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Introduction

Let O be the set of Lie algebras L over a field @ satisfying the conditions
that L= L? and Z(L)=(0), where Z(L) denotes the center of L. Clearly every
non-trivial nilpotent Lie algebra belongs to O. It is known (4], [67], [8],
[1387]) that every L € © has an outer derivation. In [187] we have introduced
the notion of Lie algebras of type (T) and shown that every Lie algebra L of
type (T) such that LP=~L® admits an outer derivation belonging to R, the
radical of the derivation algebra ®(L). It has been also shown that if Le O
is not of type (TI') there exists an abelian ideal of (L) containing an outer
derivation. From these observations it seems to be interesting to study the
case where L is of type (T) such that LY=L®. The main purpose of this
note is to give a detailed consideration to the case just mentioned. Some ad-
ditional remarks will be also given.

In Section 2 we shall show that a Lie algebra L of type (T) such that dim
Z(L)51 or 0 is of characteristic 2 admits an outer derivation in R and that a
Lie algebra L of type (T') such that LY =L® dim Z(L)=1 and @ is of charac-
teristic == 2 admits an outer derivation in R if and only if L does (Theorem
2.2). In Section 3, we shall show that a Lie algebra L over a field of charac-
teristic 0 admits a semisimple outer derivation in R if the radical of L does
(Proposition 3.1), and based on this result, for a Lie algebra L of type (T)
such that LPY=L® and dim Z(L)=1, we shall give several properties of the
radical of L™, each of which ensures the existence of a semisimple outer deri-
vation in R (Theorem 3.6).

In [12] we have studied the existence of the automorphisms of L, when
@ is of characteristic 0, outside the connected algebraic group such that the
corresponding Lie algebra is the algebraic hull J(L)* of J(L), the ideal of D(L)
consisting of all inner derivations of L. The final section 4 will be devoted to
the discussions about the existence of the derivations of L € O which are con-
tained in R but not in J(L)*.

§ 1. Preliminaries and notations

Throughout this note we shall consider a finite dimensional Lie algebra L
over a field ®. We denbdte by R the radical of L and by Z(L) the center of L.
As in [137, we shall denote by O the class of all the Lie algebras L over
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a field @ such that L=~L? and Z(L)#(0). We shall consider a subclass of O,
the Lie algebras of type (7). L is called to be of type (T)[137] provided L has
a non-zero subspace T satisfying the following conditions:

Q1) L=T+I% TNL*=(0).

@ [T, L21=(0).

@) [T, T]=(z) with o=*z¢€ Z(L).

(4) The pairing ¢ which assigns to (x, y) € Tx T the coefficient of z in
[x, y]is a non-degenerate alternate form on 7.

Then L is of type (T) if and only if L €O, Z(L)=L* and Z(M)L? for every
ideal M of L of codimension 1 [13; Theorem 27].

If His a subalgebra of L stable under ad x, then ad x induces the deriva-
tion of H which we denote by adyzx. We furthermore employ the following
notations.

(L) : The derivation algebra of L, that is, the Lie algebra of all the
derivations of L.

(L) : The ideal of (L) consisting of all the inner derivations of L. The
other notation of this is ad L.

C(L) : Theideal of (L) consisting of all the central derivations of L, that
is, the derivations of L which map L into Z(L).

For a Lie algebra L of endomorphisms of a finite dimensional vector space
over a field of characteristic 0, we denote by L* the algebraic hull of L, that
is, the intersection of all the algebraic Lie algebras containing L. L is called
to be splittable or almost algebraic if it contains the nilpotent and semisimple
components of every x € L. Then L is splittable if and only if L is decomposed
in

L=S+R, R=A+N, SNR=(0), ANN=(0), [S, 4]=(0),

where S is a semisimple subalgebra, 4 is a maximal toroidal subalgebra of R
and N is the ideal of L consisting of all nilpotent elements of R [9; Theorem 17].
For brevity we shall call this a normal decomposition of L. A not-necessarily-
linear Lie algebra L is called ad-splittable (resp. ad-algebraic) provided ad L is
splittable (resp. algebraic).

§ 2.

This section is devoted to studying the existence of outer derivations in
the radical of (L) for a Lie algebra L of type (T).
We begin with the following

Lemma 2.1. Let L be a Lie algebra over a field @ of characteristic == 2 of
type (T) such that dim Z(L)=1. Then L admits an outer derivation in the
radical of its derivation algebra if and only if LY does.

Proor. (i) Every derivation D of L® can be extended to a derivation D
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of L and D is outer if and only if D is outer. In fact, we denote Z(1L)=(z) and
extend D to an endomorphism D of L in such a way that for any x € T

N 0 if Dz=0
Dx=
(04 .
5% if Dz=az, a50.

Then it is immediate that D is a derivation of L. If D is inner, then D=ad;u y
with y e L®. From [T, LV]=(0) it follows that D=ad; y. Conversely, if D
is inner, then D=ad; (x+ y) with x € T and ye L. Hence it follows from
[T, L'Y]=(0) that D=ad;w y. Thus D is outer if and only if D is outer.

(i) We denote by D(LY) the set of derivations of L obtained by extend-
ing the derivations of L® to L as in (i). Then D(L)=D(LD)+E(L)+, where
& is a symplectic Lie algebra.

Let D be any derivation of L. Since L™ is a characteristic ideal of L, the
restriction of D to L™ is in D(LM). Extend it to a derivation D of L as in (i).
Then D—D maps T into T+ Z(L) and LY into (0). In fact, for any » € T put
(D—D)x=x"+y" with " € T and 5’ € L. For any ye LY,

Cy's y1=[(D—D)x, yl=(D—D) x, y1—[x, (D—D)y]=0.

Hence y' € Z(LW). Thus (D—D)T < T+ Z(L). It is evident that (D—D)L™=(0).
Now denote by D, an endomorphism of L induced by D—D, which maps T
into Z(L) and LY into (0). Then D, € G(L). Furthermore D—D—D, is a
derivation of L mapping 7 into 7 and L™ into (0), and its restriction to 7 is
skew symmetric relative to 6. The trivial extensions to L of endomorphisms
of T which are skew symmetric relative to 0 may be considered to form a
symplectic Lie algebra & contained in ©(L). Therefore D € D(LM®)+C(L)+6S.
It follows that D(L)=D(LD)+EC(L)+S.

(iii) We denote by R, the radical of D(L®) and by R, the subset of (LML)
obtained from the elements of :;. Then we show that the radical of D(L) is
R, +G(L). ‘

First &(LM) is a subalgebra of (L), because for any Dy, D, in DLD) we

have [ D, Dzjz[th\ﬁz] with the notations in (i). By the same reason, &, is
a solvable subalgebra of ©(L). Since Z(L)=L™ and Z(L) is a characteristic
ideal of L, it follows that G(L) is an abelian ideal of ©(L). Hence R;+GE(L) is
a solvable subalgebra of ©(L). It is easy to see that [D(LD), &]=(0), from
which it follows that ®;+ (L) is an ideal of ©(L). Putting R=R,+E(L), we
shall now show that R is the radical of ©(L). By virtue of (ii) we have

DL)/R=LD)+C(L)/R+(S+R)/R,

where (D(LP)+E(L))/NR is isomorphic to D(LM)/R, and (&+R)/R is isomorphic
to &. It follows that ®(L)/R is semisimple as a direct sum of semisimple
ideals. Therefore N is the radical of ©(L).
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(iv) By the property (4) of Lie algebras of type (T), €(L) consists of inner
derivations. Hence the statement of the Lemma follows now from (i) and (iii).
Thus the proof is complete.

Tueorem 2.2. Let L be a Lie algebra over a field @ of type (T).

Q) If LY£EL® or dim Z(L)51 or @ s of characteristic 2, then L admits
an outer derivation wn the radical of its derivation algebra.

(2) If LY=L™, dim Z(L)=1 and @ is of characteristic #2, then L admits
an outer derivation in the radical of its derivation algebra if and only if L&
does.

Proor. The statement (2) follows from Lemma 2.1. The statement (1)
has been proved in the case where LV=~L® in [13; Theorem 3. Therefore
it remains to prove (1) in the cases where dim Z(L)-*1 and where @ is of
characteristic 2.

The case where dim Z(L)=+1: In this case, dim Z(L)=>2. Choose x==0
in T and let T, be a complementary subspace of (x) in 7. Choose z’5~0 in
Z(L)\(z). And define an endomorphism D of L in such a way that

Dx=z" and D(T,+L*)=(0).

Then D belongs to €(L) which is an abelian ideal of ©(L). D is not inner, since
every inner derivation of L sends T into (z).

The case where @ is of characteristic 2: Let D be an endomorphism of L
which is identity on T and zero on L. Then D is an outer derivation of L.
Moreover it is immediate that

LD, (L)< &(L),

from which it follows that (D)+&(L) is an ideal of ©(L). Itis a solvable ideal
of (L), since C(L) is abelian.
The proof is complete.

Remark 2.3. As an illustration of Theorem 2.2 (2) we shall consider the
example of non-solvable Lie algebra of type (T) given in [13; p. 270]. Let L
be the Lie algebra over a field @ of characteristic -2 described in terms of a
basis x1, x3, ---, 45 by the multiplication table:

I:xla xz]:x& [x33 x4]:2x43 Ex3s x5:|= —2.705,
[x‘la x5]:x33 Ex3> xG:I: — X6y I:x3: x7]:x7,
[ %4, 26 |=—2x7, [ %5, ¥7]=— e, Lxe, 7 ]=xs.

Then L® =L® =(xs, x4, x5, 46, 27, x5) and Z(L)=(x5). A decomposition of L
as a Lie algebra of type (T) is given by

L=T+L® with T=(x1, x3).
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The radical R of D(L) is
(D, ad; xe, ad; x7)+(adz 1, ad, x3),

where D is a derivation such that

Xi Z=1,2
. 0 i=38,4,5
Dx,--——
1 X; l=6,7
296,' Z,—_—‘8.

The radical R, of D(LD) is
(D, ad; x¢, ad; x7)
where D is the restriction of D to L. Therefore
R=R,+C(L).

This example shows that as for further study of Theorem 2.2 (2) it is a
problem to find a semisimple outer derivation in the radical of the derivation
algebra of a Lie algebra L over a field @ of characteristic 2 such that L=1L2
and dim Z(L)=1. This problem will be studied in the next section.

§ 3.

In this section we shall study the semisimple outer derivation of a Lie
algebra L over a field of characteristic 0 such that L=L? and dim Z(L)=1.
We begin with the improvement of [ 13; Theorem 5.

Prorosition 8.1. Let L be a non-solvable Lie algebra over a field of char-
acteristic 0. Then L admits a semisimple outer derivation in the radical of its
derivation algebra if the radical of L does.

Proor. Let R be the radical of L and assume that R admits a semisimple
outer derivation in the radical R of D(R). Let L=S+ R be a Levi decomposi-
tion and 2A(S) be the subalgebra of (L) consisting of all the derivations of L
which map S into (0). Then by Lemma 3 in [ 117, there exists a maximal
toroidal subalgebra 2 of R which can be imbedded in (S). As in the proof
of Theorem 5 in [137], we see that U contains a semisimple outer derivation.

Denote by R, the set of derivations in R which can be trivially extended
to the derivations of L. Then A< R,. Let R, (resp. ) be the set of trivial
extensions of elements of R; (resp. A) to L. Then we assert that R, +ad; Ris
a solvable ideal of (L). In fact, R, is a solvable subalgebra and ad; R is a
solvable ideal of ©(L). Hence R;+ad; R is a solvable subalgebra of (L).
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Now it is easy to see that
[Ry, ad,S]=(0) and [R, AS)]SR,.

Since D(L)=A(S)+ (L) 5], it follows that R,+ad; R is an ideal of D(L) and
therefore a solvable ideal of ®(L). Thus the radical of ®(L) contains ¥ and
therefore a semisimple outer derivation.

The proof is complete.

Lemma 3.2.  Let L be a non-solvable Lie algebra over a field of characteristic
0. Then L admits a semisimple derivation with trace 0 if and only if the
radical of L does.

Proor. Assume that L has a semisimple derivation D with trace 0. Let
R be the radical of L and let L= S+ R be a Levi decomposition of L. Let 2A(S)
be the subalgebra of ©(L) as in the proof of Proposition 3.1. Then 2((S) is
splittable. Let 2(S)=&+A+N be a normal decomposition of A(S). Then

DAL)=J(L)+ACS)
—(ad; S+©&)+A+ad, R+N.

By considering the components of D in the above factors, D may be supposed
to belong to A +ad; R. Then the restriction D’ of D to R is a derivation of R
and Tr D'=Tr D+#0. Let D(R)=&+UA' +I be a normal decomposition of
D(R). The component D, of D' in A’ is a semisimple derivation with trace
=+0.

Conversely, assume that R admits a semisimple derivation D; with trace
=£0. Then D, is contained in a maximal toroidal subalgebra of the radical R, of
D(R). It is known [117] that there exists a maximal toroidal subalgebra 2A;
of N; which can be imbedded in A(S). By the conjugacy of maximal toroidal
subalgebras of R;, 2A; contains a semisimple derivation with trace =0 and
therefore (L) does. By considering a Levi decomposition of ©(L), we see
that the radical of (L) contains a semisimple derivation with trace <0, com-
pleting the proof.

ProrositioN 8.8. Let L be a Lie algebra over a field of characteristic 0.
Let R be the radical (resp. the radical which is nilpotent) of L. Then the fol-
lowing statements are equivalent:

1) L admits a derivation with trace 0.

(2) L admits a semisimple derivation with trace =0.

(8) L admits a semisimple (resp. semisimple outer) derivation with trace
=0 in the radical of D(L).

(4) R admits a derivation with trace 5=0.

(5) R admits a semisimple derivation with trace 0.

(6) R admits a semisimple (resp. semisimple outer) derivation with trace
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=0 in the radical of D(N).

Proor. Since (L) is splittable, (1) obviously implies (2). Now assume
(2). Let D be a semisimple derivation with trace 0. We consider a Levi
decomposition of D(L): DNL)=S+R. Then the component D, of D in R is a
derivation with trace ==0. Since R is splittable, the semisimple component of
D, belongs to N and has the trace 0. In the special case where R is nilpotent,
ad; R consists of nilpotent elements, and therefore the semisimple component
of D, is obviously outer. Thus we have (8). Consequently (1), (2) and (8) are
equivalent.

The equivalence of (4), (5) and (6) is a consequence of the proof stated
above. By virtue of Lemma 3.2, (2) and (5) are equivalent. Therefore all the
six statements are equivalent and the proof is complete.

DeriniTiON 3.4, Let N be a mnilpotent Lie algebra over a field @. Let
n=dim N/N%. We define the following properties.
(A¢): There exist iy, A, -y An(m<n) in @ which are not all zero and the

subspaces Uy oy, Uz ap -5 Un,a, Such that
N=Uy o+ -+ Up,a,+N* (direct sum)
and, putting for any c € @
VemZ Usat, 21 [Uiep Uk,

ajrag=

+ 2 (LU, Uka,d U,a 4 U e, [Ubap Una,J)

aj+ak+ch=a
_I._ R
N=XV, (direct sum).

(A):  The property (Ay) with the further condition
>adim V,=~0.

The quasi-cyclicity of N is the property (A,) with m=1 and a;=1 and is the
property (A) with m=1 and a;=1 if @ is of characteristic 0. It is easy to find
the further examples of nilpotent Lie algebras with the property (A,) or (A)
in [8] and [7]].

Lemma 3.5. Let N be a nilpotent Lie algebra over a field ®. Then N has
the property (Ao) (resp. (A))if and only if N has a non-zero derivation (resp. a
derivation with trace =0) which is diagonal for a suitable choice of basis of N.

Proor. If N has the property (A,), define an endomorphism of L in such
a way that for any a € @

Dx=ax if x €V,
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Then D is a non-zero derivation of L and is diagonal if we choose a basis of L
consisting of elements of V,,.

Conversely, if NV has a non-zero diagonal derivation D, then we can choose
X1, -y Xp iD N\ N? with n=dim N/N? so that

N:(xl, X2y o0y xﬂ)+N2’
Dx;=a;x; for j=1,2,.., n.

Now it is immediate that a, ---, @, and Uy o, =(x1), -, Un,o,=(x,) satisfy the
condition of the property (Ay).
The proof is similar for the property (A). Therefore we omit it.

Tueorem 3.6. Let L be a Lie algebra over a field @ of characteristic 0 of
type (T) such that LY=L® and dim Z(L)=1. Then L admits a semisimple
outer derivation in the radical of D(L) in each of the following cases:

(1) The radical N of L™ admits a non-zero semisimple derivation in the
radical of ().

(2) N admaits a derivation with trace ==0.

() N has the property (A).

Proor. Let R and R, be the radicals of (L) and D(L™) respectively. With
the notations in the proof of Lemma 2.1, we know that R=%R,+E(L), where
R, is the set of trivial extensions of elements of R, for some Levi decomposition
of LV, Since G(L) consists of inner derivations, it follows that R contains a
semisimple outer derivation if and only if R; does.

Combining this fact with Proposition 8.1, we see that if (1) is satisfied then
L admits a semisimple outer derivation in R.

By Proposition 3.3, we see that (2) implies (1).

Finally assume that (3) is satisfied. Then by Lemma 8.5, N has a semi-
simple derivation with trace 0. Let D(N)=S+R,, R=A+N be a normal
decomposition of D(N). Then A=~(0), for if A=(0) every D in D(N) has the
trace 0. Thus we see that (3) implies (1).

The proof is complete.

RemArk 3.7.  As an illustration of Theorem 3.6, we continue to consider
a Lie algebra L in Remark 2.3. The radical N of L? is (%6, 47, #5). The radi-
cal of D(V) is

(D)+(ady x6, ady x7),
where D is a derivation of N such that
Xi l=6, 7
Dx;=
2x,- i=8.

Putting S=(x3, x4, x5), L'Y= S+ N is a Levi decomposition. The set R; of ele-
ments of the radical of (V) which can be trivially extended to derivations
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of L is (D). Let D be the trivial extension of D to L. Then the radical
of (LY is identical to (D)+ad,wN. Furthermore N has obviously the prop-
erty (A).

§ 4.

At the end of the paper [127], we have tried to study the outer automor-
phism of a Lie algebra L over an arbitrary field of characteristic 0. It has
been defined as an automorphism which is not in the connected algebraic group
corresponding to J(L)*. This section is devoted to the study of the outer
derivations which do not belong to J(L)*.

In [117], we have studied among other things the properties of the Lie
algebra L such that D(L)=3(L)*. Therefore we are now only concerned with
the properties corresponding to Theorem 3 in [137].

In the proof of the following theorems we shall use the results on alge-
braic Lie algebras in [ 1], [ 2] without references. As in [13], we denote %,
(resp. €,) the abelian ideal of ®(L) consisting of all derivations which map L
into L? (resp. Z(L)) and L? (resp. Z(L)) into (0).

TueoreM 4.1.  Let L be a Lie algebra in O over a field @ of characteristic
0 and not of type (T). Assume that L is ad-splittable. Then there exists an
abelian ideal A of D(L) such that W\I(L)*=~A.

Proor. (i) The case where L has no non-zero abelian direct summands:
By Proposition 10 in [97], we may assume that L is a splittable linear Lie al-
gebra. Hence we have a normal decomposition of L as follows:

L=S+R, R=A+N, [S, A]=(0),

where S is a maximal semisimple subalgebra of L, 4 is a' maximal toroidal
subalgebra and N is the ideal of nilpotent elements of R. Since S and NV are
algebraic, we have

L*=S+R*, R*=A*+N, [S, A*]=(0).
If A=(0), L=L* and therefore by Lemma 1 in [[10]
(ad Ly*=ad; L*=ad L.

As in the proof of Theorem 3 in [137], take an ideal M of L of codimension 1
such that Z(M)SIL? Let L=(x,)+M. The endomorphism D of L defined in
such a way that

Dxi=z e ZIM)\[ L, ZM)] and DM=(0)

is an outer derivation in N,\(ad L)=N,\(ad L)*.
We now assume that 4-4(0). Take x; in 4 and the subspace 4; of 4
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complementary to (x1). Put M=S+4;+N. Then Mis a maximal ideal of L of
codimension 1. Denoting by C;«M) the centralizer of M in L* we assert that

Cr-(M)S Z(M)+ A*.
In fact, let x € C..(M). Then
x=s+a+n with s€S, a€eAd*, neN.

From [x, ST]=(0)it follows that s=0. Since [a, S+ A * |S[ 4*, S+ [ 4*, 4%]
=(0), it follows that [ n, S+ 4:]=(0). Take a subspace U of N in such a way
that

N=U+N?% [a, U]SU, UNN?=(0).

Since [a+n, N]=0, we have [a, U]J<[n, UJ=N? and therefore [a, U ]=(0).
U generating N, we have [a, N ]=(0). It follows that [n, N]=(0). Thus
[n, M ]=(0) and therefore n € Z(M). Hence x=a-+n € A*+ Z(M), as was as-
serted. We now have

(21, Co(M)IS[ %1, A*+Z(M)]=[2x1, Z(M) ]

and therefore [ x1, Cz«(M) =[x, Z(M)]. Take an endomorphism D of L so
that

Dxi=z € ZMN\[L, ZM)] and DM=(0).

Then D is a derivation of L. Moreover D ¢ J(L)*. In fact, assume that D is
in (ad L)*. Then D=ad;x with x € L* by Lemma 1in[107]. Since (ad x) M=0,
we have x € Cz(M). It follows that

z:,Dx]_:[.’XI, xl] € [xly CL*(M)jz[xla Z(M):,,

contradicting the choice of z. Thus we conclude that D € 3o\J(L)*.

(ii) The case where L has a non-zero abelian direct summand L;: In this
case L=L,(PL, where L, is an ideal such that Z(L.) C L3. ‘

If Z(L) is not a direct summand, the endomorphism D=~0 of L such that

.DLl gZ(Lz) and .DLZI(O)

is in NeNE(L). Moreover D ¢ (ad L)* since (ad LY*L,=[L*, L, |=(0).
If Z(L) is a direct summand and L/Z(L)-~(L/Z(L))? every non-zero endo-
morphism D of L such that

DL,SZL)=L; and D(L+L3)=(0)

belongs to €,. Moreover D ¢ (L)*, since (ad L)*L,<= L.

If Z(L) is a direct summand and L/Z(L)=(L/Z(L))?, the endomorphism D
of L such that D is the identity on L; and DL,=(0) is in Z(D(L)). Moreover
D ¢ J(L)*, since (ad L)* L;=(0).
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Thus the proof is complete.

Tuaeorem 4.2. Let L be a Lie algebra of type (T) over a field @ of charac-
teristic 0. If LY=L® or dim Z(L)=~1, then R\J(L)*~D, where R 1s the radical
of DL). If LY=L® and dim Z(L)=1, then R\J(L)*+0 if and only if
R \SJ(LD)* =0, where R, 1s the radical of D(LY).

Proor. By Ado’s theorem, we may assume that L is a linear Lie algebra.
Since L is of type (T), there exists a subspace T such that

L=T+L’ TNL*=0), [T, L]=(0), [T, T]=(z0SZL).

(i) The case where LM=+L®: We have obviously L®=(z,)+L®, from
which it follows that L is the direct sum of the ideals L, and L,, where L,=
T+(z0) and L;=L®. The endomorphism D of L such that

Dx=x forany xe T, Dzy=2z,, DL,=(0)

is a derivation in R. Since (ad L)*zo=[ L*, z, ]=(0), it follows that D € R\J(L)*.
(ii) The case where dim Z(L)=2: The endomorphism D of L such that

DTS Z(L)\(z0) and DLM=(0)
is in (L). Since
(ad L*T=[L*, T)=[T*+LD, TO=[T*, T1=[T, T]=(z0),
it follows that D € G(L)\J(L)*.

(iii) The case where LV=L® and dim Z(L)=1: In this case, with the
notation in the proof of Lemma 1.1,

R=C(L)+R, and ad L=6(L)+ad; LY.

@(L) consists of nilpotent elements and ad; L¥=(ad L)>. Hence both of them
are algebraic and therefore ad L is algebraic. Hence R\J(L)*=£0 if and only
if R,\(ad; LP)*=~@ and therefore if and only if R,\LD)*=£0.

The following corollaries are immediate from Theorems 4.1 and 4.2.

CoroLLARY 4.3. Let L be a Lie algebra over a field of characteristic 0. In
each of the following cases, R\J(L)*=£0.

(1) LALD, LV=LL® Z(L)+(0) and L is ad-splittable.

(2) L 1s solvable and ad-splittable, and Z(L)=~(0).

(8) L is nilpotent.

CoroLLARY 4.4. Let L be an ad-algebraic Lie algebra in O over a field of
characteristic 0. If L is not of type (T), then there exists an abelian ideal A of
(L) such that A\J(LY*==0.

Remark 4.5. In Theorem 4.1, we have assumed that L is ad-splittable.
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The assumption was only used to prove the statement in the case (i) where L
has no non-zero abelian direct summands. We shall here give an example
which shows that, if L is not ad-splittable, the case (i) cannot be proved by
our method used in the proof of Theorem 3 in [137].

Let L be a Lie algebra over a field of characteristic 0 described in terms
of basis x1, x2, ---, x5 by the following multiplication table:

[x1, xz]=x5, [xl, w3 |=x3, [ X1, X4]=—2x4, [xa, x4]=x5.

Then L is not ad-splittable and (L) is solvable. Every outer derivation
constructed by choosing, as in the proof of Theorem 3 in [ 137, a maximal ideal
M of L of codimension 1 such that Z(M)< L? belongs to (ad L)*. In fact, such
a maximal ideal of L of codimension 1 is

M:(“xl+8x2> X3y X4, xS)a CK#O

and every derivation obtained as stated above is a linear combination of D and
ad x,, where D is the derivation such that

Dx;=x5 and Dx;=0 for i=1,3,4,5.

Here D is the nilpotent component of ad x;, whence D € J(L)*\J(L). Therefore
we have the assertion.
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