Z,)= M for all x € X, then there exists
a positive constant ¢ such that

Ay g(Z) = cMA(X) for all a>0.
From this relation we derive immediately

Ao f(X X Y) = cA(X)A6(Y).
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If <1 and <1, then we shall show by examples that there exist compact
sets E, and E, satisfying the following conditions:

1) A (E)=oc0 and 4,(E;)=0 for all &' >«,

2) Ag(Ey)=0 and Az (E,)=co for all g'<p,

3) Agis(Eyx E)=0o0r 3) 0< A, g(E1 X Ey)<oo or 3") Ay g(Ey X Ep)=1c0.

Before constructing examples we observe that if

1) C.(FE)>0and C,(E)=0 for all &’ >«
is true, then 1) is true. In fact, C,(E;)>0 implies A,(E;)=oco and 4,-(E)=0 is
true for all & >« if C,(E))=0 for all o’ >« (cf. [2])).

We shall construct examples which satisfy 1), 2) and 3) or 3’) or 3").

Exampres. Let 0<«, 8<1. Put =1, £,=2, 2,=(¢*2")"* and x{’'=
(g72-9)Y# (j=1, 2, 8) for g=1, 2, .... Note that 24}, <u\” is always true.
Choose a positive integer ¢, such that 22,., <4, for ¢ =¢, and 271, <1. Let
E, (EY resp.) be the one-dimensional generalized Cantor set constructed by
the system [, {k,}7 1, {2} -0, J(CL {ko} o1, {4} 5-,,] TESD.).

First we show that 1’) and 2) are satisfied. By Lemma 2, we see that
C.(E;)>0 and C,(E;)=0 for all ' >«. Using the theorem for each ; we in-
fer that A4(EY)=0 and Az(E;”)=co for all ’<3. Finally it follows from
the corollary of Lemma 4 that A4, s(E, x EY) is infinite, positive finite, zero
according as j=1, 2, 3 respectively.

Remark. Let «, 8 be positive numbers such that 0<a<n, 0<B<n.
M. Ohtsuka raised the following question in [7]: Let E; and E, be compact
sets in R”. Suppose that C,(E))>0 and Csz(E:)>0 for all 3’<p. Then is
C..s(E; x Ey) always positive? Now it is easy to see that our E, and E{* (or
E®) answer this question in the negative in the 2-dimensional case.
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