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Relations between Capacities and Maximum Principle
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§ 1. Introduction and problem setting

There are various definitions of capacities in potential theory. These
capacities are usually used to determine potential theoretic exceptional sets.
The aim of this paper is to study some properties of these capacities as set
functions.

More precisely, let Ω be a locally compact Hausdorff space and Φ be a
kernel, i. e., a lower semicontinuous function on Ω x Ω which takes values in
(0, + oo]. The adjoint kernel Φ is defined by Φ(x, y) = Φ(y, x). Φ is called sym-
metric if Φ = Φ. A measure μ will always be a non-negative Radon measure
with compact support Sμ. The ^-potential of μ is defined by

x9 y)dμ(y)

and the mutual energy of μ and v is defined by

(x, μ)dι>(x).

We call (μ, μ) the energy of μ and denote by £ the class of all measures of
finite energy.

For a compact set K, we set

£κ ={μ; SμCK and /*e«f},

= {μ\ SμCK and Φ(x, μ)<,l in Ω}9

= {μ; SμCK and Φ(x, μ)<l on K},

= {μ-:> SμCK and Φ(χ, μ)<χ on Sμ}.

We define

M(K) = swp{μ(K);μeMκ} if

and

0 if

where φ denotes the empty set. We define UK) for &κ and N(K) for Jfκ in
the same way. These set functions were utilized to determine exceptional
sets for instance in [_1~], [βj and [6] and they may be regarded as capacities.
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It is clear that

for every compact set K.
We shall be concerned with the following problems:

Problem I. Does any one of the equalities L = N and L = M as set func-
tions defined on the class of compact sets imply the other equality?

Problem II. Does any one of the equalities among M, L and JVhold as set
functions defined on the class of all compact sets if and only if Φ satisfies the
maximum principle defined in § 3 ?

In case Φ is a finite-valued continuous kernel, we shall study in § 6

Problem III. Does any one of the equalities among M, L and N as set
functions defined on the class of all finite sets imply that Φ satisfies the max-
imum principle?

§ 2. Study of Problem I

We say that a set function c defined on the class of all compact sets has
a monotone property if c(Kι)<Lc(K2) provided that KιCK2. Note that M and
N have a monotone property but L does not have a monotone property in
general.

We shall prove

THEOREM 1. If L(K) = M(K) holds for every compact set K, then L(K) =
N(K) holds for every compact set K.

PROOF. Let K be any compact set. There exists a measure μ e Jίκ such
that μ(K)=N(Ky\ Since SμCK, we have L(Sμ)^N(Sμ)^N(K). From the
fact that μ 6 &Sμ, it follows that L(Sμ)^>μ(Sμ) = N(K\ and hence L(Sμ)=
N(K). By our assumption that L — M, we have

N(K) = L(Sμ) = M(Sμ)<M(K) = L(K)<:

and hence N(K) = L(K) = M(K). This completes the proof.
In the above proof, we have shown

COROLLARY 1. // L has a monotone property, then L(K) = N(K) holds for

every compact set K.

COROLLARY 2. It is valid that N(K) = sup {L(F) F is compact and
The converse of Theorem 1 is not necessarily true in case Φ is not sym-

metric. This is shown by

1) This follows from Lemma 1 in [7], p. 46.
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EXAMPLE 1. Let Ω be {xu x2} and Φ be given by the matrix:

1 1

2 1

where Φ(x{, XJ) is the (ί, /)-element of the matrix. It is easily verified that
L = N. On the other hand, we have M({x1}) = l/2<l = L({xι}).

We shall establish in §5 that L = N implies L = Min case Φ is symmetric.

§ 3. Principles

We say that a property holds nearly everywhere, or n. e., on a set A if it
holds except on a subset A of A such that N(K) = 0 for every compact set
KCA.

We recall two principles:
Maximum principle. If Φ{x, μ)<, 1 on Sμ, then the same inequality holds

everywhere in Ω.
Equilibrium principle. For every compact set K, there exists a measure μ

supported by K such that

φ(x, μ)=l n.e. on K,

Φ(x, μ)<,l in Ω.

This measure μ is called an equilibrium measure of K.
Note that an equilibrium measure of K belongs to gκ. It is easily seen

that the total mass of every equilibrium measure of K is equal to M(K) in case
Φ is symmetric.

We shall give an answer to "if" part of Problem II:

THEOREM 2. // Φ satisfies the maximum principle, then M(K) = L(K) =
N(K) holds for every compact set K.

PROOF. Assume that Φ satisfies the maximum principle and let K be any
compact set. Then we see easily that Jίκ — ̂ κ, and hence M(K) = N(K).

We show by an example that the converse of Theorem 2 is not always
valid in case Φ is not symmetric.

EXAMPLE 2. Let Ω be {χu x2,

3

2

3

} and Φ be given by the matrix

1 1

2 1

2 3 J

Then we can easily verify that M=N. On the other hand, Φ does not satisfy
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the maximum principle. In fact, for μ=(εXl + εX2)/4: (εx denotes the unit point
measure at x\ we have

Similarly, we see that Φ does not satisfy the maximum principle.

§ 4. Lemmas and known results

Hereafter we shall always assume that Φ is symmetric. We introduce two
set functions. For a non-empty compact set K, let °UK be the totality of unit
measures supported by K and let V(μ) = sup {Φ(χ, μ); x € Sμ} for μφO. We
define

V(K) =

W(K)=

V(φ) =

inf{F"<

inf {(μ

W(φ)=

[μ)\

5 μ)

oo.

μ C" °lίκ)

\ μ 6 °Uκ\

if

if

It is not difficult to show that N(K) = 1/V(K) holds for every compact set K.
By this fact and a result in [6] 2 ) , we see that N(K) = 0 if and only if μ(K) = 0
for all μ e g.

The following lemmas are well-known:

LEMMA 1.3) Let Kbe a compact set and f be a strictly positive finite-valued
continuous function on K. There exists a measure μ e i κ such that

Φ(χy μ)^>f(χ) n.e. on K,

Φ(χ9 μ)<Lf(χ) on Sμ.

LEMMA 2.4) If μ is a measure in °lίκ such that (μ, μ)= W(K\ then we have
Φ(χ, μ)> W(K) n. e. on K.

LEMMA 3.5) It is valid that V(K)= W(K)for every compact set K.

The following important result was proved in [5] for a continuous kernel6).

The present proof essentially follows the argument in Q4Γ].

PROPOSITION 1. The following three statements are equivalent.

(a) Φ satisfies the maximum principle.
(b) Φ satisfies the equilibrium principle.
(c) Φ has property

For any v e <? and z $ S», Φ(x, v)^Φ(χ, z) on S» implies »(Ω)^1.

2) [6], p. 139 and p. 222.
3) [3], Theorems 2.3 and 2.4 and p. 185.
4) [3], Theorem 2.4.
5) [3], [6] and [8].
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PROOF. First we prove that (a) implies (b). Let K be any compact set.
There exists by Lemma 1 a measure μ e £κ such that

Φ(χ, μ)^l n. e. on K,

Φ(x, μ)<>l on Sμ.

It follows from (a) that Φ(x, μ)<χ in Ω.
Next we prove that (b) implies (c). Assume that v and z satisfy the hy-

potheses of [_PJ, i. e.5 v 6 *ί, z ί Sv and Φ(χ, v)<*Φ(x, z) on Sv. By our assump-
tion (b), there is a measure μeS'su such that Φ(x, μ) = l n. e. on Sv and
Φ(χ, μ)^l in Ω. Then we have

= \Φ(x, μ)dv(x)=\Φ(v, y)dμ(y)

Finally we prove that (c) implies (a). Let μ be a measure whose potential
satisfies Φ(x, μ)<Ll on Sμ. Let 2: be an arbitrarily fixed point such that z $ Sμ.
We shall prove Φ(z, μ)^l under assumption (c). We consider the directed set
D of strictly positive finite-valued continuous functions / on Sμ such that
f(y)t=Ξ=Φ(z, y) o n Sμ. For any f £ D, there exists by Lemma 1 a measure
y>f e &sμ such that Φ(v/> y)^f(y) n. e. on Sμ and Φ(v/, y)^f(y) on 5v/. Since
z $ Svf, vf 6 £ and

y)^f(y)^Φ(*, y) on & / 5

we obtain by our assumption (c) that v/(i2)<X Thus we have

for a n y / e D , and hence Φ(z, μ)<>l.

§ 5. Study of Problem II

We shall establish

THEOREM 3. // M(K) = N(K) holds for every compact set K, then Φ satisfies
the maximum principle.

This theorem follows from Proposition 1 and the following

LEMMA 4. Let K be a compact set such that N(K) = M(K). Then there
exists a measure μ e £ κ such that

6) Φ is called a continuous kernel if it is continuous in the extended sense and Φ(x, y) is finite

whenever xφy.
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Φ(x, μ) = l n. e. on K,

Φ(χ, μ)<^l in Ω,

PROOF. We may assume that N(K)>0. Since Jί κ is vaguely compact,
there exists a measure μ e Jί κ such that μ(K)=M(K). It suffices to show
that Φ(χ, μ)^>l n. e. on K. Since (μ, μ)<^μ(K) and μo = μ/M(K) e <&κ, we have

by our assumption and Lemma 3. Consequently (μOi μo)= W(K). By means
of Lemma 2, we have Φ(x, μ)^X n. e. on K. Namely μ is an equilibrium meas-
ure of K.

Combining Theorem 1 with Theorem 3, we have

THEOREM 4. // M(K) = L(K) holds for every compact set K, then Φ satisfies
the maximum principle.

Next we shall prove

THEOREM 5. // L(K) = N(K) holds for every compact set K, then Φ satisfies
the maximum principle.

We shall prepare

LEMMA 5. Let Kbea compact set such that L(K) = N(K). Then there exists
a measure μ e &κ such that

Φ(x, μ) = l n. e. on K,

Φ(x, μOSίl o n K,

This measure μ is called a weak equilibrium measure of K.

PROOF. We may suppose that N(K)>0. There exists a measure μ e <£κ

such that μ(K) = L(K). By the same argument as in the proof of Lemma 4,
we see that Φ(χ, μ)^X n. e. on K.

LEMMA 6. Assume that L{K) — N{K) holds for every compact set K. Let
Kbe a compact set and z be a point such that z i K. Then there exists a meas-
ure μ e £ K such that

Φ{x, μ)=l n. e. on K,

PROOF. Let /^bea weak equilibrium measure of K. If Φ(z, /χ)^l, then
μ is the required one. We consider the case where Φ(z, μ)>l. Let μ0 be
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a weak equilibrium measure of Kκj{z}/\. e., Φ(χ, μo) = l n. e. on
Φ(χ, μo)<;i on £w{*} and μ o (£ W{*} ) = £(£: W{*}). We have

^ ) = }Φ(μ 9 y) dμo(γ)

= μo(K) + Φ(μ,z)μo({z}).

If/*<,({*})><), then

z} )

which is a contradiction. Therefore Sμ0 CK and /.:0 satisfies the required rela-
tions.

PROOF OF THEOREM 5: On account of Proposition 1, it is enough to show
that Φ has property [ P ] . Let v e tf and z $ S» and assume that Φ{χ, »)<>Φ(χ9 z)
on Sv. There exists by Lemma 6 a measure μ c $'Sv such that Φ(χ, μ) = l n.e.
on Sv and Φ(z, μ)<3.. We have

(x)=\)Φ(^ γ)dμ(γ)

This completes the proof.
Making use of Theorems 2 and 5, we obtain an answer to Problem I:

THEOREM 6. If L(K) = N(K) holds for every compact set K, then L(K) =
M(K) holds for every compact set K.

Thus Problems I and II are completely solved in the case where Φ is sym-
metric.

By means of Theorems 2 and 5 and Corollary 1 of Theorem 1, we can
summarize Theorems 2, 3, 4 and 5 as follows:

THEOREM 7. Φ satisfies the maximum principle if and only if L has a
monotone property.

§ 6. Study of Problem III

Throughout this section, we always assume that Φ is a finite-valued conti-
nuous kernel. Note that in this case N({x})>0 for every x e Ω.

The following proposition plays a fundamental role in the sequel:

PROPOSITION 27). Assume that there exists an equilibrium measure of every

7) The author first proved this proposition under the additional assumption that every compact set
is separable. The present proof is due to Professor M, Kίshi,
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finite set. Then Φ satisfies the maximum principle.

PROOF. Suppose that Φ(x, μ)<>l on Sμ and let z be an arbitrarily fixed
point such that z ξ Sμ. Let us prove Φ(z, μ)<X Since f(x) = Φ(x, z) is a strict-
ly positive finite-valued continuous function on Sμ, there exists by Lemma 1
a measure v such that Sι> C Sμ, Φ(x, v)^Φ(χ, z) on Sμ and Φ(x, v)<*Φ(χ9 z) on
S'j. There is a net K α e D} which converges vaguely to v such that each
support Sva consists of a finite number of points of Sv. For every finite set Sva,
there is an equilibrium measure λa of Sva by our assumption. Since λa{Sμ) —
M(Sua) ^ M(Sμ)< c>o, the total masses of λa are bounded. We choose a vague-
ly convergent subnet {λa; oc e D'} and let λ be the limit. We see easily that
Sλ C Sv, Φ(z, λ)<l and

) x , λa)dva(x).

It follows that

lim va(Sμ)= \im\Φ(x, λa)dva(x)
Ό' D' J

^ γ)dλ(γ)

fa, γ)dλ(γ) = Φ(z

Consequently we have

Φ(z, μ)<!\Φ(y, γ)dμ(γ)=[φ(x,

This completes the proof.
By the aid of Lemma 4 and Proposition 2, we have

THEOREM 8. If M(F) = N(F) holds for every finite set F, then Φ satisfies
the maximum principle.

By the same argument as in the proof of Theorem 1, we can prove

LEMMA 7. // M(F) = L(F) holds for every finite set F, then M(F) = N(F)
holds for every finite set F.

Combining Lemma 7 with Theorem 8, we have

THEOREM 9. If M(F) = L(F) holds for every finite set F, then Φ satisfies
the maximum principle.

We shall establish

THEOREM 10. If L(F) = N(F) holds for every finite set F, then Φ satisfies
the maximum principle.
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PROOF. On account of Proposition 2, it suffices to show that there exists
an equilibrium measure of every finite set. This follows from Lemma 1 and
the following

LEMMA 8. Assume that L(F) = N(F) holds for every finite set F. Let μ be
a measure such that Sμ is a finite set. If Φ(x, μ)<X on Sμ, then Φ(x, μ )<^l
everywhere in Ω.

PROOF. Suppose that Φ(x, μ)<Ll on Sμ and let z be an arbitrarily fixed
point such that z $ Sμ. Let us prove Φ(z, μ ) ^ l . There exists by Lemma 1
a measure v such that Sv C Sμ,

>Φ(z, y) on Sμ,

^Φ(z, y) on Sv.

By the same argument as in the proof of Lemma 6, we can prove that there
exists a measure λ such that Sλ C Sv,

on

In this proof, we use the assumption that L(F) = N(F) for every finite set F.
It follows that

v(Sv)=fax, λ)dv(x)=\jΦ(v, y)dλ(y)

^Φ(z, y)dλ(y) = Φ(z, λ)^l.

Therefore we have

*(*, μ)^Φ(v, y)dμ(y)=<\jΦ(x,

We complete the proof.

§ 7. Elementary proof of Theorem 9

In the preceding sections, a solution of the minimizing problem of (μ, μ)
for μ e qiK has played an important role for our problems. In this section,
we shall give an elementary proof of Theorem 9 which is the same pattern as
in [2].

By Lemma 1 and Proposition 2, it is enough to show the following

LEMMA 9. Assume that L(F) = M(F) holds for every finite set F and let μ
be a measure such that Sμ is a finite set. If Φ(χ, μ)<l on Sμ, then Φ(x, μ)<,l
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everywhere in Ω.

PROOF. First we consider the case where Sμ consists of one point x0.
Then μ = aeXQ(a>0) and Φ(x0, μ)=aΦ(x0, xo)<,l. Since 1/Φ(χo, χo) = L({xo}) =
M({χo})<zl/Φ(χ, χo) for every x, we have Φ(x, μ)=aΦ(x, Λ ; 0 ) ^ 1 in Ω. Next
supposing that our assertion is true for every measure whose support consists
of at most k — 1 points, we show that Φ(χ, μ )< | l on Sμ implies that Φ(χ, μ)<zl
in Ω in the case where Sμ consists of k points. We set Sμ = X={xι, • ••, Xk}
Let G be the restriction of Φ onto XxX. Then G satisfies the maximum
principle and hence the equilibrium principle by Proposition 1. Thus there ex-
ists a measure μ0 on Xsuch that G(x, μo)=l on X. Since Φ(x, μo) = G(χ, μo) = l
on X, it is readily verified that μo(X)=L(X). In case SμoφX, it follows from
the assumption of induction that Φ(x, /*o)5Sl in ^ In case Sμo = X, let v be a
measure on Xsuch that v(X) = M(X) and Φ(x, v)<X in Ω. Writing Φ(χ» v)=pi
and μo({χi}) = ah we have

\-pkak=\Φ(x, v)dμo(x)=\Φ(μo> γ)dv(γ)

Since />*<! and a{>0 for every ί(ί = l, ••-, k\ we see t h a t jof = 1 for every ΐ, and
hence Φ(Λ;, y ) = l on X. Consequently there exists, a measure v0 supported by
X such t h a t

0 O , yo) = l on Sμ = X,

Φ(x, v o ) ^ l in Ω.

Now we prove that Φ(x, μ)<Ξl on 5/̂  implies that Φ(χ, μ)<^l in i2. Set a —
mΐ[μ({χi})/vo({χi}); X{ζ 5i;oH. Then 0<α<Ξl and we can write μ = avo + μ\
where μ is a measure on X such that SμφX. If μ/ = 0, then Φ(x, μ)=
aΦ(χ> v«o)^«^l in Ω. Otherwise, let b= max {Φ(χ, μ)\ xeSμ}. Since
Sμ'φX^ we have Φ(Λ;, μ')<Lb in £. Since there is a point Xi e 5^' such that
Φ(xh μ')=b, we have

and hence

Φ{x, μ) = aΦ(x, vo) + Φ(x, μ>')<>a + b<l in Ω.

This completes the proof.
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