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1. Introduction
In this paper we consider parabolic equations with boundary conditions:

@ Mdu=f, w®=u,

®) g du=f O =u(T),

where A4 is a non-linear operator:

In 1965 J. Leray and J. L. Lions [4] introduced a non-linear operator on
a reflexive Banach space into its conjugate space and showed that it is
surjective under the condition of coerciveness. Making use of this result,
J. L. Lions [ 5] showed the existence of solutions of (a) and (b) for a certain
kind of non-linear operator A.

In 1968 H. Brezis [ 1] introduced a new operator, called of type M, which
is more general than the operator of J. Leray and J. L. Lions, and showed
that the operator of type M on a reflexive Banach space into its conjugate
space is also surjective under the condition of coerciveness.

The purpose of this paper is to extend J. L. Lions’ results in [ 5] on the
existence of solutions of (a) and (b) to the case where A4 is a bounded coercive
operator satisfying conditions which are more general than Lions’ [5]. In
the proof we shall make use of the result by H. Brezis mentioned above.

The author would like to express his deepest gratitude to Professors
M. Ohtsuka and F-Y. Maeda for advice and many helpful suggestions.

2. Notation and statement of theorems

In general, for a Banach space U over C (complex numbers), we shall
denote the anti-dual space of U by U’. Let H be a Hilbert space over C, (,)
be the scalar product in H, and |-| be the norm in H. One may identify H’
with H. Let ¥ be a reflexive Banach space over C, ((,)) the natural pairing
between V' and V, ||v||y the norm of v € V" and ||v*||y~ the norm of v* € V.

Assume that VCH, V is dense in H and the injection is continuous.
Then VCHCV’'. Let F be a linear space whose elements are vector-valued
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functions defined on a fixed real finite interval (0, T) with values in H and
D0, T; V) the space of all €= functions on (0, 7) into ¥ with compact sup-
port. Assume that F is a reflexive Banach space, that

L=, T; V)CFCL*0, T; H)
and
F Lo, T; 77,

where all injections are continuous, and that @D (0, T; V) is dense in F. We
denote the natural pairing between F’ and F by <, >, the norm of u € F by
|lu]|r and the norm of u* € F’ by ||u*||z.. For each u*=u*({) € L*(0, T; H),
consider

Sj(u*(t), w(@)dt, ucF.

This is a continuous anti-linear form on F, and hence belongs to /. We ex-
press this fact by L%(0, T; H) CF’. For this reason we write

T
sy wa> = (@0, wO)de

for any uq, u, € L0, T; H) too.
For ge L'(0, T; V") we define K{ g by

&0 O="( ew(125)gras, >0,

Then K{ge L'(0, T; V') for any ¢>0.

We assume that

(hy) if g€ F’, then K{g e F’ and if G is a bounded set in F’, then {K{g;
g €G, e>0} is bounded in F’.

This condition is satisfied, for instance, when F=L?(0, T; V), 2 <<p< + co.

Throughout the paper we shall use the symbols “—s 7, “—2 > gnd “-2*,”
to denote the convergences in the strong, weak and weak™* topology respec-
tively.

Since FCL%0, T; H) CF', any u € F may be regarded as an element of F”.
Hence, u is a continuous anti-linear from on F>OD(0, T; V), so that v may be
considered to be a V’-valued distribution. Therefore v’ exists in the distri-
bution sense.

Let 4 be an operator on F into F’ and assume that A satisfies the fol-
lowing conditions:

(4y) if {u;} CF is such a directed set that ||u;||r <K, u} € F', ||ul]|r <K,
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wi—2>4 in F, w5’ in F/, Au;—2 ¢ in F’ and limsup Re < Au;, u;><Re
<¢, u>, then Au=¢;

(4;) A is bounded, that is, 4 maps bounded sets in F to bounded sets
in F’;

(43) (coerciveness) — o0 as [|v][p— .

Under the above hypotheses we shall establish the following theorem.

Tueorem 1. For given f € F' and u, € H, there exists u € F such that u(t)
18 a continuous function on [0, T tnto V', u' € F', u'+ Au=f and u(0)=u,.
For ge L'(0, T; V') we set

(K$g) (t)z%&i&(p(tfei)g(s) ds, e>0.

Then K§g e L'(0, T; V') for any ¢>0.
In addition we suppose that
(hy) if g€ F/, then K§g e F’ and if G is a bounded set in F’, then {K}g;
g €G, e>0} is bounded in F'.
This condition is satisfied, for instance, when F=L?(0, T'; V), 2 <p< + co.
Then we have the following theorem.

TueoreM 2. For given f ¢ F', there exists u € F such that u(t) is @ con-
tinuous function on [0, T ] into V', u' € F'y u'+ Au=f and u(0)=u(T) tn H.
For the method of proof we essentially follow J. L. Lions [5].

8. Lemmas

Let B be a refiexive Banach space, ¢, a positive real number and
D'(0, to; B") the space of all distributions on (0, #,) with values in B’, that
is, the space of all continuous anti-linear. forms on (0, t,; B).

If u € L*(0, ty; B") and the distributional derivative u’ € L'(0, t,; B’), then
there exists a strongly absolutely continuous function #(¢) on [0, ¢, ] into B’
such that #(z)=u(z) almost everywhere on (0, ¢,) and the strong derivative
of & is equal to »’ in the distribution sense (cf. Chap. I, 11 of [27]; Chap. III,
3.7,38.8 of [8]; IV, §5 of [6]). Therefore we assume that such a function
u(z) is strongly absolutely continuous on [0, z, ] and u’(¢) is the strong deri-
vative of u(z). Let »(x) be a strongly absolutely continuous function on
[0, ¢, ] with values in B such that the strong derivative +'(¢) € L*(0, to; B).
Then we have the formula for integration by parts for z and »:

GBY [ @@, v di+ @, v
= ((u(t0), v(20)) = (w(0), v(O)),



358 Nobuyuki KEnmocHt

where ((, )) is the natural pairing between B’ and B.
Making use of this formula, we shall prove the following lemmas.

Lemma 1. Let {u;} be a directed set, u; € L*(0, to; B), u’€ L'(0, to; BN,
ui—2>u wm L0, ty; B") and u}—2>u’ i LY0, to; B"). Then u;(t)—">u(t) in
B’ for all t €0, ¢, ].

Proor. Let a be any element of B and set v(t)=ta. Clearly v is
strongly absolutely continuous on [0, ¢, | and v" € L'(0, ¢to; B). Therefore, by
integration by parts we have for any ¢" ¢ (0, ¢o ]

[} @i, )i+ ] i, v a=r @), @)

and
[ @, o+ (., vena=r@e), o).
Since
[ @, o ar—{ @, vy
and

[, @, vema—{ o, vana,

we obtain ((u;(t"), a)) — ((u(t’), @)). The arbitrariness of « implies that u;(¢")
—%"5 u(¢') in B’. Considering the function v(¢) = (¢, — t)a, we obtain u;(0)—-
©(0) in B’. q.e.d.

Lemma 2. Let {u;} be a directed set, u; € L*(0, to; B), ul € L'(0, to; B’),
wi——u i L0, to; B and uwi——u’ in L*(0, to; B). Then u;(t)——>u() in
B’ for all ¢t €0, ¢ ).

Proor. Let U be the closed unit ball in B, X the family of functions
{v.(t)=ta;a € U} and Y the family {v,(t)=a; € U}. Clearly X and Y are
bounded in the anti-dual space of L*(0, ¢o; B). Since for any ¢’ € (0, ¢o]

[} @i, ve@di—{ (@@, v

uniformly on X and
[, (i@, va@nae—{ (@, v

uniformly on Y, using the formula for integration by parts again we infer
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that ((u;(¢t"), @) — ((u(t), «)) uniformly on U. Thus u;¢)——u() in B’
Considering the family {v.(t)=(,—t)a; a € U}, we obtain ©;(0) —=— u(0) in
B’ q.e.d.

To show Turorem 1 we consider the space W={v e F; v € L*(0, T; H)}.
Define a norm in W by ||v|lw=|lv|lr+I|v'||z20,7;2) Then W is a reflexive
Banach space. It follows from (3.1) that

<u'y v>+ <u, v'>=(T), v(T))—(u(0), v(0)) for u, ve W.
In particular,
(3.2) 2Re<u’, u>=|u(T)|2— |u(0)|?  for uc V.
Given ¢ >0, we set for u, v e
(3.3) [Aeu, v]=e<u’, v'>+ <u/, v> 4+ (u(0), v(0))+ < Adu, v>,

where [, ] is the natural pairing between W’ and W. By this formula A4, is
defined to be an operator on W into .
We have the following lemma.

Levmma 3. For given ¢ >0,

(1) A: is a bounded operator on W into W/,

@) iof {u} CW is a directed set such that ||ullw <C, u;—2>u in W,
Aeu;i— ¢ in W' and limsupRe[ Aecu;, ui]<Re[ ¢, u’, then A.u=¢,

®) Re[ A.v, v]

—> oo as ||v||w — oo.
llollw

Proor. To prove (1) we first observe that the mapping v—v(0) is
bounded linear on W by Lemma 2. Hence there exists a positive constant M
such that [v(0)| <<M||v|lw for all v € W. If ||u|lw <K, then for all v e W

| Aeu, v]| <ellu'|| 2o, 750y 10"l 220,750
Hllwll 2o,z M ||| p 4 KM ||v]|w + || Aul| |0 ]| 7,

where M’ is a positive constant. Since 4 is a bounded operator, {||Aul|z ;
llu||w <K} is bounded. Consequently for a sufficiently large N>0, we have

|[4eu, o] <N|lv[lw.

This implies that 4. is bounded.
To prove (2) we choose a subdirected set {i,} such that

lim sup Re [:Agui, ui] =limRe [Aguia, u,-a].
i a
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By hypothesis (4,), we may choose {i,} in such a way that Au; —*>7 in F’.
Since u;—%>»u in F and v/ —2>u’ in L*(0, T; H), it follows from Lemma 1 that
ui(0)—~->u(0) in H. By 3.3), [4eu;, v]=e<uj, v'>+<ui, v>+(u; (0),
v(0))+ < A4u; , v>, and, taking limit in a, we also have

(3.4 Lo, v]=e<u/, o>+ <w/, v'> + (u(0), v(0)+ <7, v>
for all ve W.
Hence, by (3.2),

35 Re[ deus,s wiJ=elluf oz + -1,
+%lu,~a(T)lz+Re<Au;a, wi,>

and

(86)  Re[y, ul=ellullfsorm+ g |w(O*+ | u(T)|*+Re<z, u>.

On the other hand, since liminf||u; |32, 750 =>llw'|3200,7:m5 li‘}élrlinf]u;a(())l2
>|u(0)]? and liminf|u; (T)|>|u(T)|? we have by (3.5)

limsup Re< 4u; , u; >
. 712 1 e 1 2
:hinsup{Re[Agu,-a, uia]'—slluiaHLZ(o,T;H)——2—|uia<0)l _Tluia(T)l

<HimRel eur,y us,J—ellw/lfzc0rm — 180 P=—5- (D)%

Thus, by (8.6) and the hypothesis that
limRe[ 4.u;,, u;, ] <Rel[¢, ul,

we obtain

limsupRe< Au; ,u;,><Re<y, u>.

Therefore, by hypothesis (4,) we have Au=v. Then by (3.4)
[Asu, v]=[¢, v] for all v e W.

Hence 4.u=¢.
Finally to prove (3) we use the relation
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Rel Aev, v]=e|v 30,2+ [0(0) |*+ 5 [o(T)|*+ Re< dv, v>
>ellv'||320,7:m + Re< Av. v>,

which follows from (8.2). Hence

Re[ 4.v, v] >~ ellv[[Z20,7:m +Re< A, v>
lollw = o'l 2o, 750y + ]| 7

Then, using (A4;), we see that (3) is valid. q.e.d.
Now we recall the results by H. Brezis [17]:

Derinition.  (H. Brezis [17]). Let E be a Banach space and E’ the dual
space of E. A mapping T: E—~E’ is said to be of type M if T satisfies the
Sollowing conditions (M) and (Ms,).

(M) If {x;} is a directed set such that x;—2—> x i E, ||x;]|z<<C, Tx;—2
g wn E and limsup (Tx;, x;) < (g, %), then Tx=g.

(M) T;Le restriction of T on any finite dimensional subspace of E is
continuous with respect to the weak™* topology.

Remark: If T is bounded, then condition (4;) implies (M>).

We shall use

Tueorem. (H. Brezis [1]) Let E be a Banach space, E' be the dual space
of E and T be an operator of type Mon E into E'. Suppose that

[(Tx, %) |

—oo a8 |[x]lg—>oo.
(B3P

Then T is surjective, that is, the range R(T)=E’.

Remark: The above definition and theorem were given in real Banach
space in [1]. However, it is easy to extend them to the case of complex
Banach spaces replacing (, ) by Re(, ).

Lemma 3 and the above Remark show that 4. is a bounded operator of
type M on W into W’. Thus we have

Lemma 4. For given f € F and u, € H, there exists us ¢ W such that
8.7 [Aeue, v]=<f, v>+ (uo, v(0)) forall ve W.

Proor. The functional v - <f, v> + (uo, v(0)) is a continuous anti-linear
form on . Therefore this lemma is an immediate consequence of the above
TuroreMm by H. Brezis. q.e.d.

For the family {u.; e>0} of solutions of (3.7), we prove
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LemMa 5. Let ¢y>0 be a constant. Then

Q) The set {u.; 0<e ey} ts bounded in F.

(2) The set {u:(0); 0<e<gy} ts bounded in H.

(8) The set {Jeul; 0<e e} 18 bounded in L*(0, T; H).
(4) The set {u}; 0<e<leo}t 18 bounded in F'.

Proor. From (3.7) we obtain (cf. (3.5))
Re[ Acue, uel=ellullfsiorm+ |0 |*+ 5 ue(T)|*+Re< Aue, >
<Uflelaclle+ ol |u(0)]
I llellaclle+ Tuo |+ 51 ue©) |

Hence

Re< Au,,

llwellr

l 2

Le> | fl|p -0
&

llwellr

This together with (45) implies (1). Then (2) and (8) are easily obtained.
Let us prove (4). Substitute ¢ € D(0, T; V) for v in (8.7). Then

e<us ¢' >+ <ug, ¢> + <Aug, d>=<f, p>.
Thus in the distribution sense
(3.8) —euy’ ‘ui+ Au.=f,

and hence u.’ € F'+L*0, T; H)=F' CL*0, T; V"), so that (3.8) holds in F".
For o € V, we set v(¢t)=ta. By integration by parts

—e<ul, v'>=e<uf, v'>—e((wi(T), v(T))).
Using (3.8),
e<ut, v/ >+ <uly o>+ <Aug v>—e((wi(T), v(T))=<f, v>.
On the other hand, since »(0) =0, (3.7) implies that
e<ub V> +<ug v>+ <Aug v>=<f,v>.

Therefore ((wi(T), v(T)))=0, and hence ((ui(T), ®))=0. Since a may be
any element of 7, we have

(3.9) wl(T)=0  in V"
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(8.8) and (8.9) imply that
ug(t)Z%SjeXp<»t—g—i>( feAu)()ds  in V.

In fact, we have

_l_gjexp< t=s >(f— Aug){s)ds

e

T _ T —
= —S exp<i~i>u;’(s)ds—|— %—S exp(i-—i>u,§(s)ds
t 5 e 3 e

= Sjexp(t—;{) ug’(s)ds—exp<—t%T> wi(T)+ui(e)

T _
—I—S exp< ¢ . s >u,§’(s)ds
13
=us(t).
Since {f— Au.} is bounded in F’ by (4,), hypothesis (h;) implies that {u;} is

bounded in F'.

§4. Proof of the theorems

Proor or TuroreMm 1: It follows from Lemma 5 that there exists a suit-
able directed set {¢} tending to zero such that

(4.1) we—2su  in F,

(4.2) Wiz in F,

(4.3) Veul-2 0  din L*0, T; H),
(4.4) we(0)—2&  in H,

(4.5) A2 52 in F’.

For any ¢ € D, T; V), <ub¢>=— <ug ¢'>—>—<u,$’> as e—0. Hence,
(4.2) implies that — <u, ¢'> =<z, ¢> for all 6 ¢ D, 7; V). Thus u'=z in
F’. By (4.1) and (4.2) Lemma 1 implies that u.(0)—5u(0) in V7, so that
1w (0)=¢&, on account of (4.4). From (4.3) we see that as ¢ >0, eu;’— 0 weakly
in the distribution sense. In fact, for any ¢ € D0, T; V)

<eul, ¢>=—Ne<Neut, ¢'>—0.

Thus letting e —0 in (3.8), we have
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4.6) Wt r—f

in the distribution sense. Since D0, T'; V) is dense in F, (4.6) holds in F’.
For p e V, we set v(t)=(T—1t)[s. Then we have by (4.1) ~ (4.4),

e<ut, vV >0, <ub v>o><u,v>, <Aug v>—><x, v>
and (z:(0), v(0))= T (u:(0), 8)—> T (u(0), B). Hence by (8.7) we have
<uwy o>+ T(w(0), B)+ <%, v>=<f, v>+ T'(wo, B).

By (4.6) the left hand side is equal to 7'(u(0), B)+ < f, v>. Thus we infer
that (z(0), #)=(ue, B). The arbitrariness of 8 implies that u(0)=1u,.

It remains to prove that 4u==x=. There exists a sequence {¢,} such that
e,—0 and

X=liminf[Re<uf, ue>+ [ue(0)] 7]
-0

=lim[Re<uf, ue, >+ |ue, (0)]%].

N—»00

By (3.2) in the proof of Lemma 3, for any £, j
Re<ulb,—ué, e, —ue, >+ |u,(0)—ue (0)]*=>0,
that is,
[Re<uf,, ue, >+ ue, (0)[*]+[Re<ul, ue,>+ |ue,0)|*]

—Re<ul, ue,>—Re<ui, ue,>—(ue,(0), ue (0)

— (6,0, ue,(0))=0.
Letting & — oo and then j— oo, we have

2[X—Re<u/, u>—|u(0)|*]>0.

Thus
4.7 X>Re<u', u>+|u(0)|%
On the other hand, by (8.3), (8.7), (4.1), (4.4) and (4.6), we obtain
(4.8) lir]ilf(}lpRe<Aus, Ue>

=lir£1s0up[Re<f, ue>+Re(uo, ue(0))—elluelFz0,7;m

—Re<ul, us>—|u:(0)]%]
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<Re<f,u>+|u(0)|’—X
=Re<u’, u>+Re<z, u>+ |u(0)|*—X.
Hence, from (4.7) and (4.8), we derive

limsupRe< Au., ue><Re<xz, u>.
60

Then it follows from (4;) that Au=x. q.e.d.

Proor or THEOREM 2: We consider the space W={v € F;v' ¢ L*(0, T; H),
v(0)=v(T)}. Define the same norm in ¥ as in #. Then W is a reflexive
Banach space. For given ¢>0, we set for u, v € W

[(Aeu, v]=e<u', v'>+<u', v>+ < Au, v>.

Then we can show that 4. is a bounded coercive operator of type M on W
into W’ in the same way as Lemma 8. Thus by H. Brezis’ result, for given
f € F’ there exists u. € W such that

I:ﬁeub‘, 1)]: <f, U> fOI‘ a].]. vE W.

Just as in the proof of TuroreM 1, there exists a suitable directed set
{e} tending to zero such that

4.9 {u¢} is bounded in F and u.—%>u in F,
(4.10) Veui—2p in L*(0, T; H),

(4.11) ue(0)=u(T)—2-¢ in H,

(4.12) Au, 22 in F'.

We can show as in the proof of TuroreMm 1 that, for any ¢>0,

(4.13) —eus' tutt+Au.=f
and
(4.14) ut(0)=ufi(T) in V.

Also as in the proof of Turorem 1, (4.13) and (4.14) imply that

TAC) =—]é—exp <TT><exp—z—— 1)_1BZexp <if%~11) (f—Aue) (s)ds

+Sjexp< t=s )(f—Aue) (s)ds].

&
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This implies by hypotheses (h,) and (4;) that {u{} is bounded in F’. There-
fore we may assume that

(4.15) w2y in F'.

By (4.9) and (4.15) Lemma 1 implies that u(0)=u(T) in H.
In the same way as in the proof of Turorem 1, we obtain

limsupRe< du,, ue><<Re<u, u>,

&>

and, by hypothesis (4,), Au=x. On the other hand, for all ¢ ¢ D(0, T; V),
e<us, ' >+ <ut, 6>+ <Aug ¢>=<f, ¢>.

Letting ¢ -0, we have u'+ Au=f in the distribution sense. Since (0, T'; V)
is dense in F, the equality «'+ Au= f holds in F’. Thus u is a solution.
g.e.d.
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